1
|
Kurakin S, Badreeva D, Dushanov E, Shutikov A, Efimov S, Timerova A, Mukhametzyanov T, Murugova T, Ivankov O, Mamatkulov K, Arzumanyan G, Klochkov V, Kučerka N. Arrangement of lipid vesicles and bicelle-like structures formed in the presence of Aβ(25-35) peptide. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184237. [PMID: 37820938 DOI: 10.1016/j.bbamem.2023.184237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/31/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
Our complementary experimental data and molecular dynamics (MD) simulations results reveal the structure of previously observed lipid bicelle-like structures (BLSs) formed in the presence of amyloid-beta peptide Aβ(25-35) below the main phase transition temperature (Tm) of saturated phosphatidylcholine lipids and small unilamellar vesicles (SUVs) above this temperature. First, we show by using solid-state 31P nuclear magnetic resonance (NMR) spectroscopy that our BLSs being in the lipid gel phase demonstrate magnetic alignment along the magnetic field of NMR spectrometer and undergo a transition to SUVs in the lipid fluid phase when heated through the Tm. Secondly, thanks to the BLS alignment we present their lipid structure. Lipids are found located not only in the flat bilayered part but also around its perimeter, which is corroborated by the results of coarse-grained (CG) MD simulations. Finally, peptides appear to mix randomly with lipids in SUVs while assuming predominantly unordered secondary structures revealed by circular dichroism (CD), Raman spectroscopy, and all-atom MD simulations. Importantly, the former is changing little when the system undergoes morphological transitions between BLSs and SUVs. Our structural results then offer a platform for studying and understanding mechanisms of morphological transformations caused by the disruptive effect of amyloid-beta peptides on the lipid bilayer.
Collapse
Affiliation(s)
- Sergei Kurakin
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia; Institute of Physics, Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russia.
| | - Dina Badreeva
- Meshcheryakov Laboratory of Information Technologies, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia
| | - Ermuhammad Dushanov
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia
| | - Artyom Shutikov
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia
| | - Sergey Efimov
- Institute of Physics, Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russia
| | - Ayzira Timerova
- Institute of Physics, Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russia
| | - Timur Mukhametzyanov
- Butlerov Chemistry Institute, Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russia
| | - Tatiana Murugova
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia
| | - Oleksandr Ivankov
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia
| | - Kahramon Mamatkulov
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia
| | - Grigory Arzumanyan
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia
| | - Vladimir Klochkov
- Institute of Physics, Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russia
| | - Norbert Kučerka
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia; Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, Bratislava 832 32, Slovakia.
| |
Collapse
|
2
|
Evans LS, Hussain R, Siligardi G, Williamson PT. Magnetically aligned membrane mimetics enabling comparable chiroptical and magnetic resonance spectroscopy studies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183343. [DOI: 10.1016/j.bbamem.2020.183343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
|
3
|
2 H NMR of oriented phospholipid/cholesterol bilayers containing an amphiphilic peptide. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183196. [DOI: 10.1016/j.bbamem.2020.183196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/17/2019] [Accepted: 01/10/2020] [Indexed: 10/25/2022]
|
4
|
Sarkis J, Vié V. Biomimetic Models to Investigate Membrane Biophysics Affecting Lipid-Protein Interaction. Front Bioeng Biotechnol 2020; 8:270. [PMID: 32373596 PMCID: PMC7179690 DOI: 10.3389/fbioe.2020.00270] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/16/2020] [Indexed: 12/16/2022] Open
Abstract
Biological membranes are highly dynamic in their ability to orchestrate vital mechanisms including cellular protection, organelle compartmentalization, cellular biomechanics, nutrient transport, molecular/enzymatic recognition, and membrane fusion. Controlling lipid composition of different membranes allows cells to regulate their membrane characteristics, thus modifying their physical properties to permit specific protein interactions and drive structural function (membrane deformation facilitates vesicle budding and fusion) and signal transduction. Yet, how lipids control protein structure and function is still poorly understood and needs systematic investigation. In this review, we explore different in vitro membrane models and summarize our current understanding of the interplay between membrane biophysical properties and lipid-protein interaction, taken as example few proteins involved in muscular activity (dystrophin), digestion and Legionella pneumophila effector protein DrrA. The monolayer model with its movable barriers aims to mimic any membrane deformation while surface pressure modulation imitates lipid packing and membrane curvature changes. It is frequently used to investigate peripheral protein binding to the lipid headgroups. Examples of how lipid lateral pressure modifies protein interaction and organization within the membrane are presented using various biophysical techniques. Interestingly, the shear elasticity and surface viscosity of the monolayer will increase upon specific protein(s) binding, supporting the importance of such mechanical link for membrane stability. The lipid bilayer models such as vesicles are not only used to investigate direct protein binding based on the lipid nature, but more importantly to assess how local membrane curvature (vesicles with different size) influence the binding properties of a protein. Also, supported lipid bilayer model has been used widely to characterize diffusion law of lipids within the bilayer and/or protein/biomolecule binding and diffusion on the membrane. These membrane models continue to elucidate important advances regarding the dynamic properties harmonizing lipid-protein interaction.
Collapse
Affiliation(s)
- Joe Sarkis
- Department of Cell Biology, Harvard Medical School and Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, United States
- Univ Rennes, CNRS, IPR-UMR 6251, Rennes, France
| | | |
Collapse
|
5
|
Aisenbrey C, Salnikov ES, Bechinger B. Solid-State NMR Investigations of the MHC II Transmembrane Domains: Topological Equilibria and Lipid Interactions. J Membr Biol 2019; 252:371-384. [PMID: 31187155 DOI: 10.1007/s00232-019-00071-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/25/2019] [Indexed: 10/26/2022]
Abstract
The major histocompatibility complex class II (MHC II) membrane proteins are key players in the adaptive immune response. An aberrant function of these molecules is associated with a large number of autoimmune diseases such as diabetes type I and chronic inflammatory diseases. The MHC class II is assembled from DQ alpha 1 and DQ beta 1 which come together as a heterodimer through GXXXG-mediated protein-protein interactions and a highly specific protein-sphingomyelin-C18 interaction motif located on DQA1. This association can have important consequences in regulating the function of these membrane proteins. Here, we investigated the structure and topology of the DQA1 and DQB1 transmembrane helical domains by CD-, oriented 2H and 15N solid-state NMR spectroscopies. The spectra at peptide-to-lipid ratios of 0.5 to 2 mol% are indicative of a topological equilibrium involving a helix crossing the membrane with a tilt angle of about 20° and another transmembrane topology with around 30° tilt. The latter is probably representing a dimer. Furthermore, at the lowest peptide-to-lipid ratio, a third polypeptide population becomes obvious. Interestingly, the DQB1 and to a lesser extent the DQA1 transmembrane helical domains exhibit a strong fatty acyl chain disordering effect on the inner segments of the 2H-labelled palmitoyl chain of POPC bilayers. This phosphatidylcholine disordering requires the presence of sphingomyelin-C18 suggesting that the ensemble of transmembrane polypeptide and sphingolipid exerts positive curvature strain.
Collapse
Affiliation(s)
- Christopher Aisenbrey
- Institut de Chimie, Université de Strasbourg/CNRS, UMR7177, 4, Rue Blaise Pascal, 67070, Strasbourg, France
| | - Evgeniy S Salnikov
- Institut de Chimie, Université de Strasbourg/CNRS, UMR7177, 4, Rue Blaise Pascal, 67070, Strasbourg, France
| | - Burkhard Bechinger
- Institut de Chimie, Université de Strasbourg/CNRS, UMR7177, 4, Rue Blaise Pascal, 67070, Strasbourg, France.
| |
Collapse
|
6
|
Aisenbrey C, Marquette A, Bechinger B. The Mechanisms of Action of Cationic Antimicrobial Peptides Refined by Novel Concepts from Biophysical Investigations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1117:33-64. [PMID: 30980352 DOI: 10.1007/978-981-13-3588-4_4] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Even 30 years after the discovery of magainins, biophysical and structural investigations on how these peptides interact with membranes can still bear surprises and add new interesting detail to how these peptides exert their antimicrobial action. Early on, using oriented solid-state NMR spectroscopy, it was found that the amphipathic helices formed by magainins are active when being oriented parallel to the membrane surface. More recent investigations indicate that this in-planar alignment is also found when PGLa and magainin in combination exert synergistic pore-forming activities, where studies on the mechanism of synergistic interaction are ongoing. In a related manner, the investigation of dimeric antimicrobial peptide sequences has become an interesting topic of research which bears promise to refine our views how antimicrobial action occurs. The molecular shape concept has been introduced to explain the effects of lipids and peptides on membrane morphology, locally and globally, and in particular of cationic amphipathic helices that partition into the membrane interface. This concept has been extended in this review to include more recent ideas on soft membranes that can adapt to external stimuli including membrane-disruptive molecules. In this manner, the lipids can change their shape in the presence of low peptide concentrations, thereby maintaining the bilayer properties. At higher peptide concentrations, phase transitions occur which lead to the formation of pores and membrane lytic processes. In the context of the molecular shape concept, the properties of lipopeptides, including surfactins, are shortly presented, and comparisons with the hydrophobic alamethicin sequence are made.
Collapse
Affiliation(s)
| | - Arnaud Marquette
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, Strasbourg, France
| | - Burkhard Bechinger
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, Strasbourg, France. .,Faculté de chimie, Institut le Bel, Strasbourg, France.
| |
Collapse
|
7
|
Vermeer LS, Hamon L, Schirer A, Schoup M, Cosette J, Majdoul S, Pastré D, Stockholm D, Holic N, Hellwig P, Galy A, Fenard D, Bechinger B. Vectofusin-1, a potent peptidic enhancer of viral gene transfer forms pH-dependent α-helical nanofibrils, concentrating viral particles. Acta Biomater 2017; 64:259-268. [PMID: 29017974 DOI: 10.1016/j.actbio.2017.10.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/02/2017] [Accepted: 10/06/2017] [Indexed: 01/13/2023]
Abstract
Gene transfer using lentiviral vectors has therapeutic applications spanning from monogenic and infectious diseases to cancer. Such gene therapy has to be improved by enhancing the levels of viral infection of target cells and/or reducing the amount of lentivirus for greater safety and reduced costs. Vectofusin-1, a recently developed cationic amphipathic peptide with a pronounced capacity to enhance such viral transduction, strongly promotes the entry of several retroviral pseudotypes into target cells when added to the culture medium. To clarify the molecular basis of its action the peptide was investigated on a molecular and a supramolecular level by a variety of biophysical approaches. We show that in culture medium vectofusin-1 rapidly forms complexes in the 10 nm range that further assemble into annular and extended nanofibrils. These associate with viral particles allowing them to be easily pelleted for optimal virus-cell interaction. Thioflavin T fluorescence, circular dichroism and infrared spectroscopies indicate that these fibrils have a unique α-helical structure whereas most other viral transduction enhancers form β-amyloid fibrils. A vectofusin-1 derivative (LAH2-A4) is inefficient in biological assays and does not form nanofibrils, suggesting that supramolecular assembly is essential for transduction enhancement. Our observations define vectofusin-1 as a member of a new class of α-helical enhancers of lentiviral infection. Its fibril formation is reversible which bears considerable advantages in handling the peptide in conditions well-adapted to Good Manufacturing Practices and scalable gene therapy protocols.
Collapse
Affiliation(s)
- Louic S Vermeer
- CNRS, Univ. of Strasbourg, Institut de Chimie UMR_7177, Strasbourg, France
| | - Loic Hamon
- INSERM, Univ. of Evry, UMR_S1204, Evry, France
| | | | - Michel Schoup
- CNRS, Univ. of Strasbourg, Institut de Chimie UMR_7177, Strasbourg, France
| | | | - Saliha Majdoul
- Genethon, INSERM, Univ. of Evry, EPHE-PSL Research University, Research Unit Integrare UMR_S951, Evry, France
| | | | - Daniel Stockholm
- Genethon, INSERM, Univ. of Evry, EPHE-PSL Research University, Research Unit Integrare UMR_S951, Evry, France
| | - Nathalie Holic
- Genethon, INSERM, Univ. of Evry, EPHE-PSL Research University, Research Unit Integrare UMR_S951, Evry, France
| | - Petra Hellwig
- CNRS, Univ. of Strasbourg, UMR 7140, Strasbourg, France
| | - Anne Galy
- Genethon, INSERM, Univ. of Evry, EPHE-PSL Research University, Research Unit Integrare UMR_S951, Evry, France
| | | | - Burkhard Bechinger
- CNRS, Univ. of Strasbourg, Institut de Chimie UMR_7177, Strasbourg, France.
| |
Collapse
|
8
|
Douliez JP, Navailles L, Dufourc EJ, Nallet F. Fully deuterated magnetically oriented system based on fatty acid direct hexagonal phases. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:5075-5081. [PMID: 24758608 DOI: 10.1021/la500808q] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
There is strong demand in the field of NMR for simple oriented lipid supramolecular assemblies, the constituents of which can be fully deuterated, for specifically studying the structure of host protonated molecules (e.g., peptides, proteins...) in a lipid environment. Also, small-angle neutron scattering (SANS) in fully deuterated oriented systems is powerful for gaining information on protonated host molecules in a lipid environment by using the contrast proton/deuterium method. Here we report on a very simple system made of fatty acids (dodecanoic and tetradecanoic) and ethanolamine in water. All components of this system can be obtained commercially as perdeuterated. Depending on the molar ratio and the concentration, the system self-assembles at room temperature into a direct hexagonal phase that is oriented by moderate magnetic fields of a few tesla. The orientation occurs within the magnetic field upon cooling the system from its higher-temperature isotropic phase: the lipid cylinders of the hexagonal phase become oriented parallel to the field. This is shown by solid-state NMR using either perdeuterated fatty acids or ethanolamine. This system bears strong interest for studying host protonated molecules but also in materials chemistry for building oriented solid materials.
Collapse
Affiliation(s)
- Jean-Paul Douliez
- UMR 1332, Biologie et Pathologie du Fruit, INRA, Centre de Bordeaux, 33883 Villenave d'Ornon, France
| | | | | | | |
Collapse
|
9
|
Goncalves J, Eilers M, South K, Opefi CA, Laissue P, Reeves PJ, Smith SO. Magic angle spinning nuclear magnetic resonance spectroscopy of G protein-coupled receptors. Methods Enzymol 2013; 522:365-89. [PMID: 23374193 DOI: 10.1016/b978-0-12-407865-9.00017-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of membrane receptors and mediate a diversity of cellular processes. These receptors have a common seven-transmembrane helix structure, yet have evolved to respond to literally thousands of different ligands. In this chapter, we describe the use of magic angle spinning solid-state NMR spectroscopy for characterizing the structure and dynamics of GPCRs. Solid-state NMR spectroscopy is well suited for structural measurements in both detergent micelles and membrane bilayer environments. We first outline the methods for large-scale production of stable, functional receptors containing (13)C- and (15)N-labeled amino acids. The expression methods make use of eukaryotic HEK293S cell lines that produce correctly folded, fully functional receptors. We subsequently describe the basic methods used for magic angle spinning solid-state NMR measurements of chemical shifts and dipolar couplings, which reveal detailed information on GPCR structure and dynamics.
Collapse
Affiliation(s)
- Joseph Goncalves
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Nolandt OV, Walther TH, Grage SL, Ulrich AS. Magnetically oriented dodecylphosphocholine bicelles for solid-state NMR structure analysis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:1142-7. [PMID: 22274567 DOI: 10.1016/j.bbamem.2012.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 01/05/2012] [Accepted: 01/10/2012] [Indexed: 10/14/2022]
Abstract
A mixture of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) with the short-chain detergent n-dodecylphosphocholine (DPC) is introduced here as a new membrane-mimetic bicelle system for solid-state NMR structure analysis of membrane proteins in oriented samples. Magnetically aligned DMPC/DPC bicelles are stable over a range of concentrations, with an optimum lipid ratio of q=3:1, and they can be flipped with lanthanide ions. The advantage of DMPC/DPC over established bicelle systems lies in the possibility to use one and the same detergent for purification and NMR analysis of the membrane protein, without any need for detergent exchange. Furthermore, the same batch of protein can be studied in both micelles and bicelles, using liquid-state and solid-state NMR, respectively. The applicability of the DMPC/DPC bicelles is demonstrated here with the (15)N-labeled transmembrane protein TatA.
Collapse
Affiliation(s)
- Olga V Nolandt
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry and DFG-Center for Functional Nanostructures, Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | | | | | | |
Collapse
|
11
|
Warschawski DE, Arnold AA, Beaugrand M, Gravel A, Chartrand É, Marcotte I. Choosing membrane mimetics for NMR structural studies of transmembrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1957-74. [DOI: 10.1016/j.bbamem.2011.03.016] [Citation(s) in RCA: 239] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 03/28/2011] [Accepted: 03/29/2011] [Indexed: 12/11/2022]
|
12
|
Douliez JP. A novel oriented system made of fatty acid hexagonal phases with tuneable orientation. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2010; 206:171-176. [PMID: 20598599 DOI: 10.1016/j.jmr.2010.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 06/08/2010] [Accepted: 06/08/2010] [Indexed: 05/29/2023]
Abstract
There is a strong demand in the field of solid state NMR for oriented lipid supramolecular assemblies. This is mainly devoted to biophysical structural studies or materials chemistry because the NMR signal depends on the orientation. Here we report a novel system made of a fatty acid hexagonal phase which self orient in the magnetic field. The orientation occurs within the magnetic field upon cooling the system from its isotropic phase. The cylinders of the hexagonal phase are then oriented parallel to the field. We take advantage that the hexagonal phase is a gel, i.e., the orientation is maintained fixed within the sample tube to investigate the orientational dependence of the deuterium solid state NMR signal using deuterated fatty acids and D(2)O by manually rotating the sample tube within the coil probe. As expected, the oriented signal follows the low |3cos(2)theta-1| where theta is the angle between the long cylindrical axis and the field. We expect this system to be of interest in materials chemistry and structural biology.
Collapse
Affiliation(s)
- Jean-Paul Douliez
- UR 1268, Biopolymères Interactions Assemblages INRA, équipe ISD, Rue de la Géraudière, 44316 Nantes, France.
| |
Collapse
|
13
|
Beevers AJ, Damianoglou A, Oates J, Rodger A, Dixon AM. Sequence-Dependent Oligomerization of the Neu Transmembrane Domain Suggests Inhibition of “Conformational Switching” by an Oncogenic Mutant. Biochemistry 2010; 49:2811-20. [DOI: 10.1021/bi902087v] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andrew J. Beevers
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | | | - Joanne Oates
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Alison Rodger
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Ann M. Dixon
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|
14
|
Bordag N, Keller S. α-Helical transmembrane peptides: A “Divide and Conquer” approach to membrane proteins. Chem Phys Lipids 2010; 163:1-26. [PMID: 19682979 DOI: 10.1016/j.chemphyslip.2009.07.009] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 07/21/2009] [Accepted: 07/21/2009] [Indexed: 11/26/2022]
|
15
|
Ouellet M, Voyer N, Auger M. Membrane interactions and dynamics of a 21-mer cytotoxic peptide: a solid-state NMR study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1798:235-43. [PMID: 19703408 DOI: 10.1016/j.bbamem.2009.07.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 07/06/2009] [Accepted: 07/30/2009] [Indexed: 11/29/2022]
Abstract
We have investigated the membrane interactions and dynamics of a 21-mer cytotoxic model peptide that acts as an ion channel by solid-state NMR spectroscopy. To shed light on its mechanism of membrane perturbation, (31)P and (2)H NMR experiments were performed on 21-mer peptide-containing bicelles. (31)P NMR results indicate that the 21-mer peptide stabilizes the bicelle structure and orientation in the magnetic field and perturbs the lipid polar head group conformation. On the other hand, (2)H NMR spectra reveal that the 21-mer peptide orders the lipid acyl chains upon binding. (15)N NMR experiments performed in DMPC bilayers stacked between glass plates also reveal that the 21-mer peptide remains at the bilayer surface. (15)N NMR experiments in perpendicular DMPC bicelles indicate that the 21-mer peptide does not show a circular orientational distribution in the bicelle planar region. Finally, (13)C NMR experiments were used to study the 21-mer peptide dynamics in DMPC multilamellar vesicles. By analyzing the (13)CO spinning sidebands, the results show that the 21-mer peptide is immobilized upon membrane binding. In light of these results, we propose a model of membrane interaction for the 21-mer peptide where it lies at the bilayer surface and perturbs the lipid head group conformation.
Collapse
Affiliation(s)
- Marise Ouellet
- Département de Chimie, PROTEO (Regroupement Québécois de Recherche sur la Fonction, la Structure et l'Ingénierie des Protéines), CERMA (Centre de Recherche sur les Matériaux Avancés), Université Laval, Québec, Québec, Canada G1V 0A6
| | | | | |
Collapse
|
16
|
Aisenbrey C, Goormaghtigh E, Ruysschaert JM, Bechinger B. Translocation of amino acyl residues from the membrane interface to the hydrophobic core: thermodynamic model and experimental analysis using ATR-FTIR spectroscopy. Mol Membr Biol 2009; 23:363-74. [PMID: 16923729 DOI: 10.1080/09687860600738742] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The interactions of a series of histidine-containing peptides with biological model membranes have been investigated by attenuated total reflection Fourier transform infra red (ATR-FTIR) spectroscopy. Related peptides have previously been shown to exhibit antibiotic and DNA transfection activities. The 26-residue LAH4X4 peptides were designed in such a manner to form amphipathic helical structures in membrane environments. Four histidines and four variable amino acids X constitute one face of the helix whereas leucines and alanines characterize the opposite hydrophobic surface. The dichroic ratio of ATR-FTIR spectra has been used to follow the pH-dependent transition from in-plane to transmembrane alignments upon increase in pH. A theoretical model of the topological modulations is presented and the experimental transition curves analysed in order to reveal the Gibbs free energy of transition. The novel concept provides access to the free energy changes associated with the amino acids X incorporated into an extended alpha-helix and in the context of phospholipid bilayers. For the peptides of the series the Gibbs free energies associated with the transition from the membrane interface to the bilayer interior follow the sequence of amino acids: L<A approximately I<S approximately F<T approximately G<V approximately W<<Y.
Collapse
|
17
|
Diller A, Loudet C, Aussenac F, Raffard G, Fournier S, Laguerre M, Grélard A, Opella SJ, Marassi FM, Dufourc EJ. Bicelles: A natural 'molecular goniometer' for structural, dynamical and topological studies of molecules in membranes. Biochimie 2009; 91:744-51. [PMID: 19248817 PMCID: PMC2899883 DOI: 10.1016/j.biochi.2009.02.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 02/13/2009] [Indexed: 10/21/2022]
Abstract
Major biological processes occur at the biological membrane. One of the great challenges is to understand the function of chemical or biological molecules inside the membrane; as well of those involved in membrane trafficking. This requires obtaining a complete picture of the in situ structure and dynamics as well as the topology and orientation of these molecules in the membrane lipid bilayer. These led to the creation of several innovative models of biological membranes in order to investigate the structure and dynamics of amphiphilic molecules, as well as integral membrane proteins having single or multiple transmembrane segments. Because the determination of the structure, dynamics and topology of molecules in membranes requires a macroscopic alignment of the system, a new membrane model called 'bicelles' that represents a crossover between lipid vesicles and classical micelles has become very popular due to its property of spontaneous self-orientation in magnetic fields. In addition, crucial factors involved in mimicking natural membranes, such as sample hydration, pH and salinity limits, are easy to control in bicelle systems. Bicelles are composed of mixtures of long chain (14-18 carbons) and short chain phospholipids (6-8 carbons) hydrated up to 98% with buffers and may adopt various morphologies depending on lipid composition, temperature and hydration. We have been developing bicelle systems under the form of nano-discs made of lipids with saturated or biphenyl-containing fatty acyl chains. Depending on the lipid nature, these membranous nano-discs may be macroscopically oriented with their normal perpendicular or parallel to the magnetic field, providing a natural 'molecular goniometer' for structural and topological studies, especially in the field of NMR. Bicelles can also be spun at the magic angle and lead to the 3D structural determination of molecules in membranes.
Collapse
Affiliation(s)
- Anna Diller
- CBMN UMR 5248, CNRS, Université Bordeaux, ENITAB, IECB, 2, rue Robert Escarpit, 33607 Pessac, France
| | - Cécile Loudet
- The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | - Gérard Raffard
- RMSB UMR 5536, CNRS, Université Bordeaux, Bordeaux, France
| | - Sylvie Fournier
- CBMN UMR 5248, CNRS, Université Bordeaux, ENITAB, IECB, 2, rue Robert Escarpit, 33607 Pessac, France
| | - Michel Laguerre
- CBMN UMR 5248, CNRS, Université Bordeaux, ENITAB, IECB, 2, rue Robert Escarpit, 33607 Pessac, France
| | - Axelle Grélard
- CBMN UMR 5248, CNRS, Université Bordeaux, ENITAB, IECB, 2, rue Robert Escarpit, 33607 Pessac, France
| | - Stanley J. Opella
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0307, USA
| | | | - Erick J. Dufourc
- CBMN UMR 5248, CNRS, Université Bordeaux, ENITAB, IECB, 2, rue Robert Escarpit, 33607 Pessac, France
| |
Collapse
|
18
|
Abstract
Surfactants are surface-active, amphiphilic compounds that are water-soluble in the micro- to millimolar range, and self-assemble to form micelles or other aggregates above a critical concentration. This definition comprises synthetic detergents as well as amphiphilic peptides and lipopeptides, bile salts and many other compounds. This paper reviews the biophysics of the interactions of surfactants with membranes of insoluble, naturally occurring lipids. It discusses structural, thermodynamic and kinetic aspects of membrane-water partitioning, changes in membrane properties induced by surfactants, membrane solubilisation to micelles and other phases formed by lipid-surfactant systems. Each section defines and derives key parameters, mentions experimental methods for their measurement and compiles and discusses published data. Additionally, a brief overview is given of surfactant-like effects in biological systems, technical applications of surfactants that involve membrane interactions, and surfactant-based protocols to study biological membranes.
Collapse
|
19
|
Kozak M, Domka L, Jurga S. The effect of selected surfactants on the structure of a bicellar system (DMPC/DHPC) studied by SAXS. J Mol Struct 2007. [DOI: 10.1016/j.molstruc.2007.01.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Loudet C, Manet S, Gineste S, Oda R, Achard MF, Dufourc EJ. Biphenyl bicelle disks align perpendicular to magnetic fields on large temperature scales: a study combining synthesis, solid-state NMR, TEM, and SAXS. Biophys J 2007; 92:3949-59. [PMID: 17307824 PMCID: PMC1868983 DOI: 10.1529/biophysj.106.097758] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A phosphatidylcholine lipid (PC) containing a biphenyl group in one of its acyl chains (1-tetradecanoyl-2-(4-(4-biphenyl)butanoyl)-sn-glycero-3-PC, TBBPC) was successfully synthesized with high yield. Water mixtures of TBBPC with a short-chain C(6) lipid, dicaproyl-PC (DCPC), lead to bicelle systems formation. Freeze-fracture electron microscopy evidenced the presence of flat bilayered disks of 800 A diameter for adequate composition, hydration, and temperature conditions. Because of the presence of the biphenyl group, which confers to the molecule a positive magnetic anisotropy Delta chi, the disks align with their normal, n, parallel to the magnetic field B(0), as directly detected by (31)P, (14)N, (2)H solid-state NMR and also using small-angle x-ray scattering after annealing in the field. Temperature-composition and temperature-hydration diagrams were established. Domains where disks of TBBPC/DCPC align with their normal parallel to the field were compared to chain-saturated lipid bicelles made of DMPC(dimyristoylPC)/DCPC, which orient with their normal perpendicular to B(0). TBBPC/DCPC bicelles exist on a narrow range of long- versus short-chain lipid ratios (3%) but over a large temperature span around room temperature (10-75 degrees C), whereas DMPC/DCPC bicelles exhibit the reverse situation, i.e., large compositional range (22%) and narrow temperature span (25-45 degrees C). The two types of bicelles present orienting properties up to 95% dilution but with the peculiarity that water trapped in biphenyl bicelles exhibits ordering properties twice as large as those observed in the saturated-chains analog, which offers very interesting properties for structural studies on hydrophilic or hydrophobic embedded biomolecules.
Collapse
Affiliation(s)
- Cécile Loudet
- UMR 5248 CBMN, CNRS-Université Bordeaux 1-ENITAB, Institut Européen de Chimie et Biologie, Pessac, France
| | | | | | | | | | | |
Collapse
|
21
|
Khemtémourian L, Buchoux S, Aussenac F, Dufourc EJ. Dimerization of Neu/Erb2 transmembrane domain is controlled by membrane curvature. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2006; 36:107-12. [PMID: 17115152 DOI: 10.1007/s00249-006-0111-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 09/19/2006] [Accepted: 10/10/2006] [Indexed: 10/23/2022]
Abstract
Secondary structures of the proto-oncogenic Neu/ErbB2 transmembrane segment and its mutant analogue have been determined in phospholipids. It is found that the mutated peptide possesses less helical character possibly due to the valine/glutamic acid point mutation. Embedding peptides in lipid systems whose topology can change from small (100-200 A) tumbling objects to bilayer discs of 450 A diameter leads to the finding that coiled-coil interactions are only observed in the presence of a bilayer membrane of low curvature, independent of mutation. This strongly suggests that any event that may change membrane topology can therefore perturb the dimerization/ologomerization and subsequent phosphorylation cascade leading to cell growth or cancer processes.
Collapse
Affiliation(s)
- Lucie Khemtémourian
- UMR 5144 MOBIOS, CNRS-Université Bordeaux 1, IECB, 2 rue Robert Escarpit, 33607 Pessac, France
| | | | | | | |
Collapse
|
22
|
Rivière C, Richard T, Quentin L, Krisa S, Mérillon JM, Monti JP. Inhibitory activity of stilbenes on Alzheimer's beta-amyloid fibrils in vitro. Bioorg Med Chem 2006; 15:1160-7. [PMID: 17049256 DOI: 10.1016/j.bmc.2006.09.069] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 09/21/2006] [Accepted: 09/29/2006] [Indexed: 11/18/2022]
Abstract
Polymerization of the amyloid beta-peptide (Abeta) has been identified as one of the major characteristics of Alzheimer's disease (AD). Thus, finding molecules to prevent the aggregation of Abeta could be of therapeutic value in AD. We describe an original routine in vitro assay to search for inhibitors of Abeta(25-35) fibril formation which uses UV-visible measurements and electron microscopy (EM). In particular, this routine assay was used to examine the effects of stilbenes, a well-known polyphenol class, as inhibitors of Abeta fibril formation. The inhibitory properties of resveratrol (RES), piceid (PIC), resveratrol diglucoside (DIG), piceatannol (PIA), astringine (AST), and viniferin (VIN) were characterized and compared. RES and PIC effectively and dose-dependently inhibited Abeta polymerization while other polyphenols exerted less inhibition. Although the mechanism of anti-amyloidogenic activity is still unknown, these results support the hypothesis that stilbenes could be of therapeutic value in AD.
Collapse
Affiliation(s)
- Céline Rivière
- Laboratoire de physique et biophysique, Université de Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux cedex, France
| | | | | | | | | | | |
Collapse
|
23
|
Khemtémourian L, Lavielle S, Bathany K, Schmitter JM, Dufourc EJ. Revisited and large-scale synthesis and purification of the mutated and wild type neu/erbB-2 membrane-spanning segment. J Pept Sci 2006; 12:361-8. [PMID: 16285025 DOI: 10.1002/psc.735] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Solid-phase syntheses of the hydrophobic peptides Neu(TM35) ((1)EQRASPVTFIIATVVGVLLFLILVVVVGILIKRRR(35)) and Neu*(TM35) ((1)EQRASPVTFIIATVEGVLLFLILVVVVGILIKRRR(35)), corresponding to the native and mutated (V15E) transmembrane domain of the neu/erbB-2 tyrosine kinase receptor, respectively, were accomplished using Fmoc chemistry. The use of a new resin and cleavage and purification conditions led to large increases in yields and peptide purity. Two (15)N-labelled versions of both wild type and mutated peptides were also synthesized. Approximately 20-40 mg of peptide was obtained using a small-scale synthesis, whereas ca 100 mg of pure peptide was collected on a medium scale. Peptide purity, as monitored by HPLC and mass spectrometry, ranged from 95 to 98% for the six peptides synthesized. Secondary structure as determined by UV circular dichroism (CD) in trifluoroethanol (TFE) showed ca 74% alpha-helical content for the native peptide and ca 63% for that bearing the mutation. Secondary structure of Neu(TM35) was retained in DMPC (dimyristoylphosphatidylcholine)/DCPC (dicaproylphosphatidylcholine) membrane bicelles, and evidences for dimers/oligomers in the lipid bilayer were found.
Collapse
Affiliation(s)
- Lucie Khemtémourian
- UMR 5144 MOBIOS, CNRS-University Bordeaux 1, IECB, 2 rue Robert Escarpit, 33607 Bordeaux-Pessac, France
| | | | | | | | | |
Collapse
|