1
|
Aslan Ö, Cagri-Mehmetoglu A. Evaluation of food wastes as a medium to produce chitin-glucan nanofiber from Aspergillus niger. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2025; 62:964-975. [PMID: 40182672 PMCID: PMC11961789 DOI: 10.1007/s13197-024-06088-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/24/2023] [Accepted: 09/11/2024] [Indexed: 04/05/2025]
Abstract
This study investigated the potential of using food waste as a growth media for chitin-glucan nanofiber production by Aspergillus niger. For that purpose, a local hotel food waste was used to prepare four different media based on the protein and polysaccharide content of the waste. Optimal fermentation conditions, including medium composition, inoculum size of A. niger, incubation time, and shaking speed in biomass production, were determined using the 4 × 4 Taguchi experimental design. The characterization of produced chitin-glucan nanofiber was determined using FESEM, FT-IR, and NMR. The experimental design results showed that the highest amount of chitin-glucan nanofiber was found as 1.9 g/l at pH 5 and 30 °C with 58.82% yield. Optimal conditions for the highest yield were observed when the media containing 20% fruit-vegetable-rich waste, 30% protein-rich waste, and 50% polysaccharide-rich waste was used with an 8 mm inoculation size of A. niger at 6 d incubation time with 100 RPM shaking speed. Characterization studies have shown that chitin-glucan nanofibers obtained from wastes are equivalent to their commercial counterparts. The use of food wastes to produce chitin-glucan nanofiber from A. niger can save costs and significantly reduce environmental pollution. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-06088-9.
Collapse
Affiliation(s)
- Özge Aslan
- Department of Food Engineering, Faculty of Engineering, Sakarya University, P.O. Box 54187, Sakarya, Turkey
| | - Arzu Cagri-Mehmetoglu
- Department of Food Engineering, Faculty of Engineering, Sakarya University, P.O. Box 54187, Sakarya, Turkey
| |
Collapse
|
2
|
Saberi Riseh R, Gholizadeh Vazvani M, Vatankhah M, Kennedy JF. Chitin-induced disease resistance in plants: A review. Int J Biol Macromol 2024; 266:131105. [PMID: 38531527 DOI: 10.1016/j.ijbiomac.2024.131105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
Chitin is composed of N-acetylglucosamine units. Chitin a polysaccharide found in the cell walls of fungi and exoskeletons of insects and crustaceans, can elicit a potent defense response in plants. Through the activation of defense genes, stimulation of defensive compound production, and reinforcement of physical barriers, chitin enhances the plant's ability to defend against pathogens. Chitin-based treatments have shown efficacy against various plant diseases caused by fungal, bacterial, viral, and nematode pathogens, and have been integrated into sustainable agricultural practices. Furthermore, chitin treatments have demonstrated additional benefits, such as promoting plant growth and improving tolerance to abiotic stresses. Further research is necessary to optimize treatment parameters, explore chitin derivatives, and conduct long-term field studies. Continued efforts in these areas will contribute to the development of innovative and sustainable strategies for disease management in agriculture, ultimately leading to improved crop productivity and reduced reliance on chemical pesticides.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran.
| | - Mozhgan Gholizadeh Vazvani
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
3
|
Esmaeili A, Mondal MIH. An overview of smart textiles from natural resources. SMART TEXTILES FROM NATURAL RESOURCES 2024:3-35. [DOI: 10.1016/b978-0-443-15471-3.00025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Liu Y, Wang J, Chen H, Cheng D. Environmentally friendly hydrogel: A review of classification, preparation and application in agriculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157303. [PMID: 35839887 DOI: 10.1016/j.scitotenv.2022.157303] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/29/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Superabsorbent hydrogel (SH) is three-dimensional (3D) cross-linked hydrophilic polymer that can absorb and retain large quantities of water or other aqueous solutions. SH is made of water-affinity monomers and is widely used in biomedicine, wastewater treatment, hygiene and slow-release fertilizers (SRFs). This article focused on the preparation methods of SH, superabsorbent hydrogel composite and the application of SH in agriculture. By selecting various synthetic technologies and cross-linking agents, a series of chemical cross-linking or physical networks can be designed and tailored to meet specific applications. In view of the excellent characteristics of water absorption, biodegradability, water retention and slow-release capacity, SH occupies a dominant position in the SRFs market. In this work, the agricultural application of SH in double coated SRFs and nutrients carriers is also discussed. Some mechanisms related to the nutrient release were analyzed by mathematical models. In addition, some agronomic benefits of using superabsorbent hydrogels in improving water absorption, water holding capacity and increasing crop yields were also discussed. Although SH has certain shortcomings, from the perspective of long-term development, it will further show great potential in sustainable agriculture.
Collapse
Affiliation(s)
- Yan Liu
- National Engineering Research Center of Efficient Utilization of Soil and Fertilizer, National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Jinpeng Wang
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, Shanxi, China
| | - Huiyu Chen
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, Shanxi, China
| | - Dongdong Cheng
- National Engineering Research Center of Efficient Utilization of Soil and Fertilizer, National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, Shandong, China.
| |
Collapse
|
5
|
Triunfo M, Tafi E, Guarnieri A, Salvia R, Scieuzo C, Hahn T, Zibek S, Gagliardini A, Panariello L, Coltelli MB, De Bonis A, Falabella P. Characterization of chitin and chitosan derived from Hermetia illucens, a further step in a circular economy process. Sci Rep 2022; 12:6613. [PMID: 35459772 PMCID: PMC9033872 DOI: 10.1038/s41598-022-10423-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/28/2022] [Indexed: 11/09/2022] Open
Abstract
Due to their properties and applications, the growing demand for chitin and chitosan has stimulated the market to find more sustainable alternatives to the current commercial source (crustaceans). Bioconverter insects, such as Hermetia illucens, are the appropriate candidates, as chitin is a side stream of insect farms for feed applications. This is the first report on production and characterization of chitin and chitosan from different biomasses derived from H. illucens, valorizing the overproduced larvae in feed applications, the pupal exuviae and the dead adults. Pupal exuviae are the best biomass, both for chitin and chitosan yields and for their abundance and easy supply from insect farms. Fourier-transform infrared spectroscopy, X-ray diffraction and scanning electron microscope analysis revealed the similarity of insect-derived polymers to commercial ones in terms of purity and structural morphology, and therefore their suitability for industrial and biomedical applications. Its fibrillary nature makes H. illucens chitin suitable for producing fibrous manufacts after conversion to chitin nanofibrils, particularly adults-derived chitin, because of its high crystallinity. A great versatility emerged from the evaluation of the physicochemical properties of chitosan obtained from H. illucens, which presented a lower viscosity-average molecular weight and a high deacetylation degree, fostering its putative antimicrobial properties.
Collapse
Affiliation(s)
- Micaela Triunfo
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Elena Tafi
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Anna Guarnieri
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Rosanna Salvia
- Department of Sciences, University of Basilicata, Potenza, Italy.
- Spinoff XFLIES s.r.l, University of Basilicata, Potenza, Italy.
| | - Carmen Scieuzo
- Department of Sciences, University of Basilicata, Potenza, Italy
- Spinoff XFLIES s.r.l, University of Basilicata, Potenza, Italy
| | - Thomas Hahn
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Susanne Zibek
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | | | - Luca Panariello
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy
| | | | - Angela De Bonis
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Patrizia Falabella
- Department of Sciences, University of Basilicata, Potenza, Italy.
- Spinoff XFLIES s.r.l, University of Basilicata, Potenza, Italy.
| |
Collapse
|
6
|
Evaluation of antimicrobial activity of the extract of Streptomyces euryhalinus isolated from the Indian Sundarbans. Arch Microbiol 2021; 204:34. [PMID: 34927220 DOI: 10.1007/s00203-021-02698-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
The discovery of new antimicrobials is the prime target in the fight against antimicrobial resistance. The continuous search for new lead compounds from bacteria of untapped and extreme ecosystems such as mangroves is currently being undertaken. This study describes the metabolite profiling of the Streptomyces euryhalinus culture extract. Previously, Streptomyces euryhalinus was isolated from the mangrove forest of Indian Sundarbans as a novel microorganism. The antimicrobial mechanism of action of Streptomyces euryhalinus culture extract against bacteria and fungi has been analyzed in this study. The gas chromatography-mass spectrometry profile of the ethyl acetate extract bacterial culture displayed the presence of several bioactive compounds with antibacterial, antifungal and antioxidant properties. The bacterial extract showed significant antimicrobial activity in terms of zone of inhibition, minimum inhibitory concentration, minimum bactericidal concentration, and minimum fungicidal concentration. Moreover, substantial capacity to alter or damage the inner membrane as well as the outer membrane of the gram-positive and gram-negative bacteria was exhibited by the bacterial extract. This membrane alteration or damaging potential of the extract is the mechanism of action. Biofilm formation inhibition property of the extract also signified its antimicrobial action, and possible use against resistant bacteria. The extract has shown notable activity against the virulence factors like prevention of hemolysis in bacteria and inhibition of secreted aspartyl proteinase in fungi. These functions of the bacterial extract have revealed the extent of its action in the prevention of infection by terminating the secretory virulence factors and by damaging the tissue.
Collapse
|
7
|
Gao Y, Ji Y, Li W, Luo J, Wang F, Zhang X, Niu Z, Zhou L, Yan L. Endophytic Fungi from Dalbergia odorifera T. Chen Producing Naringenin Inhibit the Growth of Staphylococcus aureus by Interfering with Cell Membrane, DNA, and Protein. J Med Food 2021; 24:116-123. [PMID: 33523769 DOI: 10.1089/jmf.2020.4686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study focused on the antibacterial effects of the endophytic fungi producing naringenin from Dalbergia odorifera T. Chen against Staphylococcus aureus. The antibacterial activity was measured by the inhibition diameters, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC). The time-killing curve was also used to evaluate its antibacterial efficacy. The results of antibacterial activity determinations showed that endophytic fungi secondary metabolites can inhibit the growth of five pathogenic bacteria (S. aureus, Escherichia coli, Salmonella enteritidis, Pseudomonas aeruginosa, and Bacillus subtilis) and the most sensitive strain was S. aureus that had the MIC and MBC values of 0.13 and 0.50 mg/mL, respectively. The membrane permeability study was measured by a DNA leakage assay and electrical conductivity assay. Furthermore, the whole-cell protein lysates and DNA fragmentation assay was evaluated. The morphology of S. aureus treated with the endophytic fungi products was observed by scanning electron microscopy (SEM). The probable antibacterial mechanism of endophytic fungi secondary metabolites was the increased membrane permeability that leads to leaks of nucleic acids and proteins. SEM results further confirmed that the extracts can interfere with the integrity of S. aureus cell membrane and further inhibit the growth of bacteria, resulting in the death of bacteria. This study provides a new perspective for the antibacterial functions of endophytic fungi secondary metabolites for biomedical applications.
Collapse
Affiliation(s)
- Yuan Gao
- School of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang, China.,Post-Doctoral Research Center of Traditional Chinese Medicine, Harbin University of Commerce, Harbin, Heilongjiang, China
| | - Yubin Ji
- School of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang, China.,Post-Doctoral Research Center of Traditional Chinese Medicine, Harbin University of Commerce, Harbin, Heilongjiang, China
| | - Wenlan Li
- School of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang, China.,Post-Doctoral Research Center of Traditional Chinese Medicine, Harbin University of Commerce, Harbin, Heilongjiang, China
| | - Jianghan Luo
- School of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang, China
| | - Fuling Wang
- School of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang, China
| | - Xiaomeng Zhang
- School of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang, China
| | - Zhihui Niu
- School of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang, China
| | - Lulu Zhou
- School of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang, China
| | - Lijun Yan
- School of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang, China
| |
Collapse
|
8
|
Yang Y, Lin M, Feng S, Gu Q, Chen Y, Wang Y, Song D, Gao M. Chemical composition, antibacterial activity, and mechanism of action of essential oil from
Litsea cubeba
against foodborne bacteria. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yu‐Jing Yang
- Key Laboratory for Food Microbial Technology of Zhejiang Province Zhejiang Gongshang University Hangzhou PR China
| | - Meng‐Yi Lin
- Key Laboratory for Food Microbial Technology of Zhejiang Province Zhejiang Gongshang University Hangzhou PR China
| | - Shu‐Yi Feng
- Key Laboratory for Food Microbial Technology of Zhejiang Province Zhejiang Gongshang University Hangzhou PR China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province Zhejiang Gongshang University Hangzhou PR China
| | - Yi‐Cun Chen
- State Key Laboratory of Tree Genetics and Breeding Chinese Academy of Forestry Beijing PR China
- Institute of Subtropical Forestry Chinese Academy of Forestry Hangzhou PR China
| | - Yang‐Dong Wang
- State Key Laboratory of Tree Genetics and Breeding Chinese Academy of Forestry Beijing PR China
- Institute of Subtropical Forestry Chinese Academy of Forestry Hangzhou PR China
| | - Da‐feng Song
- Key Laboratory for Food Microbial Technology of Zhejiang Province Zhejiang Gongshang University Hangzhou PR China
| | - Ming Gao
- State Key Laboratory of Tree Genetics and Breeding Chinese Academy of Forestry Beijing PR China
- Institute of Subtropical Forestry Chinese Academy of Forestry Hangzhou PR China
| |
Collapse
|
9
|
Qin X, Dong R, He S, Zhou X, Zhang Z, Cui Y, Shi C, Liu Y, Shi X. Characterization of the role of ybgC in lysozyme resistance of Salmonella Enteritidis. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Abstract
Antibacterial agents are a group of materials that selectively destroy bacteria by interfering with bacterial growth or survival. With the emergence of resistance phenomenon of bacterial pathogens to current antibiotics, new drugs are frequently entering into the market along with the existing drugs, and the alternative compounds with antibacterial functions are being explored. Due to the advantages of their inherent biochemical and biophysical properties including precise targeting ability, biocompatibility, biodegradability, long blood circulation time, and low cytotoxicity, biomolecules such as peptides, carbohydrates, and nucleic acids have huge potential for the antimicrobial application and have been extensively studied in recent years. In this review, antimicrobial therapeutic agents composed of three kinds of functional biological molecules were summarized. In addition, the research progress of antibacterial mechanism, chemical modification, and nanoparticle coupling of those biomolecules were also discussed.
Collapse
|
11
|
Wang Y, Xie M, Ma G, Fang Y, Yang W, Ma N, Fang D, Hu Q, Pei F. The antioxidant and antimicrobial activities of different phenolic acids grafted onto chitosan. Carbohydr Polym 2019; 225:115238. [DOI: 10.1016/j.carbpol.2019.115238] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/06/2019] [Accepted: 08/22/2019] [Indexed: 01/06/2023]
|
12
|
Sorption of nutrients (orthophosphate, nitrate III and V) in an equimolar mixture of P–PO4, N–NO2 and N–NO3 using chitosan. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2016.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
13
|
Bucki R, Niemirowicz-Laskowska K, Deptuła P, Wilczewska AZ, Misiak P, Durnaś B, Fiedoruk K, Piktel E, Mystkowska J, Janmey PA. Susceptibility of microbial cells to the modified PIP 2-binding sequence of gelsolin anchored on the surface of magnetic nanoparticles. J Nanobiotechnology 2019; 17:81. [PMID: 31286976 PMCID: PMC6615188 DOI: 10.1186/s12951-019-0511-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/26/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Magnetic nanoparticles (MNPs) are characterized by unique physicochemical and biological properties that allow their employment as highly biocompatible drug carriers. Gelsolin (GSN) is a multifunctional actin-binding protein involved in cytoskeleton remodeling and free circulating actin sequestering. It was reported that a gelsolin derived phosphoinositide binding domain GSN 160-169, (PBP10 peptide) coupled with rhodamine B, exerts strong bactericidal activity. RESULTS In this study, we synthesized a new antibacterial and antifungal nanosystem composed of MNPs and a PBP10 peptide attached to the surface. The physicochemical properties of these nanosystems were analyzed by spectroscopy, calorimetry, electron microscopy, and X-ray studies. Using luminescence based techniques and a standard killing assay against representative strains of Gram-positive (Staphylococcus aureus MRSA Xen 30) and Gram-negative (Pseudomonas aeruginosa Xen 5) bacteria and against fungal cells (Candida spp.) we demonstrated that magnetic nanoparticles significantly enhance the effect of PBP10 peptides through a membrane-based mode of action, involving attachment and interaction with cell wall components, disruption of microbial membrane and increased uptake of peptide. Our results also indicate that treatment of both planktonic and biofilm forms of pathogens by PBP10-based nanosystems is more effective than therapy with either of these agents alone. CONCLUSIONS The results show that magnetic nanoparticles enhance the antimicrobial activity of the phosphoinositide-binding domain of gelsolin, modulate its mode of action and strengthen the idea of its employment for developing the new treatment methods of infections.
Collapse
Affiliation(s)
- Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222 Białystok, Poland
| | - Katarzyna Niemirowicz-Laskowska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222 Białystok, Poland
| | - Piotr Deptuła
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222 Białystok, Poland
| | | | - Paweł Misiak
- Institute of Chemistry, University of Białystok, Ciołkowskiego 1K, 15-245 Białystok, Poland
| | - Bonita Durnaś
- Department of Microbiology and Immunology, The Faculty of Medicine and Health Sciences of the Jan Kochanowski University in Kielce, Aleja IX Wieków Kielc, 25-317 Kielce, Poland
| | - Krzysztof Fiedoruk
- Department of Microbiology, Medical University of Bialystok, 15-222, Białystok, Poland
| | - Ewelina Piktel
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222 Białystok, Poland
| | - Joanna Mystkowska
- Department of Materials Engineering and Production, Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C, 15-351 Białystok, Poland
| | - Paul A. Janmey
- Department of Physiology and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
14
|
Delikan E, Cantekin K. The Effects of Various Hemostatic Agents on Shear-bond Strength in Primary Teeth: An In Vitro Study. JOURNAL OF ADVANCED ORAL RESEARCH 2019. [DOI: 10.1177/2320206819845178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Aims and objectives: The aim of this study was to determine the effects of chitosan, Ankaferd Blood Stopper® (ABS, Ankaferd Health Products Ltd, Turkey), and ferric sulfate (FS) on the shear-bond strength of the self-etch adhesive to primary tooth dentin. Materials and methods: The occlusal surfaces of 80 extracted human primary teeth (stored in a 0.5% chloramine-T solution at 4oC) were ground flat, exposing the dentin. The teeth were divided into 4 groups: chitosan, ABS, FS, and control. Hemostatic agents were applied to the teeth, and then they were rinsed with distilled water and air dried. In the control group, the teeth were only rinsed with distilled water and slightly air dried. A self-etch adhesive was applied, and the composite cylinder was created on all the samples. Shear-bond strength was tested with a universal testing machine. Failure mode analysis was performed using scanning electron microscopy. Results: The study revealed no statistically significant difference between the hemostatic agent and control groups in terms of bond strength ( P >.05). The highest bond strength was observed in the chitosan group. In this group, a statistically significant difference between chitosan and ABS was observed ( P <.05). The adhesive failure was the predominant failure mode in all the groups. Conclusions: These findings suggest that chitosan, ABS, and FS have no adverse effects on the bonding of the self-etch adhesive to primary teeth dentin.
Collapse
Affiliation(s)
- Ebru Delikan
- Department of Pediatric Dentistry, Faculty of Dentistry, Mersin University, Mersin, Turkey
| | | |
Collapse
|
15
|
Fuzzy Optimization on the Synthesis of Chitosan-Graft-Polyacrylic Acid with Montmorillonite as Filler Material: A Case Study. Polymers (Basel) 2019; 11:polym11040738. [PMID: 31018629 PMCID: PMC6523622 DOI: 10.3390/polym11040738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/19/2019] [Accepted: 04/21/2019] [Indexed: 12/14/2022] Open
Abstract
In this paper, the synthesis of a chitosan–montmorillonite nanocomposite material grafted with acrylic acid is presented based on its function in a case study analysis. Fuzzy optimization is used for a multi-criteria decision analysis to determine the best desirable swelling capacity (YQ) of the material synthesis at its lowest possible variable cost. For YQ, the integrating the result’s cumulative uncertainty is an essential element to investigate the feasibility of the developed model equation. The Pareto set analysis is able to set the appropriate boundary limits for YQ and the variable cost. Two case studies are presented in determining the lowest possible cost: Case 1 for maximum YQ, and Case 2 for minimum YQ. These boundary limits were used in the fuzzy optimization to determine its global optimum results that achieved the overall satisfaction ratings of 67.2% (Case 1) and 52.3% (Case 2). The synthesis of the polyacrylic acid/chitosan material for Case 1 resulted in 305 g/g YQ and 10.8 USD/kg, while Case 2 resulted in 97 g/g YQ and 12.3 USD/kg. Thus, the fuzzy optimization approach proves to be a practical method for examining the best possible compromise solution based on the desired function to adequately synthesize a material.
Collapse
|
16
|
Wang H, Lin Y, Li Y, Dolgormaa A, Fang H, Guo L, Huang J, Yang J. A Novel Magnetic Cd(II) Ion-Imprinted Polymer as a Selective Sorbent for the Removal of Cadmium Ions from Aqueous Solution. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01148-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Kloster AP, Lourenço Neto N, Costa SAD, Oliveira TM, Oliveira RCD, Machado MAAM. In Vitro Antimicrobial Effect of Bioadhesive Oral Membrane with Chlorhexidine Gel. Braz Dent J 2019; 29:354-358. [PMID: 30462761 DOI: 10.1590/0103-6440201801743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/23/2018] [Indexed: 11/22/2022] Open
Abstract
This study aimed to evaluate in vitro the antimicrobial effect of a bioadhesive chitosan-based oral membrane with chlorhexidine for local treatment of infections in the oral tissues. Five oral membranes of different compositions were tested: 5% chitosan (G1); 5% chitosan ± 0.2% chlorhexidine (G2), 5% chitosan ± 0.6% chlorhexidine (G3), 5% chitosan ± 1.0% chlorhexidine (G4), and 5% chitosan ± 2.0% chlorhexidine (G5). Also, five gel types were tested according to the following compositions: 5% chitosan gel (G6), 0.2% chlorhexidine gel (G7), 2.0% chlorhexidine gel (G8), 5% chitosan gel ± 0.2% chlorhexidine gel (G9), and 5% chitosan gel ± 2.0% chlorhexidine gel (G10). The antimicrobial action of the samples was tested against Candida albicans and Streptococcus mutans through antibiogram by measuring the inhibition halos. Data were statistically analyzed by Kruskal-Wallis and one-way ANOVA followed by Tukey test (p<0.05). The 2.0% chlorhexidine membrane (G5) and the disks containing 2.0% chlorhexidine gel (G8) showed the greatest inhibition halos for both microorganisms, with statistically significant difference when compared to others tested groups (p=0.008) only for Candida albicans inhibitions results. All the other formulations of membranes and gels showed inhibition halos, but without statistically significant difference. The bioadhesive chitosan-based oral membrane with 2% chlorhexidine and 2% chlorhexidine gel were the most effective in inhibiting the tested microorganisms.
Collapse
Affiliation(s)
- Annelyze Podolan Kloster
- Department of Pediatric Dentistry, Orthodontics and Community Dentistry, Bauru Dental School, USP - Universidade de São Paulo, Bauru, SP, Brazil
| | - Natalino Lourenço Neto
- Department of Pediatric Dentistry, Orthodontics and Community Dentistry, Bauru Dental School, USP - Universidade de São Paulo, Bauru, SP, Brazil
| | - Silgia Aparecida da Costa
- Course on Textiles and Fashion, School of Arts, Sciences and Humanities, USP - Universidade de São Paulo, São Paulo, SP, Brazil
| | - Thais Marchini Oliveira
- Department of Pediatric Dentistry, Orthodontics and Community Dentistry, Bauru Dental School, USP - Universidade de São Paulo, Bauru, SP, Brazil
| | - Rodrigo Cardoso de Oliveira
- Department of Biological Sciences, Discipline of Biochemistry, Bauru Dental School, USP - Universidade de São Paulo, Bauru, SP, Brazil
| | | |
Collapse
|
18
|
Fang S, Wang G, Li P, Xing R, Liu S, Qin Y, Yu H, Chen X, Li K. Synthesis of chitosan derivative graft acrylic acid superabsorbent polymers and its application as water retaining agent. Int J Biol Macromol 2018; 115:754-761. [DOI: 10.1016/j.ijbiomac.2018.04.072] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/09/2018] [Accepted: 04/13/2018] [Indexed: 11/17/2022]
|
19
|
Xu H, Fang Z, Tian W, Wang Y, Ye Q, Zhang L, Cai J. Green Fabrication of Amphiphilic Quaternized β-Chitin Derivatives with Excellent Biocompatibility and Antibacterial Activities for Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801100. [PMID: 29845657 DOI: 10.1002/adma.201801100] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/23/2018] [Indexed: 06/08/2023]
Abstract
Bacterial infection has always been a great threat to public health, and new antimicrobials to combat it are urgently needed. Here, a series of quaternized β-chitin derivatives is prepared simply and homogeneously in an aqueous KOH/urea solution, which is a high-efficiency, energy-saving, and "green" route for the modification of chitin. The mild reaction conditions keep the acetamido groups of β-chitin intact and introduce quaternary ammonium groups on the primary hydroxyl at the C-6 position of the chitin backbone, allowing the quaternized β-chitin derivatives (QCs) to easily form micelles. These QCs are found to exhibit excellent antimicrobial activities against Escherichia coli, Staphylococcus aureus, Candida albicans, and Rhizopus oryzae with minimum inhibitory concentrations (MICs) of 8, 12, 60, and 40 µg mL-1 , respectively. As a specific highlight, their inherent outstanding biocompatibility and significant accelerating effects on the healing of uninfected, E. coli-infected, and S. aureus-infected wounds imply that these novel polysaccharide-based materials can be used as dressings for clinical skin regeneration, particularly for infected wounds.
Collapse
Affiliation(s)
- Huan Xu
- College of Chemistry & Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Zehong Fang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, 430071, P. R. China
| | - Weiqun Tian
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, P. R. China
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, 430071, P. R. China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, 430071, P. R. China
| | - Lina Zhang
- College of Chemistry & Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Jie Cai
- College of Chemistry & Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- Research Institute of Shenzhen, Wuhan University, Shenzhen, 518057, P. R. China
| |
Collapse
|
20
|
Sahariah P, Másson M. Antimicrobial Chitosan and Chitosan Derivatives: A Review of the Structure–Activity Relationship. Biomacromolecules 2017; 18:3846-3868. [DOI: 10.1021/acs.biomac.7b01058] [Citation(s) in RCA: 551] [Impact Index Per Article: 68.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Priyanka Sahariah
- Faculty
of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland
| | - Már Másson
- Faculty
of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland
| |
Collapse
|
21
|
Zhang Y, Dang Q, Liu C, Yan J, Cha D, Liang S, Li X, Fan B. Synthesis, characterization, and evaluation of poly(aminoethyl) modified chitosan and its hydrogel used as antibacterial wound dressing. Int J Biol Macromol 2017; 102:457-467. [DOI: 10.1016/j.ijbiomac.2017.04.049] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/21/2017] [Accepted: 04/11/2017] [Indexed: 11/29/2022]
|
22
|
Marine microbes as a valuable resource for brand new industrial biocatalysts. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.06.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Varun TK, Senani S, Jayapal N, Chikkerur J, Roy S, Tekulapally VB, Gautam M, Kumar N. Extraction of chitosan and its oligomers from shrimp shell waste, their characterization and antimicrobial effect. Vet World 2017; 10:170-175. [PMID: 28344399 PMCID: PMC5352841 DOI: 10.14202/vetworld.2017.170-175] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 12/31/2016] [Indexed: 11/16/2022] Open
Abstract
Aim: The present study was performed to utilize the shrimp shell waste for chitin and chitosan production, characterization by Fourier transform infrared (FT-IR) technique and to evaluate the antimicrobial effects of chitosan oligomers produced by depolymerization of chitosan by nitrous acid. Materials and Methods: Chitosan was extracted from the shrimp shell waste by the chemical method and characterized by FT-IR. Chitooligomers were produced by depolymerising chitosan using nitrous acid, and the chitooligomers were tested for antimicrobial effect against four gut pathogenic organisms, i.e., Enterobacter aerogen (National Collection of Dairy Culture [NCDC] 106), Enterococcus faecalis (NCDC 119), Escherichia coli (NCDC 134), and Staphylococcus aureus (NCDC 109) by well diffusion method using Muller-Hinton agar. A pure culture of pathogenic organisms was collected from NCDC, ICAR-National Dairy Research Institute, Karnal. Results: Extracted chitosan characterized by FT-IR and chitooligomers demonstrated antimicrobial effect against four gut pathogenic organisms used in this study. Zone of inhibitions (mm) were observed in E. faecalis (13±0.20), E. coli (11.5±0.4), S. aureus (10.7±0.2), and E. aerogen (10.7±0.3). E. faecalis showed larger inhibition zone as compared to all other organisms and inhibitions zones of E. aerogen and S. aureus were comparable to each other. Conclusion: Shrimp waste can be utilized for chitosan production, and the chitooligomers can be used as feed additive for gut health enhancement and have potential to replace antibiotics from the feed. Along with value addition pollutant load could be reduced by waste utilization.
Collapse
Affiliation(s)
- Tarun Kumar Varun
- Department of Animal Nutrition, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Swaraj Senani
- Department of Animal Nutrition, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, Karnataka, India
| | - Natasha Jayapal
- Department of Animal Nutrition, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, Karnataka, India
| | - Jayaram Chikkerur
- Department of Animal Nutrition, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, Karnataka, India
| | - Sohini Roy
- Department of Animal Nutrition, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, Karnataka, India
| | | | - Mayank Gautam
- Department of Animal Nutrition, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Narender Kumar
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
24
|
Zhou C, Zhou X, Su X. Noncytotoxic polycaprolactone-polyethyleneglycol-ε-poly(l-lysine) triblock copolymer synthesized and self-assembled as an antibacterial drug carrier. RSC Adv 2017. [DOI: 10.1039/c7ra07102g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The PCL35-b-PEG45-b-EPL23 vesicles perform well in vitro drug release and antibacterial activity against Gram− and Gram+ bacteria with low cytotoxicity.
Collapse
Affiliation(s)
- Chuncai Zhou
- School of Materials Science and Engineering
- Tongji University
- Shanghai
- China
| | - Xinyu Zhou
- School of Materials Science and Engineering
- Tongji University
- Shanghai
- China
| | - Xiaokai Su
- School of Materials Science and Engineering
- Tongji University
- Shanghai
- China
| |
Collapse
|
25
|
Photodynamic inactivation of Klebsiella pneumoniae biofilms and planktonic cells by 5-aminolevulinic acid and 5-aminolevulinic acid methyl ester. Lasers Med Sci 2016; 31:557-65. [PMID: 26886586 DOI: 10.1007/s10103-016-1891-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 01/24/2016] [Indexed: 12/27/2022]
Abstract
The treatment of Klebsiella pneumoniae, particularly extended-spectrum β-lactamase (ESBL)-producing K. pneumoniae, is currently a great challenge. Photodynamic antimicrobial chemotherapy is a promising approach for killing antibiotic-resistant bacteria. The aim of this study was to evaluate the capacity of 5-aminolevulinic acid (5-ALA) and its derivative 5-ALA methyl ester (MAL) in the presence of white light to cause photodynamic inactivation (PDI) of K. pneumoniae planktonic and biofilm cells. In the presence of white light, 5-ALA and MAL inactivated planktonic cells in a concentration-dependent manner. Biofilms were also sensitive to 5-ALA and MAL-mediated PDI. The mechanisms by which 5-ALA and MAL caused PDI of ESBL-producing K. pneumonia were also investigated. Exposure of K. pneumonia to light in the presence of either 5-ALA or MAL induced cleavage of genomic DNA and the rapid release of intracellular biopolymers. Intensely denatured cytoplasmic contents and aggregated ribosomes were also detected by transmission electron microscopy. Scanning electron microscopy showed that PDI of biofilms caused aggregated bacteria to detach and that the bacterial cell envelope was damaged. This study provides insights into 5-ALA and MAL-mediated PDI of ESBL-producing K. pneumoniae.
Collapse
|
26
|
Zhang Y, Jiang J, Liu L, Zheng K, Yu S, Fan Y. Preparation, assessment, and comparison of α-chitin nano-fiber films with different surface charges. NANOSCALE RESEARCH LETTERS 2015; 10:226. [PMID: 26034418 PMCID: PMC4444652 DOI: 10.1186/s11671-015-0926-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/08/2015] [Indexed: 06/04/2023]
Abstract
Chitin nano-fibers with positive and negative charges have been, respectively, produced from partially deacetylated and 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidized α-chitin. The average diameters and lengths of the TEMPO-oxidized chitin nano-fibers (TOChN) were 14 ± 4.3 and 190 ± 140 nm, respectively, and the average diameters and lengths of the partially deacetylated chitin nano-fibers (DEChN) were 6 ± 1.7 and 320 ± 105 nm, respectively. A partially deacetylated chitin nano-fiber film (DEChN-F), a TEMPO-mediated and oxidized chitin nano-fiber film (TOChN-F), and a composite film (DE-TO-ChN-F) consisting of a combination of the two were prepared by drying the dispersions at 40 °C. The DEChN-F, TOChN-F, and DE-TO-ChN-F all have similar tensile strengths of approximately 90 MPa; however, the chitosan film (Chitosan-F) had a tensile strength of approximately 30 MPa. In addition, TOChN-F and DE-TO-ChN-F have a thermal weight loss at 210 °C, and DEChN-F has a thermal weight loss at 280 °C. DEChN-F was found to have antimicrobial activity with regards to Escherichia coli. Finally, the chitin nano-fiber films could be slightly degraded by cellulase, which provided a novel biological performance of the chitin nano-material.
Collapse
Affiliation(s)
- Yan Zhang
- Jiangsu Key Lab of Biomass-based Green Fuel and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Longpan Road, Nanjing, 210037 China
| | - Jie Jiang
- Jiangsu Key Lab of Biomass-based Green Fuel and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Longpan Road, Nanjing, 210037 China
| | - Liang Liu
- Jiangsu Key Lab of Biomass-based Green Fuel and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Longpan Road, Nanjing, 210037 China
| | - Ke Zheng
- Jiangsu Key Lab of Biomass-based Green Fuel and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Longpan Road, Nanjing, 210037 China
| | - Shiyuan Yu
- Jiangsu Key Lab of Biomass-based Green Fuel and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Longpan Road, Nanjing, 210037 China
| | - Yimin Fan
- Jiangsu Key Lab of Biomass-based Green Fuel and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Longpan Road, Nanjing, 210037 China
| |
Collapse
|
27
|
Mechanistic Aspects of the Photodynamic Inactivation of Vancomycin-Resistant Enterococci Mediated by 5-Aminolevulinic Acid and 5-Aminolevulinic Acid Methyl Ester. Curr Microbiol 2014; 70:528-35. [DOI: 10.1007/s00284-014-0757-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 11/05/2014] [Indexed: 10/24/2022]
|
28
|
Sahariah P, Gaware VS, Lieder R, Jónsdóttir S, Hjálmarsdóttir MÁ, Sigurjonsson OE, Másson M. The effect of substituent, degree of acetylation and positioning of the cationic charge on the antibacterial activity of quaternary chitosan derivatives. Mar Drugs 2014; 12:4635-58. [PMID: 25196937 PMCID: PMC4145335 DOI: 10.3390/md12084635] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/23/2014] [Accepted: 07/23/2014] [Indexed: 11/17/2022] Open
Abstract
A series of water-soluble cationic chitosan derivatives were prepared by chemoselective functionalization at the amino group of five different parent chitosans having varying degrees of acetylation and molecular weight. The quaternary moieties were introduced at different alkyl spacer lengths from the polymer backbone (C-0, C-2 and C-6) with the aid of 3,6-di-O-tert-butyldimethylsilyl protection of the chitosan backbone, thus allowing full (100%) substitution of the free amino groups. All of the derivatives were characterized using 1H-NMR, 1H-1H COSY and FT-IR spectroscopy, while molecular weight was determined by GPC. Antibacterial activity was investigated against Gram positive S. aureus and Gram negative E. coli. The relationship between structure and activity/toxicity was defined, considering the effect of the cationic group's structure and its distance from the polymer backbone, as well as the degree of acetylation within a molecular weight range of 7-23 kDa for the final compounds. The N,N,N-trimethyl chitosan with 100% quaternization showed the highest antibacterial activity with moderate cytotoxicity, while increasing the spacer length reduced the activity. Trimethylammoniumyl quaternary ammonium moieties contributed more to activity than 1-pyridiniumyl moieties. In general, no trend in the antibacterial activity of the compounds with increasing molecular weight or degree of acetylation up to 34% was observed.
Collapse
Affiliation(s)
- Priyanka Sahariah
- Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavík, Iceland.
| | - Vivek S Gaware
- Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavík, Iceland.
| | - Ramona Lieder
- The REModeL Lab, The Blood Bank, Landspitali University Hospital, Snorrabraut 60, 105 Reykjavik, Iceland.
| | - Sigríður Jónsdóttir
- Department of Chemistry, Science Institute, University of Iceland, Dunhagi 3, IS-107 Reykjavik, Iceland.
| | - Martha Á Hjálmarsdóttir
- Department of _Biomedical Science, Faculty of_ Medicine, University of _Iceland, Stapi, Hringbraut 31, 101 Reykjavík, Iceland.
| | - Olafur E Sigurjonsson
- The REModeL Lab, The Blood Bank, Landspitali University Hospital, Snorrabraut 60, 105 Reykjavik, Iceland.
| | - Már Másson
- Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavík, Iceland.
| |
Collapse
|
29
|
Li N, Tan SN, Cui J, Guo N, Wang W, Zu YG, Jin S, Xu XX, Liu Q, Fu YJ. PA-1, a novel synthesized pyrrolizidine alkaloid, inhibits the growth of Escherichia coli and Staphylococcus aureus by damaging the cell membrane. J Antibiot (Tokyo) 2014; 67:689-96. [PMID: 24894184 DOI: 10.1038/ja.2014.49] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 03/04/2014] [Accepted: 04/03/2014] [Indexed: 11/09/2022]
Abstract
In the present study, antimicrobial activity and mode of a novel synthesized pyrrolizidine alkaloid (PA-1) were investigated. PA-1 exhibited predominantly strong antibacterial activity toward six bacteria tested with minimal inhibitory concentration (MIC) values ranging from 0.0039 to 0.025 mg ml(-1). The time-kill assay indicated that PA-1 killed Escherichia coli and Staphylococcus aureus completely at 2MIC (minimum bactericidal concentration) within 8 h. Besides, PA-1-induced death rates of most sensitive strains (E. coli, 97.80% and S. aureus, 96.24%) were analyzed by flow cytometry. A combination of approaches was used to verify the membrane damage of E. coli and S. aureus. Results showed that release of 260 nm absorbing materials quickly increased after PA-1 treatment. PA-1 also rapidly promoted the uptake of crystal violet from 24.52 to 97.12% for E. coli and from 19.68 to 97.63% for S. aureus when the concentrations were changed from MIC to 4MIC. Furthermore, the cellular membrane damages were testified by the significant increase of fluorescence intensity and decrease of membrane potential. Finally, lecithin and phosphate groups were applied to search the possibly targets on the cytoplasmic membrane. Results showed that PA-1 acted on cytoplasmic membrane phospholipids and phosphate groups of S. aureus but not of E. coli. In conclusion, the novel synthesized PA-1 exerted its antibacterial activity by acting on membrane phospholipids and phosphate groups and then damaging the structures of cellular membrane, which finally led to cell death.
Collapse
Affiliation(s)
- Na Li
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, People's Republic of China
| | - Sheng-nan Tan
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, People's Republic of China
| | - Jian Cui
- College of Life Sciences, Northeast Forestry University, Harbin, People's Republic of China
| | - Na Guo
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, People's Republic of China
| | - Wei Wang
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, People's Republic of China
| | - Yuan-gang Zu
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, People's Republic of China
| | - Shuang Jin
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, People's Republic of China
| | - Xian-xiu Xu
- Department of Chemistry, Northeast Normal University, Changchun, People's Republic of China
| | - Qun Liu
- Department of Chemistry, Northeast Normal University, Changchun, People's Republic of China
| | - Yu-jie Fu
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, People's Republic of China
| |
Collapse
|
30
|
Zheng C, Zhou L. Antibacterial potency of housefly larvae extract from sewage sludge through bioconversion. J Environ Sci (China) 2013; 25:1897-1905. [PMID: 24520734 DOI: 10.1016/s1001-0742(12)60256-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Use of the fly to convert sewage sludge into nutrient-rich soil conditioner and amendment is an attractive approach for sludge bioconversion. During this process, fecal coliforms, an indicating pathogen, in sludge were reduced to 5.3 x 10(2) most probable number/g dry solid from initial 3.32 x 10(6) MPN/g dry solid. It was also found that the extract of larvae grown in sludge during bioconversion have an observable inhibitory effect against bacteria compared to larvae grown in wheat bran as measured by minimum bacterial concentration tests. In vitro antimicrobial assay tests over time also showed that the extract had strong inhibitory efficiencies of ca. 99% against Bacillus cereus, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Serratia marcescens, while the efficiency was 69% and 57% against Bacillus subtilis and Klebsiella pneumoniae, respectively. The observed pathogenic bacterial cell membrane damage was found to be responsible for the phenomenon mentioned above, with nuclear acids leaching out quickly and alkaline phosphatase increasing in the outer membrane, followed by an increase of beta-galactosidase in the inner membrane. Clearly, housefly larvae extract from sewage sludge through bioconversion possesses antibacterial potency against pathogenic bacteria.
Collapse
Affiliation(s)
- Chaocheng Zheng
- Department of Environmental Engineering, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China.
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
31
|
Han FF, Gao YH, Luan C, Xie YG, Liu YF, Wang YZ. Comparing bacterial membrane interactions and antimicrobial activity of porcine lactoferricin-derived peptides. J Dairy Sci 2013; 96:3471-87. [PMID: 23567049 DOI: 10.3168/jds.2012-6104] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 02/11/2013] [Indexed: 11/19/2022]
Abstract
Antibiotic treatment for microbial infections is under scrutiny due to increasing resistance to conventional antibiotics, warranting discovery of new classes of antibiotic agents. Antimicrobial peptides are part of the innate defense system found in nearly all organisms and possess bactericidal mechanisms that make it more difficult for bacteria to develop resistance. Porcine lactoferricin (LFP-20) is an antimicrobial peptide located in the N terminus of lactoferrin (LF). To develop novel cell-selective antimicrobial peptides with improved antimicrobial specificity compared with LFP-20, analogs LF2A LF-2, LF-4, and LF-6 were substituted with Ala, Ser, or Trp residues at different positions in the molecule. Analogs displayed a 2- to 16-fold higher antimicrobial activity than LFP-20, but were hemolytic at 64 μg/mL. Additionally, LFP-20, LF2A, LF-2, and LF-4 exhibited lower cytotoxicity against human peripheral blood mononuclear cells than LF-6 at concentrations of 25 to 100 μg/mL. To better understand the antibacterial mechanisms of LFP-20 and its analogs we examined their effect on the cytoplasmic membrane of Escherichia coli. The LFP-20 was not effective in depolarizing cytoplasmic membranes, whereas the other 3 analogs gradually dissipated the membrane potential of E. coli. Membrane potential increased with minimal inhibitory concentrations changes, demonstrating a correlation between bactericidal activity and membrane depolarization. Analogs were more efficient than LFP-20 in displacing lipopolysaccharide-bound dansyl-polymyxin B, which also rapidly increased 1-N-phenyl-naphthylamine uptake and release of cytoplasmic β-galactosidase by increasing the permeability of the outer and inner membranes of E. coli. The 3 analogs caused an increased potential for calcein leakage from negatively charged lipid vesicles at high concentrations. Collectively, these results suggest that the first targets of LF-2, LF-4, and LF-6 in E. coli are cytoplasmic membranes. The 3 analogs exhibited lethal effects based on their abilities to disrupt membranes and permit transit of large intracellular components, such as calcein.
Collapse
Affiliation(s)
- F F Han
- Key Laboratory of Molecular Animal Nutrition, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | |
Collapse
|
32
|
Salah R, Michaud P, Mati F, Harrat Z, Lounici H, Abdi N, Drouiche N, Mameri N. Anticancer activity of chemically prepared shrimp low molecular weight chitin evaluation with the human monocyte leukaemia cell line, THP-1. Int J Biol Macromol 2013; 52:333-9. [DOI: 10.1016/j.ijbiomac.2012.10.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 10/09/2012] [Accepted: 10/10/2012] [Indexed: 11/26/2022]
|
33
|
He G, Wang Z, Zheng H, Yin Y, Xiong X, Lin R. Preparation, characterization and properties of aminoethyl chitin hydrogels. Carbohydr Polym 2012; 90:1614-9. [DOI: 10.1016/j.carbpol.2012.07.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 07/10/2012] [Accepted: 07/12/2012] [Indexed: 11/27/2022]
|
34
|
Ruiz-González R, White JH, Agut M, Nonell S, Flors C. A genetically-encoded photosensitiser demonstrates killing of bacteria by purely endogenous singlet oxygen. Photochem Photobiol Sci 2012; 11:1411-3. [PMID: 22729069 DOI: 10.1039/c2pp25126d] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
TagRFP, a fluorescent protein capable of photosensitizing the production of singlet oxygen, was expressed in E. coli. Subsequent exposure to green light induced bacterial cell death in a light-dose dependent manner. It is demonstrated for the first time that intracellular singlet oxygen is sufficient to kill bacteria.
Collapse
Affiliation(s)
- Rubén Ruiz-González
- IQS School of Engineering, Universitat Ramon Llull, Vía Augusta 390, E-08017, Barcelona, Spain
| | | | | | | | | |
Collapse
|
35
|
Molecular weight and pH effects of aminoethyl modified chitosan on antibacterial activity in vitro. Int J Biol Macromol 2012; 50:918-24. [PMID: 22342739 DOI: 10.1016/j.ijbiomac.2012.01.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 12/27/2011] [Accepted: 01/12/2012] [Indexed: 11/23/2022]
Abstract
Aminoethyl modified chitosan derivatives (AEMCSs) with different molecular weight (Mw) were synthesized by grafting aminoethyl group on different molecular weight chitosans and chitooligosaccharide. FTIR, (1)H NMR, (13)C NMR, elemental analysis and potentiometric titration results showed that branched polyethylimine chitosan was synthesized. Clinical Laboratory Standard Institute (CLSI) protocols were used to determine MIC for Gram-negative strain of Escherichia coli under different pH. The antibacterial activity of the derivatives was significantly improved compared with original chitosans, with MIC values against E. coli varying from 4 to 64 μg/mL depending on different Mw and pH. High molecular weight seems to be in favor of stronger antibacterial activity. At pH 7.4, derivatives with Mw above 27 kDa exhibited equivalent antibacterial activity (16 μg/mL), while oligosaccharide chitosan derivative with lower Mw (~1.4 kDa) showed decreased MIC of 64 μg/mL. The effect of pH on antibacterial activity is more complicated. An optimal pH for HAEMCS was found around 6.5 to give MIC as low as 4 μg/mL, while higher or lower pH compromised the activity. Cell integrity assay and SEM images showed evident cell disruption, indicating membrane disruption may be one possible mechanism for antibacterial activity.
Collapse
|
36
|
Karagozlu MZ, Karadeniz F, Kong CS, Kim SK. Aminoethylated chitooligomers and their apoptotic activity on AGS human cancer cells. Carbohydr Polym 2012. [DOI: 10.1016/j.carbpol.2011.09.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Mišurcová L, Škrovánková S, Samek D, Ambrožová J, Machů L. Health benefits of algal polysaccharides in human nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2012; 66:75-145. [PMID: 22909979 DOI: 10.1016/b978-0-12-394597-6.00003-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The interest in functional food, both freshwater and marine algal products with their possible promotional health effects, increases also in regions where algae are considered as rather exotic food. Increased attention about algae as an abundant source of many nutrients and dietary fiber from the nutrition point of view, as well as from the scientific approaches to explore new nutraceuticals and pharmaceuticals, is based on the presence of many bioactive compounds including polysaccharides extracted from algal matter. Diverse chemical composition of dietary fiber polysaccharides is responsible for their different physicochemical properties, such as their ability to be fermented by the human colonic microbiota resulted in health benefit effects. Fundamental seaweed polysaccharides are presented by alginates, agars, carrageenans, ulvanes, and fucoidans, which are widely used in the food and pharmaceutical industry and also in other branches of industry. Moreover, freshwater algae and seaweed polysaccharides have emerged as an important source of bioactive natural compounds which are responsible for their possible physiological effects. Especially, sulfate polysaccharides exhibit immunomodulatory, antitumor, antithrombotic, anticoagulant, anti-mutagenic, anti-inflammatory, antimicrobial, and antiviral activities including anti-HIV infection, herpes, and hepatitis viruses. Generally, biological activity of sulfate polysaccharides is related to their different composition and mainly to the extent of the sulfation of their molecules. Significant attention has been recently focused on the use of both freshwater algae and seaweed for developing functional food by reason of a great variety of nutrients that are essential for human health.
Collapse
Affiliation(s)
- Ladislava Mišurcová
- Department of Food Technology and Microbiology, Faculty of Technology, Tomas Bata University in Zlín, Zlín, Czech Republic.
| | | | | | | | | |
Collapse
|
38
|
Zhang C, Kim SK. Research and application of marine microbial enzymes: status and prospects. Mar Drugs 2010; 8:1920-34. [PMID: 20631875 PMCID: PMC2901830 DOI: 10.3390/md8061920] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 06/15/2010] [Accepted: 06/22/2010] [Indexed: 11/16/2022] Open
Abstract
Over billions of years, the ocean has been regarded as the origin of life on Earth. The ocean includes the largest range of habitats, hosting the most life-forms. Competition amongst microorganisms for space and nutrients in the marine environment is a powerful selective force, which has led to evolution. The evolution prompted the marine microorganisms to generate multifarious enzyme systems to adapt to the complicated marine environments. Therefore, marine microbial enzymes can offer novel biocatalysts with extraordinary properties. This review deals with the research and development work investigating the occurrence and bioprocessing of marine microbial enzymes.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Chemistry, Pukyong National University, Busan, 608-737, Korea
- Key laboratory of Molecular Enzymology and Enzyme Engineering of Ministry Education, Jilin University, Changchun, 130023, China; E-Mail:
| | - Se-Kwon Kim
- Department of Chemistry, Pukyong National University, Busan, 608-737, Korea
- Marine Bioprocess Research Center, Pukyong National University, Busan, 608-737, Korea
- *Author to whom correspondence should be addressed; E-Mail: ; Tel.: +82-51-629-7097; Fax: +82 -51-629-7099
| |
Collapse
|
39
|
Wang B, Navath RS, Menjoge AR, Balakrishnan B, Bellair R, Dai H, Romero R, Kannan S, Kannan RM. Inhibition of bacterial growth and intramniotic infection in a guinea pig model of chorioamnionitis using PAMAM dendrimers. Int J Pharm 2010; 395:298-308. [PMID: 20580797 DOI: 10.1016/j.ijpharm.2010.05.030] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 04/30/2010] [Accepted: 05/15/2010] [Indexed: 01/22/2023]
Abstract
Dendrimers have emerged as topical microbicides to treat vaginal infections. This study explores the in vitro, in vivo antimicrobial activity of PAMAM dendrimers, and the associated mechanism. Interestingly, topical cervical application of 500 microg of generation-4 neutral dendrimer (G(4)-PAMAM-OH) showed potential to treat the Escherichia coli induced ascending uterine infection in guinea pig model of chorioamnionitis. Amniotic fluid collected from different gestational sacs of infected guinea pigs posttreatment showed absence of E. coli growth in the cultures plated with it. The cytokine level [tumor necrosis factor (TNFalpha) and interleukin (IL-6 and IL-1beta)] in placenta of the G(4)-PAMAM-OH treated animals were comparable to those in healthy animals while these were notably high in infected animals. Since, antibacterial activity of amine-terminated PAMAM dendrimers is known, the activity of hydroxyl and carboxylic acid terminated PAMAM dendrimers was compared with it. Though the G(4)-PAMAM-NH(2) shows superior antibacterial activity, it was found to be cytotoxic to human cervical epithelial cell line above 10 microg/mL, while the G(4)-PAMAM-OH was non-cytotoxic up to 1mg/mL concentration. Cell integrity, outer (OM) and inner (IM) membrane permeabilization assays showed that G(4)-PAMAM-OH dendrimer efficiently changed the OM permeability, while G(4)-PAMAM-NH(2) and G(3.5)-PAMAM-COOH damaged both OM and IM causing the bacterial lysis. The possible antibacterial mechanism are G(4)-PAMAM-NH(2) acts as polycation binding to the polyanionic lipopolysaccharide in E. coli, the G(4)-PAMAM-OH forms hydrogen bonds with the hydrophilic O-antigens in E. coli membrane and the G(3.5)-PAMAM-COOH acts as a polyanion, chelating the divalent ions in outer cell membrane of E. coli. This is the first study which shows that G(4)-PAMAM-OH dendrimer acts as an antibacterial agent.
Collapse
Affiliation(s)
- Bing Wang
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, MI 48201, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Turgis M, Han J, Caillet S, Lacroix M. Antimicrobial activity of mustard essential oil against Escherichia coli O157:H7 and Salmonella typhi. Food Control 2009. [DOI: 10.1016/j.foodcont.2009.02.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Yoon NY, Ngo DN, Kim SK. Acetylcholinesterase inhibitory activity of novel chitooligosaccharide derivatives. Carbohydr Polym 2009. [DOI: 10.1016/j.carbpol.2009.07.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Çakmak A, Çirpanli Y, Bilensoy E, Yorganci K, Çaliş S, Saribaş Z, Kaynaroğlu V. Antibacterial activity of triclosan chitosan coated graft on hernia graft infection model. Int J Pharm 2009; 381:214-9. [DOI: 10.1016/j.ijpharm.2009.05.059] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 04/20/2009] [Accepted: 05/26/2009] [Indexed: 11/26/2022]
|
43
|
Spesia MB, Caminos DA, Pons P, Durantini EN. Mechanistic insight of the photodynamic inactivation of Escherichia coli by a tetracationic zinc(II) phthalocyanine derivative. Photodiagnosis Photodyn Ther 2009; 6:52-61. [PMID: 19447372 DOI: 10.1016/j.pdpdt.2009.01.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 12/29/2008] [Accepted: 01/07/2009] [Indexed: 10/21/2022]
Abstract
Photodynamic inactivation (PDI) of Escherichia coli has been studied in cultures treated with zinc(II) 2,9,16,23-tetrakis[4-(N-methylpyridyloxy)]phthalocyanine (ZnPPc(+4)) to obtain insight about the mechanism of damage. This phthalocyanine is rapidly bound to cells, reaching a value of approximately 0.8 nmol/10(6) cells when the cultures were incubated with 2 microM sensitizer. After 30 min of irradiation, a 4 log decrease of E. coli survival was observed. The photocytotoxic action was investigated in plasmid and genomic DNA by electrophoretic analysis. Absorption spectroscopic studies showed that this cationic phthalocyanine interacts strongly with DNA (K(DNA)=4.7 x 10(6)M(-1)). Photocleavage of calf thymus DNA sensitized by ZnPPc(+)4 was not found even after long irradiation periods. Similar results were also observed in genomic DNA extracted from E. coli cells after PDI treatment. Modifications of plasmid DNA isolated from bacteria were only observed after long irradiation periods. However, under these conditions transmission electron microscopy of the PDI bacteria revealed an aggregation of cytoplasmic macromolecules and irregularities in cell barriers. Also, scanning electron microscopy showed a shrunken appearance in cells after PDI. Even so, release of intracellular biopolymers was not detected by absorption. On the other hand, outer and inner membranes permeabilization assays showed an increase in the permeability. Consequently, alterations in the cell membrane functionality induced by ZnPPc(+4) appear to be the major cause of E. coli inactivation upon PDI.
Collapse
Affiliation(s)
- Mariana B Spesia
- Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, X5804BYA Río Cuarto, Córdoba, Argentina
| | | | | | | |
Collapse
|
44
|
Fontana CR, dos Santos Junior DS, Bosco JM, Spolidorio DM, Chiérici Marcantonio RA. Evaluation of Chitosan Gel as Antibiotic and Photosensitizer Delivery. Drug Deliv 2008; 15:417-22. [DOI: 10.1080/10717540802007433] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
45
|
Caminos DA, Spesia MB, Pons P, Durantini EN. Mechanisms of Escherichia coli photodynamic inactivation by an amphiphilic tricationic porphyrin and 5,10,15,20-tetra(4-N,N,N-trimethylammoniumphenyl) porphyrin. Photochem Photobiol Sci 2008; 7:1071-8. [PMID: 18754054 DOI: 10.1039/b804965c] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanistic aspects of Escherichia coli photodynamic inactivation (PDI) have been investigated in bacteria treated with 5,10,15-tris[4-(3-N,N,N-trimethylammoniumpropoxy)phenyl]-20-(4-trifluoromethylphenyl)porphyrin iodide (A3B3+) and visible light. The photosensitization activity of A3B3+ porphyrin was compared with that of 5,10,15,20-tetra(4-N,N,N-trimethylammonium phenyl)porphyrin p-tosylate (TMAP4+), which is an active tetracationic sensitizer to eradicate bacteria. The PDI damages on plasmid and genomic DNA were analyzed by electrophoresis. DNA photocleavage was observed after a long period of irradiation, when the bacterial cells are largely photoinactivated. Transmission electron microscopy (TEM) revealed structural changes with appearance of low density areas into the cells and irregularities in cell barriers, which could affect the normal cell membrane functionality. Also, damages on the cell-wall were not detected by scanning electron microscopy (SEM) and release of intracellular biopolymers was not found after PDI. These results indicate that the photodynamic activity of these cationic porphyrins produces DNA photodamage after a long period of irradiation. Therefore, an interference with membrane functions could be the main cause of E. coli photoinactivation upon short PDI treatments.
Collapse
Affiliation(s)
- Daniel A Caminos
- Departamento de Química, Universidad Nacional de Río Cuarto, Río Cuarto, Agencia Postal Nro. 3, X5804BYA, Río Cuarto, Córdoba, Argentina
| | | | | | | |
Collapse
|
46
|
Hayes M, Carney B, Slater J, Brück W. Mining marine shellfish wastes for bioactive molecules: Chitin and chitosan – Part B: Applications. Biotechnol J 2008; 3:878-89. [DOI: 10.1002/biot.200800027] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
47
|
Pourjavadi A, Seidi F, Salimi H. Synthesis of Novel Water-Soluble Aminodeoxychitin Derivatives. STARCH-STARKE 2007. [DOI: 10.1002/star.200700621] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
48
|
Je JY, Cho YS, Kim SK. Characterization of (aminoethyl)chitin/DNA nanoparticle for gene delivery. Biomacromolecules 2007; 7:3448-51. [PMID: 17154473 DOI: 10.1021/bm060373d] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nonviral gene delivery systems have been increasingly proposed as a safer alternative to viral vehicles. In the present study, we synthesized water-soluble chitin by aminoalkylating onto chitin at the C-6 position, and its transfection efficiency was investigated. Aminoethyl-chitin (AEC) was complexed with DNA, and AEC/DNA nanoparticles were characterized. AEC/DNA nanoparticles showed good DNA binding ability, high protection of DNA from nuclease and serum, and low cytotoxicity. Mean particle size decreased from 367 to 290 nm and zeta potential increased from -4.58 to 22.87 mV when the AEC/DNA charge ratio (N/P) increased from 1.15 to 18.5. The transfection efficiency of AEC/DNA nanoparticles was investigated in a human embryonic kidney cell line (HEK293), and the results showed that AEC/DNA nanoparticles were much enhanced compare with naked DNA.
Collapse
Affiliation(s)
- Jae-Young Je
- Department of Chemistry, Pukyong National University, Busan 608-737, Korea
| | | | | |
Collapse
|