1
|
Egorova AA, Shtykalova SV, Maretina MA, Selyutin AV, Shved NY, Krylova NV, Ilina AV, Pyankov IA, Freund SA, Selkov SA, Baranov VS, Kiselev AV. Cys-Flanked Cationic Peptides For Cell Delivery of the Herpes Simplex Virus Thymidine Kinase Gene for Suicide Gene Therapy of Uterine Leiomyoma. Mol Biol 2020. [DOI: 10.1134/s0026893320030061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
2
|
Influence of cell-penetrating peptides on the activity and stability of virus-based nanoparticles. Int J Pharm 2020; 576:119008. [DOI: 10.1016/j.ijpharm.2019.119008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/23/2019] [Accepted: 12/29/2019] [Indexed: 02/06/2023]
|
3
|
Ahmed M. Peptides, polypeptides and peptide–polymer hybrids as nucleic acid carriers. Biomater Sci 2017; 5:2188-2211. [DOI: 10.1039/c7bm00584a] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Peptide, polypeptide and polymer–peptide hybrid based nucleic acid therapeutics (NAT).
Collapse
Affiliation(s)
- Marya Ahmed
- Department of Chemistry & School of Sustainable Design and Engineering
- University of Prince Edward Island
- Charlottetown
- Canada
| |
Collapse
|
4
|
Sharma R, Nisakar D, Shivpuri S, Ganguli M. Contrasting effects of cysteine modification on the transfection efficiency of amphipathic peptides. Biomaterials 2014; 35:6563-75. [PMID: 24816284 DOI: 10.1016/j.biomaterials.2014.04.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 04/13/2014] [Indexed: 12/20/2022]
Abstract
Delivery of DNA to cells remains a key challenge towards development of gene therapy. A better understanding of the properties involved in stability and transfection efficiency of the vector could critically contribute to the improvement of delivery vehicles. In the present work we have chosen two peptides differing only in amphipathicity and explored how presence of cysteine affects DNA uptake and transfection efficiency. We report an unusual observation that addition of cysteine selectively increases transfection efficiency of secondary amphipathic peptide (Mgpe-9) and causes a drop in the primary amphipathic peptide (Mgpe-10). Our results point the effect of cysteine is dictated by the importance of physicochemical properties of the carrier peptide. We also report a DNA delivery agent Mgpe-9 exhibiting high transfection efficiency in multiple cell lines (including hard-to-transfect cell lines) with minimal cytotoxicity which can be further explored for in vivo applications.
Collapse
Affiliation(s)
- Rajpal Sharma
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110 020, India
| | - Daniel Nisakar
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110 020, India
| | - Shivangi Shivpuri
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110 020, India
| | - Munia Ganguli
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110 020, India.
| |
Collapse
|
5
|
Lei Q, Sun YX, Chen S, Qin SY, Jia HZ, Zhuo RX, Zhang XZ. Fabrication of novel reduction-sensitive gene vectors based on three-armed peptides. Macromol Biosci 2013; 14:546-56. [PMID: 24327554 DOI: 10.1002/mabi.201300422] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/16/2013] [Indexed: 12/25/2022]
Abstract
To address the inherent barriers of gene transfection, two reduction-sensitive branched polypeptides (RBPs) are synthesized and explored as novel non-viral gene vectors. The introduced disulfide linkages in RBPs facilitate glutathione-triggered intracellular gene release and reduce polymer degradation-induced cytotoxicity. Furthermore, the highly branched architecture concurrently realizes multivalency for strong DNA binding and elicits conformational flexibility for tight DNA compacting, which are beneficial for cellular entry. To increase the endosomal escape of plasmid DNA, pH-sensitive histidyl residues are incorporated into RBPs to improve buffer capacity in an acidic environment. In vitro study demonstrates that RBPs can efficiently mediate the DNA transfection and avoid apparent cytotoxicity in HeLa and COS7. The present gene delivery system offers a simple and flexible approach to fabricate microenvironment-specific branched gene vectors for gene therapy.
Collapse
Affiliation(s)
- Qi Lei
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | | | | | | | | | | | | |
Collapse
|
6
|
Wu L, Deng J, Sun Q, Yi H, Fang S, Liu B, Cai L. Hybrid polypeptide micelles loaded with indocyanine green for tumor imaging. J Control Release 2013. [DOI: 10.1016/j.jconrel.2013.08.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Dollendorf C, Hetzer M, Ritter H. Polymeric redox-responsive delivery systems bearing ammonium salts cross-linked via disulfides. Beilstein J Org Chem 2013; 9:1652-1662. [PMID: 24062825 PMCID: PMC3778402 DOI: 10.3762/bjoc.9.189] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 07/24/2013] [Indexed: 11/23/2022] Open
Abstract
A redox-responsive polycationic system was synthesized via copolymerization of N,N-diethylacrylamide (DEAAm) and 2-(dimethylamino)ethyl methacrylate (DMAEMA). N,N'-bis(4-chlorobutanoyl)cystamine was used as disulfide-containing cross-linker to form networks by the quaternization of tertiary amine groups. The insoluble cationic hydrogels become soluble by reduction of disulfide to mercaptanes by use of dithiothreitol (DTT), tris(2-carboxyethyl)phosphine (TCEP) or cysteamine, respectively. The soluble polymeric system can be cross-linked again by using oxygen or hydrogen peroxide under basic conditions. The redox-responsive polymer networks can be used for molecular inclusion and controlled release. As an example, phenolphthalein, methylene blue and reactive orange 16 were included into the network. After treatment with DTT a release of the dye could be recognized. Physical properties of the cross-linked materials, e.g., glass transition temperature (T g), swelling behavior and cloud points (T c) were investigated. Redox-responsive behavior was further analyzed by rheological measurements.
Collapse
Affiliation(s)
- Christian Dollendorf
- Lehrstuhl für Präparative Polymerchemie, Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine Universität, Universitätsstraße 1, Geb. 26.33.00, 40225 Düsseldorf, Germany
| | - Martin Hetzer
- Lehrstuhl für Präparative Polymerchemie, Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine Universität, Universitätsstraße 1, Geb. 26.33.00, 40225 Düsseldorf, Germany
| | - Helmut Ritter
- Lehrstuhl für Präparative Polymerchemie, Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine Universität, Universitätsstraße 1, Geb. 26.33.00, 40225 Düsseldorf, Germany
| |
Collapse
|
8
|
Alexander C, Fernandez Trillo F. Bioresponsive Polyplexes and Micelleplexes. SMART MATERIALS FOR DRUG DELIVERY 2013. [DOI: 10.1039/9781849736800-00256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The delivery of nucleic acids (NAs) is hindered by several factors, such as the size of the biomolecule (micron size for plasmid DNA), the presence of different biological barriers or the degradation of NAs. Most of these limitations are avoided by complexation with polycationic species, which collapse NAs into nanometer-sized polyplexes that can be efficiently internalized into the target cells. Because there are subtle changes in physiological conditions, such as the drop in pH at the endosome, or the increase in temperature in tumor tissue, stimuli responsive synthetic polymers are ideal candidates for the synthesis of efficient gene delivery vehicles. In this chapter, representative examples of “smart” polypexes that exploit these changes in physiological environment for the delivery of NAs are described, and the transfection efficiency of pH-, redox-, temperature- and light-responsive polyplexes is analyzed.
Collapse
|
9
|
Yang J, Wang HY, Yi WJ, Gong YH, Zhou X, Zhuo RX, Zhang XZ. PEGylated peptide based reductive polycations as efficient nonviral gene vectors. Adv Healthc Mater 2013. [PMID: 23184839 DOI: 10.1002/adhm.201200154] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To overcome the critical barriers in gene delivery, a series of reducible polycations (RPCs) based on low molecular weight (LMW) peptides, i.e. PolyHK6 H, PolyHK6 H-mPEG1 , PolyHK6 H-mPEG2 , and PolyHK6 H-mPEG3 , with different poly(ethylene glycol) (PEG) contents, are synthesized and evaluated as nonviral gene vectors. All the RPCs exhibit lower cytotoxicity compared with 25 kDa polyethyleneimine (PEI) and PEGylated PEI (PEI-mPEG: PEI-mPEG1 , PEI-mPEG2 , and PEI-mPEG3 ). PolyHK6 H-mPEG1 and PolyHK6 H-mPEG2 can bind and condense plasmid deoxyribonucleic acid (pDNA) efficiently with a particle size of about 200 nm. Moreover, they display much higher transfection efficiency than that of 25 kDa PEI especially in serum-supplemented medium. Moreover, PolyHK6 H-mPEG1 has equal transfection efficiency with PEI-mPEG1 which is optimal in the PEI-mPEG, but PolyHK6 H-mPEG1 exhibits significantly lower cytotoxicity than PEI-mPEG1 . This is attributed to the fact that inter-peptide disulfide bonds can increase the stability of RPCs/pDNA complexes in extracellular environment and thereafter cleave in cytoplasm to facilitate the release of pDNA in intracellular environment. The PEGylated RPCs demonstrate here improved intracellular gene transfer performance and will have great potential applications in vivo.
Collapse
Affiliation(s)
- Juan Yang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China
| | | | | | | | | | | | | |
Collapse
|
10
|
Kiselev A, Egorova A, Laukkanen A, Baranov V, Urtti A. Characterization of reducible peptide oligomers as carriers for gene delivery. Int J Pharm 2013; 441:736-47. [DOI: 10.1016/j.ijpharm.2012.10.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/12/2012] [Accepted: 10/11/2012] [Indexed: 10/27/2022]
|
11
|
Recent advances in the rational design of silica-based nanoparticles for gene therapy. Ther Deliv 2012. [DOI: 10.4155/tde.12.98] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gene therapy has attracted much attention in modern society and provides a promising approach for treating genetic disorders, diseases and cancers. Safe and effective vectors are vital tools to deliver genetic molecules to cells. This review summarizes recent advances in the rational design of silica-based nanoparticles and their applications in gene therapy. An overview of different types of genetic agents available for gene therapy is provided. The engineering of various silica nanoparticles is described, which can be used as versatile complexation tools for genetic agents and advanced gene therapy. Several challenges are raised and future research directions in the area of gene therapy using silica-based nanoparticles are proposed.
Collapse
|
12
|
Mann A, Thakur G, Shukla V, Singh AK, Khanduri R, Naik R, Jiang Y, Kalra N, Dwarakanath BS, Langel U, Ganguli M. Differences in DNA Condensation and Release by Lysine and Arginine Homopeptides Govern Their DNA Delivery Efficiencies. Mol Pharm 2011; 8:1729-41. [DOI: 10.1021/mp2000814] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Anita Mann
- Institute of Genomics and Integrative Biology (CSIR), Mall Road, Delhi 110007, India
| | - Garima Thakur
- Institute of Genomics and Integrative Biology (CSIR), Mall Road, Delhi 110007, India
| | - Vasundhara Shukla
- Institute of Genomics and Integrative Biology (CSIR), Mall Road, Delhi 110007, India
| | - Anand Kamal Singh
- Institute of Genomics and Integrative Biology (CSIR), Mall Road, Delhi 110007, India
| | - Richa Khanduri
- Institute of Genomics and Integrative Biology (CSIR), Mall Road, Delhi 110007, India
| | - Rangeetha Naik
- Institute of Genomics and Integrative Biology (CSIR), Mall Road, Delhi 110007, India
| | - Yang Jiang
- Department of Neurochemistry, University of Stockholm, S-10691, Stockholm, Sweden
| | - Namita Kalra
- Institute of Nuclear Medicine and Allied Sciences (DRDO), Ministry of Defence, Government of India, Timarpur, Lucknow Road, Delhi 110007, India
| | - B. S. Dwarakanath
- Institute of Nuclear Medicine and Allied Sciences (DRDO), Ministry of Defence, Government of India, Timarpur, Lucknow Road, Delhi 110007, India
| | - Ulo Langel
- Department of Neurochemistry, University of Stockholm, S-10691, Stockholm, Sweden
| | - Munia Ganguli
- Institute of Genomics and Integrative Biology (CSIR), Mall Road, Delhi 110007, India
| |
Collapse
|
13
|
Won YW, Lim KS, Kim YH. Intracellular organelle-targeted non-viral gene delivery systems. J Control Release 2011; 152:99-109. [PMID: 21255626 DOI: 10.1016/j.jconrel.2011.01.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/30/2010] [Accepted: 01/07/2011] [Indexed: 10/18/2022]
Abstract
Gene therapy is a rapidly growing approach for the treatment of various diseases. To achieve successful gene therapy, a gene delivery system is necessary to overcome several barriers in the extracellular and intracellular spaces. Polymers, peptides, liposomes and nanoparticles developed as gene carriers have achieved efficient cellular uptake of genes. Among these carriers, cationic polymers and peptides have been further developed as intracellular organelle-targeted delivery systems. The cytoplasm, nucleus and mitochondria have been considered primary targets for gene delivery using targeting moieties or environment-responsive materials. In this review, we explore recently developed non-viral gene carriers based on reducible systems specialized to target the cytoplasm, nucleus and mitochondria.
Collapse
Affiliation(s)
- Young-Wook Won
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, and Institute of Aging Society, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791, Republic of Korea
| | | | | |
Collapse
|
14
|
Drake CR, Aissaoui A, Argyros O, Serginson JM, Monnery BD, Thanou M, Steinke JHG, Miller AD. Bioresponsive small molecule polyamines as noncytotoxic alternative to polyethylenimine. Mol Pharm 2010; 7:2040-55. [PMID: 20929266 DOI: 10.1021/mp9002249] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nonviral gene therapy continues to require novel synthetic vectors to deliver therapeutic nucleic acids effectively and safely. The majority of synthetic nonviral vectors employed in clinical trials to date have been cationic liposomes; however, cationic polymers are attracting increasing attention. One of the few cationic polymers to enter clinical trials has been polyethylenimine (PEI); however, doubts remain over its cytotoxicity, and in addition it displays lower levels of transfection than viral systems. Herein, we report on the development of a series of small molecule analogues of PEI that are bioresponsive to the presence of pDNA, forming poly(disulfide)s that are capable of efficacious transfection with no associated toxicity. The most effective small molecule developed, a cyclic disulfide based upon a spermine backbone, is shown to form very well-defined polyplexes (100-200 nm in diameter) that mediate murine lung transfection in vivo to within an order of magnitude of in vivo jetPEI, and at the same time display a much improved cytotoxicity profile.
Collapse
Affiliation(s)
- Christopher R Drake
- Department of Chemistry, Imperial College London, Imperial College Genetic Therapies Centre, Flowers Building, Armstrong Road, London SW7 2AZ, UK
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
The cornea is particularly suited to gene therapy. The cornea is readily accessible, normally transparent, and is somewhat sequestrated from the general circulation and the systemic immune system. The principle of genetic therapy for the cornea is to use an appropriate vector system to transfer a gene to the cornea itself, or to the ocular environs, or systemically, so that a transgenic protein will be expressed that will modulate congenital or acquired disease. The protein may be structural such as a collagen, or functionally active such as an enzyme, cytokine or growth factor that may modulate a pathological process. Alternatively, gene expression may be silenced by the use of modalities such as antisense oligonucleotides. Interestingly, despite a very considerable amount of work in animal models, clinical translation directed to gene therapy of the human cornea has been minimal. This is in contrast to gene therapy for monogenic inherited diseases of the retina, where promising early results of clinical trials for Leber's congenital amaurosis have already been published and a number of other trials are ongoing.
Collapse
Affiliation(s)
- Keryn A Williams
- Department of Ophthalmology, Flinders University, Adelaide, South Australia 5042, Australia.
| | | |
Collapse
|
16
|
Gao S, Simon MJ, Morrison B, Banta S. Bifunctional chimeric fusion proteins engineered for DNA delivery: optimization of the protein to DNA ratio. Biochim Biophys Acta Gen Subj 2009; 1790:198-207. [PMID: 19402206 DOI: 10.1016/j.bbagen.2009.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Cell penetrating peptides (CPPs) have been used to deliver nucleotide-based therapeutics to cells, but this approach has produced mixed results. Ionic interactions and covalent bonds between the CPPs and the cargos may inhibit the effectiveness of the CPPs or interfere with the bioactivity of the cargos. METHODS We have created a bifunctional chimeric protein that binds DNA using the p50 domain of the NF-kappaB transcription factor and is functionalized for delivery with the TAT CPP. The green fluorescent protein (GFP) has been incorporated for tracking delivery. The new chimeric protein, p50-GFP-TAT, was compared to p50-GFP, GFP-TAT and GFP as controls for the ability to transduce PC12 cells with and without oligonucleotide cargos. RESULTS The p50-GFP-TAT construct can deliver 30 bp and 293 bp oligonucleotides to PC12 cells with an optimal ratio of 1.89 protein molecules per base pair of DNA length. This correlation was validated through the delivery of a fluorescent protein transgene encoded in a plasmid to PC12 cells. Thus, self-assembling CPP-based bifunctional fusion proteins can be engineered for the non-viral delivery of nucleotide-based cargos to mammalian cells. GENERAL SIGNIFICANCE This work represents an important step forward in the rational design of protein-based systems for the delivery of macromolecular cargos.
Collapse
Affiliation(s)
- Shan Gao
- Department of Chemical Engineering, Columbia University in the City of New York, New York, NY 10027, USA
| | | | | | | |
Collapse
|
17
|
Incani V, Lin X, Lavasanifar A, Uludağ H. Relationship between the extent of lipid substitution on poly(L-lysine) and the DNA delivery efficiency. ACS APPLIED MATERIALS & INTERFACES 2009; 1:841-848. [PMID: 20356010 DOI: 10.1021/am8002445] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Poly(L-lysine) (PLL) is a commonly used polymer for nonviral gene delivery. However, the polymer exhibits significant toxicity and is not very effective for transgene expression. To enhance the gene delivery efficiency of the polymer, we imparted an amphiphilic property to PLL by substituting approximately 10% of epsilon-NH2 with several endogenous lipids of variable chain lengths (lipid carbon chain ranging from 8 to 18). Lipid-modified PLL with high molecular weight (approximately 25 vs 4 kDa) was found to be more effective in delivering plasmid DNA intracellularly in clinically relevant bone marrow stromal cells (BMSC). For lipid-substituted 25 kDa PLL, a correlation between the extent of lipid substitution and the plasmid DNA delivery efficiency was obtained. Additionally, transgene expression by BMSC significantly increased (20-25%) when amphiphilic PLLs were used for plasmid delivery as compared to native PLL and the commercial transfection agent Lipofectamine-2000. The transfection efficiency of the polymers was positively correlated with the extent of lipid substitution. The amphiphilic polymers were able to modify the cells up to 7 days after transfection, after which the expression was decreased to background levels within 1 week. We conclude that lipid-substituted PLL can be used effectively as a nonviral carrier for DNA, and the extent of lipid substitution was an important determinant of gene delivery.
Collapse
Affiliation(s)
- Vanessa Incani
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G2N8
| | | | | | | |
Collapse
|
18
|
Kuriyama S, Taguchi Y, Nishimura K, Yanagibashi K, Katayama Y, Niidoime T. Improvement of peptide vectors for gene delivery with active targeting profiles for phosphatidylserine. J Pept Sci 2008; 15:114-9. [DOI: 10.1002/psc.1104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Akita H, Harashima H. Advances in non-viral gene delivery: using multifunctional envelope-type nano-device. Expert Opin Drug Deliv 2008; 5:847-59. [PMID: 18712995 DOI: 10.1517/17425247.5.8.847] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Low transfection efficiency is an obstacle to the clinical use of non-viral gene vectors. Effective non-viral vectors require the ability to control intracellular trafficking of gene vectors for the delivery of exogenous DNA to the nucleus. OBJECTIVE To overcome multiple intracellular barriers, various types of devices must be integrated into one nano-particle so that each device performs its function at the appropriate location at the desired time. Such a strategy requires an understanding, based on quantitative information, of the rate-limiting processes that hinder intracellular trafficking. METHODS In this review, advancements in the development of multifunctional envelope-type nano-devices (MEND) are discussed. In particular, a novel method to quantitatively evaluate the rate-limiting steps in intracellular trafficking, based on a comparison of viral and non-viral gene-delivery systems, is described. CONCLUSION MENDs are useful to integrate various kinds of devices to overcome intracellular barriers into one particle. Comparison of intracellular trafficking between adenoviruses and non-viral vectors indicates that a postnuclear delivery process is an important rate-limiting step for efficient transfection with non-viral vectors.
Collapse
|
20
|
Affiliation(s)
| | - Eric E. Simanek
- Department of Chemistry, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
21
|
Kuo CN, Yang LC, Yang CT, Chen MF, Lai CH, Chen YH, Chen CH, Chen CH, Wu PC, Kou HK, Tsai JC, Hung CH. A novel vector system for gene transfer into the cornea using a partially dried plasmid expressing 18 basic fibroblast growth factor-synthetic amphiphile INTeraction-18 (SAINT-18) complex. Curr Eye Res 2008; 33:839-48. [PMID: 18853317 DOI: 10.1080/02713680802382963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE We describe a novel vector system of nonviral gene transfer into the cornea using a partially dried form of a plasmid expressing 18-kDa basic fibroblast growth factor (p-bFGF)-synthetic amphiphile INTeraction-18 (SAINT-18) complex. METHODS Corneal neovascularization (NV) was evaluated in 48 eyes of Sprague-Dawley rats after implantation of SAINT-18 containing 2 micro g of plasmid-expressing green fluorescent protein (p-GFP; control group), 0.2 micro g, 2 micro g, or 20 micro g of p-bFGF from day 0 to day 60. bFGF protein expression was analyzed by Western blotting and immunohistochemistry. RESULTS The p-bFGF-SAINT-18 complex induced dose-dependent corneal neovascularization, which reached a maximum on days 15-21 in the 20-micro g p-bFGF group, days 12-18 in the 2-micro g p-bFGF group, and on days 9-15 in the 0.2-micro g p-bFGF group, and then regressed progressively. No NV was observed in the p-GFP group. CONCLUSIONS This noninflammatory corneal transfection model using partially dried p-bFGF-SAINT-18 complex allows precise localization of tranfection reagents for producing corneal neovascularization.
Collapse
Affiliation(s)
- Chien-Neng Kuo
- Department of Ophthalmology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|