1
|
Telekes A, Horváth A. The Role of Cell-Free DNA in Cancer Treatment Decision Making. Cancers (Basel) 2022; 14:6115. [PMID: 36551600 PMCID: PMC9776613 DOI: 10.3390/cancers14246115] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
The aim of this review is to evaluate the present status of the use of cell-free DNA and its fraction of circulating tumor DNA (ctDNA) because this year July 2022, an ESMO guideline was published regarding the application of ctDNA in patient care. This review is for clinical oncologists to explain the concept, the terms used, the pros and cons of ctDNA; thus, the technical aspects of the different platforms are not reviewed in detail, but we try to help in navigating the current knowledge in liquid biopsy. Since the validated and adequately sensitive ctDNA assays have utility in identifying actionable mutations to direct targeted therapy, ctDNA may be used for this soon in routine clinical practice and in other different areas as well. The cfDNA fragments can be obtained by liquid biopsy and can be used for diagnosis, prognosis, and selecting among treatment options in cancer patients. A great proportion of cfDNA comes from normal cells of the body or from food uptake. Only a small part (<1%) of it is related to tumors, originating from primary tumors, metastatic sites, or circulating tumor cells (CTCs). Soon the data obtained from ctDNA may routinely be used for finding minimal residual disease, detecting relapse, and determining the sites of metastases. It might also be used for deciding appropriate therapy, and/or emerging resistance to the therapy and the data analysis of ctDNA may be combined with imaging or other markers. However, to achieve this goal, further clinical validations are inevitable. As a result, clinicians should be aware of the limitations of the assays. Of course, several open questions are still under research and because of it cfDNA and ctDNA testing are not part of routine care yet.
Collapse
Affiliation(s)
- András Telekes
- Omnimed-Etosz, Ltd., 81 Széher Rd., 1021 Budapest, Hungary
- Semmelweis University, 26. Üllői Rd., 1085 Budapest, Hungary
| | - Anna Horváth
- Department of Internal Medicine and Haematology, Semmelweis University, 46. Szentkirályi Rd., 1088 Budapest, Hungary
| |
Collapse
|
2
|
Li S, Liu Y, Liu M, Wang L, Li X. Comprehensive bioinformatics analysis reveals biomarkers of DNA methylation-related genes in varicose veins. Front Genet 2022; 13:1013803. [PMID: 36506327 PMCID: PMC9732536 DOI: 10.3389/fgene.2022.1013803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
Abstract
Background: Patients with Varicose veins (VV) show no obvious symptoms in the early stages, and it is a common and frequent clinical condition. DNA methylation plays a key role in VV by regulating gene expression. However, the molecular mechanism underlying methylation regulation in VV remains unclear. Methods: The mRNA and methylation data of VV and normal samples were obtained from the Gene Expression Omnibus (GEO) database. Methylation-Regulated Genes (MRGs) between VV and normal samples were crossed with VV-associated genes (VVGs) obtained by weighted gene co-expression network analysis (WGCNA) to obtain VV-associated MRGs (VV-MRGs). Their ability to predict disease was assessed using receiver operating characteristic (ROC) curves. Biomarkers were then screened using a random forest model (RF), support vector machine model (SVM), and generalized linear model (GLM). Next, gene set enrichment analysis (GSEA) was performed to explore the functions of biomarkers. Furthermore, we also predicted their drug targets, and constructed a competing endogenous RNAs (ceRNA) network and a drug target network. Finally, we verified their mRNA expression using quantitative real-time polymerase chain reaction (qRT-PCR). Results: Total three VV-MRGs, namely Wnt1-inducible signaling pathway protein 2 (WISP2), Cysteine-rich intestinal protein 1 (CRIP1), and Odd-skipped related 1 (OSR1) were identified by VVGs and MRGs overlapping. The area under the curves (AUCs) of the ROC curves for these three VV-MRGs were greater than 0.8. RF was confirmed as the optimal diagnostic model, and WISP2, CRIP1, and OSR1 were regarded as biomarkers. GSEA showed that WISP2, CRIP1, and OSR1 were associated with oxidative phosphorylation, extracellular matrix (ECM), and respiratory system functions. Furthermore, we found that lncRNA MIR17HG can regulate OSR1 by binding to hsa-miR-21-5p and that PAX2 might treat VV by targeting OSR1. Finally, qRT-PCR results showed that the mRNA expression of the three genes was consistent with the results of the datasets. Conclusion: This study identified WISP2, CRIP1, and OSR1 as biomarkers of VV through comprehensive bioinformatics analysis, and preliminary explored the DNA methylation-related molecular mechanism in VV, which might be important for VV diagnosis and exploration of potential molecular mechanisms.
Collapse
Affiliation(s)
- Shengyu Li
- Department of Vascular Surgery, Tianjin First Central Hospital, Tianjin, China,*Correspondence: Shengyu Li, ; Xiaofeng Li,
| | - Yuehan Liu
- Department of Functional Examination, Beijing Aerospace General Hospital, Beijing, China
| | - Mingming Liu
- Department of Vascular Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Lizhao Wang
- Department of Vascular Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Xiaofeng Li
- Department of Vascular Surgery, Tianjin First Central Hospital, Tianjin, China,*Correspondence: Shengyu Li, ; Xiaofeng Li,
| |
Collapse
|
3
|
Pascual-Garcia P, Little SC, Capelson M. Nup98-dependent transcriptional memory is established independently of transcription. eLife 2022; 11:e63404. [PMID: 35289742 PMCID: PMC8923668 DOI: 10.7554/elife.63404] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/26/2022] [Indexed: 12/31/2022] Open
Abstract
Cellular ability to mount an enhanced transcriptional response upon repeated exposure to external cues is termed transcriptional memory, which can be maintained epigenetically through cell divisions and can depend on a nuclear pore component Nup98. The majority of mechanistic knowledge on transcriptional memory has been derived from bulk molecular assays. To gain additional perspective on the mechanism and contribution of Nup98 to memory, we used single-molecule RNA FISH (smFISH) to examine the dynamics of transcription in Drosophila cells upon repeated exposure to the steroid hormone ecdysone. We combined smFISH with mathematical modeling and found that upon hormone exposure, cells rapidly activate a low-level transcriptional response, but simultaneously begin a slow transition into a specialized memory state characterized by a high rate of expression. Strikingly, our modeling predicted that this transition between non-memory and memory states is independent of the transcription stemming from initial activation. We confirmed this prediction experimentally by showing that inhibiting transcription during initial ecdysone exposure did not interfere with memory establishment. Together, our findings reveal that Nup98's role in transcriptional memory is to stabilize the forward rate of conversion from low to high expressing state, and that induced genes engage in two separate behaviors - transcription itself and the establishment of epigenetically propagated transcriptional memory.
Collapse
Affiliation(s)
- Pau Pascual-Garcia
- Department of Cell and Developmental Biology, Penn Epigenetics Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Shawn C Little
- Department of Cell and Developmental Biology, Penn Epigenetics Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Maya Capelson
- Department of Cell and Developmental Biology, Penn Epigenetics Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
4
|
Khajebishak Y, Alivand M, Faghfouri AH, Moludi J, Payahoo L. The effects of vitamins and dietary pattern on epigenetic modification of non-communicable diseases. INT J VITAM NUTR RES 2021. [PMID: 34643416 DOI: 10.1024/0300-9831/a000735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Background: Non-communicable diseases (NCDs) have received more attention because of high prevalence and mortality rate. Besides genetic and environmental factors, the epigenetic abnormality is also involved in the pathogenesis of NCDs. Methylation of DNA, chromatin remodeling, modification of histone, and long non-coding RNAs are the main components of epigenetic phenomena. Methodology: In this review paper, the mechanistic role of vitamins and dietary patterns on epigenetic modification was discussed. All papers indexed in scientific databases, including PubMed, Scopus, Embase, Google Scholar, and Elsevier were searched during 2000 - 2021 using, vitamins, diet, epigenetic repression, histones, methylation, acetylation, and NCDs as keywords. Results: The components of healthy dietary patterns like Mediterranean and dietary approaches to stop hypertension diets have a beneficial effect on epigenetic hemostasis. Both quality and quantity of dietary components influence epigenetic phenomena. A diet with calorie deficiency in protein content and methyl-donor agents in a long time, with a high level of fat, disrupts epigenetic hemostasis and finally, causes genome instability. Also, soluble and insoluble vitamins have an obvious role in epigenetic modifications. Most vitamins interact directly with methylation, acetylation, and phosphorylation pathways of histone and DNA. However, numerous indirect functions related to the cell cycle stability and genome integrity have been recognized. Conclusion: Considering the crucial role of a healthy diet in epigenetic homeostasis, adherence to a healthy dietary pattern containing enough levels of vitamin and avoiding the western diet seems to be necessary. Having a healthy diet and consuming the recommended dietary level of vitamins can also contribute to epigenetic stability.
Collapse
Affiliation(s)
- Yaser Khajebishak
- Department of Nutrition and Food Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mohammadreza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Jalal Moludi
- School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Laleh Payahoo
- Department of Nutrition and Food Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| |
Collapse
|
5
|
Leung WY, Murray V. The influence of DNA methylation on the sequence specificity of UVB- and UVC-induced DNA damage. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 221:112225. [PMID: 34090037 DOI: 10.1016/j.jphotobiol.2021.112225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
Ultraviolet light (UV) is one of the most common DNA damaging agents in the human environment. This paper examined the influence of DNA methylation on the level of UVB- and UVC-induced DNA damage. A purified DNA sequence containing CpG dinucleotides was methylated with a CpG methylase. We employed the linear amplification technique and the end-labelling approach followed by capillary electrophoresis with laser-induced fluorescence to investigate the sequence specificity of UV-induced DNA damage. The linear amplification technique mainly detects cyclobutane pyrimidine dimer (CPD) adducts, while the end-labelling approach mainly detects 6-4 photoproduct (6-4PP) lesions. The levels of CPD and 6-4PP adducts detected in methylated/unmethylated labelled sequences were analysed. The comparison showed that 5-methyl-cytosine significantly reduced the level of both CPD and 6-4PP adducts after UVB (308 nm) and UVC (254 nm) irradiation compared with the non-methylated counterpart.
Collapse
Affiliation(s)
- Wai Y Leung
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Vincent Murray
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
6
|
Dawes IW, Perrone GG. Stress and ageing in yeast. FEMS Yeast Res 2021; 20:5670642. [PMID: 31816015 DOI: 10.1093/femsyr/foz085] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023] Open
Abstract
There has long been speculation about the role of various stresses in ageing. Some stresses have beneficial effects on ageing-dependent on duration and severity of the stress, others have negative effects and the question arises whether these negative effects are causative of ageing or the result of the ageing process. Cellular responses to many stresses are highly coordinated in a concerted way and hence there is a great deal of cross-talk between different stresses. Here the relevant aspects of the coordination of stress responses and the roles of different stresses on yeast cell ageing are discussed, together with the various functions that are involved. The cellular processes that are involved in alleviating the effects of stress on ageing are considered, together with the possible role of early stress events on subsequent ageing of cells.
Collapse
Affiliation(s)
- Ian W Dawes
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Gabriel G Perrone
- School of Science and Health, Western Sydney University, Campbelltown, NSW 2560, Australia
| |
Collapse
|
7
|
Shaban K, Sauty SM, Yankulov K. Variation, Variegation and Heritable Gene Repression in S. cerevisiae. Front Genet 2021; 12:630506. [PMID: 33747046 PMCID: PMC7970126 DOI: 10.3389/fgene.2021.630506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
Phenotypic heterogeneity provides growth advantages for a population upon changes of the environment. In S. cerevisiae, such heterogeneity has been observed as "on/off" states in the expression of individual genes in individual cells. These variations can persist for a limited or extended number of mitotic divisions. Such traits are known to be mediated by heritable chromatin structures, by the mitotic transmission of transcription factors involved in gene regulatory circuits or by the cytoplasmic partition of prions or other unstructured proteins. The significance of such epigenetic diversity is obvious, however, we have limited insight into the mechanisms that generate it. In this review, we summarize the current knowledge of epigenetically maintained heterogeneity of gene expression and point out similarities and converging points between different mechanisms. We discuss how the sharing of limiting repression or activation factors can contribute to cell-to-cell variations in gene expression and to the coordination between short- and long- term epigenetic strategies. Finally, we discuss the implications of such variations and strategies in adaptation and aging.
Collapse
Affiliation(s)
- Kholoud Shaban
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Safia Mahabub Sauty
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Krassimir Yankulov
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
8
|
Bheda P, Aguilar-Gómez D, Becker NB, Becker J, Stavrou E, Kukhtevich I, Höfer T, Maerkl S, Charvin G, Marr C, Kirmizis A, Schneider R. Single-Cell Tracing Dissects Regulation of Maintenance and Inheritance of Transcriptional Reinduction Memory. Mol Cell 2020; 78:915-925.e7. [DOI: 10.1016/j.molcel.2020.04.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 02/15/2020] [Accepted: 04/15/2020] [Indexed: 10/24/2022]
|
9
|
Hyperosmotic Stress Response Memory is Modulated by Gene Positioning in Yeast. Cells 2019; 8:cells8060582. [PMID: 31200564 PMCID: PMC6627694 DOI: 10.3390/cells8060582] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 12/19/2022] Open
Abstract
Cellular memory is a critical ability that allows microorganisms to adapt to potentially detrimental environmental fluctuations. In the unicellular eukaryote Saccharomyces cerevisiae, cellular memory can take the form of faster or slower responses within the cell population to repeated stresses. Using microfluidics and fluorescence time-lapse microscopy, we studied how yeast responds to short, pulsed hyperosmotic stresses at the single-cell level by analyzing the dynamic behavior of the stress-responsive STL1 promoter (pSTL1) fused to a fluorescent reporter. We established that pSTL1 exhibits variable successive activation patterns following two repeated short stresses. Despite this variability, most cells exhibited a memory of the first stress as decreased pSTL1 activity in response to the second stress. Notably, we showed that genomic location is important for the memory effect, since displacement of the promoter to a pericentromeric chromatin domain decreased the transcriptional strength of pSTL1 and led to a loss of memory. This study provides a quantitative description of a cellular memory that includes single-cell variability and highlights the contribution of chromatin structure to stress memory.
Collapse
|
10
|
Dose dependent gene expression is dynamically modulated by the history, physiology and age of yeast cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:457-471. [DOI: 10.1016/j.bbagrm.2019.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/21/2019] [Accepted: 02/23/2019] [Indexed: 12/14/2022]
|
11
|
Cui S, Lv X, Li W, Li Z, Liu H, Gao Y, Huang G. Folic acid modulates VPO1 DNA methylation levels and alleviates oxidative stress-induced apoptosis in vivo and in vitro. Redox Biol 2018; 19:81-91. [PMID: 30125807 PMCID: PMC6105767 DOI: 10.1016/j.redox.2018.08.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/02/2018] [Accepted: 08/07/2018] [Indexed: 12/31/2022] Open
Abstract
Endothelial cell injury and apoptosis play a primary role in the pathogenesis of atherosclerosis. Moreover, accumulating evidence indicates that oxidative injury is an important risk factor for endothelial cell damage. In addition, low folate levels are considered a contributing factor to promotion of vascular disease because of the deregulation of DNA methylation. We aimed to investigate the effects of folic acid on injuries induced by oxidative stress that occur via an epigenetic gene silencing mechanism in ApoE knockout mice fed a high-fat diet and in human umbilical vein endothelial cells treated with oxidized low-density lipoprotein (ox-LDL). We assessed how folic acid influenced the levels of 8-hydroxy-2′-deoxyguanosine (8-OHdG, an oxidative DNA damage marker) and cellular apoptosis in in vivo and in vitro models. Furthermore, we analyzed DNA methyltransferase (DNMT) activity, vascular peroxidase 1 (VPO1) expression, and promoter methylation in human umbilical vein endothelial cells. Our data showed that folic acid reduced 8-OHdG levels and decreased apoptosis in the aortic tissue of ApoE−/− mice. Likewise, our in vitro experiments showed that folic acid protects against endothelial dysfunction induced by ox-LDL by reducing reactive oxygen species (ROS)-derived oxidative injuries, 8-OHdG content, and the apoptosis ratio. Importantly, this effect was indirectly caused by increased DNMT activity and altered DNA methylation at VPO1 promoters, as well as changes in the abundance of VPO1 expression. Collectively, we conclude that folic acid supplementation may prevent oxidative stress-induced apoptosis and suppresses ROS levels through downregulating VPO1 as a consequence of changes in DNA methylation, which may contribute to beneficial effects on endothelial function. Folic acid reduces oxidative stress-induced injuries in atherosclerosis. Folic acid decreases 8-OHdG levels and apoptosis in vivo and in vitro. Folic acid supplementation increases DNMT levels and regulates VPO1 expression. VPO1 expression is modulated by epigenetic silencing via promoter methylation.
Collapse
Affiliation(s)
- Shanshan Cui
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Xin Lv
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Wen Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Zhenshu Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Huan Liu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Yuxia Gao
- Department of Cardiology, General Hospital of Tianjin Medical University, Tianjin 300052, China.
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China.
| |
Collapse
|
12
|
Huang L, Liu P, Yuan Z, Zhou T, Yu J. The free-energy cost of interaction between DNA loops. Sci Rep 2017; 7:12610. [PMID: 28974770 PMCID: PMC5626758 DOI: 10.1038/s41598-017-12765-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/14/2017] [Indexed: 12/03/2022] Open
Abstract
From the viewpoint of thermodynamics, the formation of DNA loops and the interaction between them, which are all non-equilibrium processes, result in the change of free energy, affecting gene expression and further cell-to-cell variability as observed experimentally. However, how these processes dissipate free energy remains largely unclear. Here, by analyzing a mechanic model that maps three fundamental topologies of two interacting DNA loops into a 4-state model of gene transcription, we first show that a longer DNA loop needs more mean free energy consumption. Then, independent of the type of interacting two DNA loops (nested, side-by-side or alternating), the promotion between them always consumes less mean free energy whereas the suppression dissipates more mean free energy. More interestingly, we find that in contrast to the mechanism of direct looping between promoter and enhancer, the facilitated-tracking mechanism dissipates less mean free energy but enhances the mean mRNA expression, justifying the facilitated-tracking hypothesis, a long-standing debate in biology. Based on minimal energy principle, we thus speculate that organisms would utilize the mechanisms of loop-loop promotion and facilitated tracking to survive in complex environments. Our studies provide insights into the understanding of gene expression regulation mechanism from the view of energy consumption.
Collapse
Affiliation(s)
- Lifang Huang
- Research Centre of Applied Mathematics, Guangzhou University, Guangzhou, 510006, P.R. China
- School of Statistics and Mathematics, Guangdong University of Finance & Economics, Guangzhou, 510275, P.R. China
| | - Peijiang Liu
- School of Statistics and Mathematics, Guangdong University of Finance & Economics, Guangzhou, 510275, P.R. China
| | - Zhanjiang Yuan
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou, 510275, P.R. China
| | - Tianshou Zhou
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou, 510275, P.R. China.
| | - Jianshe Yu
- Research Centre of Applied Mathematics, Guangzhou University, Guangzhou, 510006, P.R. China.
| |
Collapse
|
13
|
Tu W, Rao S. Mechanisms Underlying T Cell Immunosenescence: Aging and Cytomegalovirus Infection. Front Microbiol 2016; 7:2111. [PMID: 28082969 PMCID: PMC5186782 DOI: 10.3389/fmicb.2016.02111] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 12/13/2016] [Indexed: 01/03/2023] Open
Abstract
The ability of the human immune system to protect against infectious disease declines with age and efficacy of vaccination reduces significantly in the elderly. Aging of the immune system, also termed as immunosenescence, involves many changes in human T cell immunity that is characterized by a loss in naïve T cell population and an increase in highly differentiated CD28- memory T cell subset. There is extensive data showing that latent persistent human cytomegalovirus (HCMV) infection is also associated with age-related immune dysfunction in the T cells, which might enhance immunosenescence. Understanding the molecular mechanisms underlying age-related and HCMV-related immunosenescence is critical for the development of effective age-targeted vaccines and immunotherapies. In this review, we will address the role of both aging and HCMV infection that contribute to the T cell senescence and discuss the potential molecular mechanisms in aged T cells.
Collapse
Affiliation(s)
- Wenjuan Tu
- Faculty of ESTeM, Health Research Institute, University of Canberra Canberra, ACT, Australia
| | - Sudha Rao
- Faculty of ESTeM, Health Research Institute, University of Canberra Canberra, ACT, Australia
| |
Collapse
|
14
|
Andrade-Linares DR, Lehmann A, Rillig MC. Microbial stress priming: a meta-analysis. Environ Microbiol 2016; 18:1277-88. [PMID: 26768991 DOI: 10.1111/1462-2920.13223] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/09/2016] [Indexed: 12/23/2022]
Abstract
Microbes have to cope with complex and dynamic environments, making it likely that anticipatory responses provide fitness benefits. Mild, previous stressors can prepare microbes (stress priming) to further and potentially damaging stressors (triggering). We here quantitatively summarize the findings from over 250 trials of 34 studies including bacteria and fungi, demonstrating that priming to stress has a beneficial impact on microbial survival. In fact, survival of primed microbes was about 10-fold higher compared with that in non-primed microbes. Categorical moderators related to microbial taxonomy and the kind of stress applied as priming or as triggering revealed significant differences of priming effect size among 14 different microbial species, 6 stress categories and stressor combination. We found that priming by osmotic, physiological and temperature stress had the highest positive effect sizes on microbial response. Cross-protection was evident for physiological, temperature and pH stresses. Microbes are better prepared against triggering by oxidative, temperature and osmotic stress. Our finding of an overall positive mean effect of priming regardless of the microbial system and particular stressor provides unprecedentedly strong evidence of the broad ecological significance of microbial stress priming. These results further suggest that stress priming may be an important factor in shaping microbial communities.
Collapse
Affiliation(s)
- Diana R Andrade-Linares
- Plant Ecology, Institut für Biologie, Freie Universität Berlin, Berlin, D-14195, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, D-14195, Germany
| | - Anika Lehmann
- Plant Ecology, Institut für Biologie, Freie Universität Berlin, Berlin, D-14195, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, D-14195, Germany
| | - Matthias C Rillig
- Plant Ecology, Institut für Biologie, Freie Universität Berlin, Berlin, D-14195, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, D-14195, Germany
| |
Collapse
|
15
|
de la Fuente V, Federman N, Zalcman G, Salles A, Freudenthal R, Romano A. NF-κB transcription factor role in consolidation and reconsolidation of persistent memories. Front Mol Neurosci 2015; 8:50. [PMID: 26441513 PMCID: PMC4563083 DOI: 10.3389/fnmol.2015.00050] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/24/2015] [Indexed: 12/16/2022] Open
Abstract
Transcriptional regulation is an important molecular process required for long-term neural plasticity and long-term memory (LTM) formation. Thus, one main interest in molecular neuroscience in the last decades has been the identification of transcription factors that are involved in memory processes. Among them, the nuclear factor κB (NF-κB) family of transcription factors has gained interest due to a significant body of evidence that supports a key role of these proteins in synaptic plasticity and memory. In recent years, the interest was particularly reinforced because NF-κB was characterized as an important regulator of synaptogenesis. This function may be explained by its participation in synapse to nucleus communication, as well as a possible local role at the synapse. This review provides an overview of experimental work obtained in the last years, showing the essential role of this transcription factor in memory processes in different learning tasks in mammals. We focus the review on the consolidation and reconsolidation memory phases as well as on the regulation of immediate-early and late genes by epigenetic mechanisms that determine enduring forms of memories.
Collapse
Affiliation(s)
- Verónica de la Fuente
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE, UBA-CONICET), Universidad de Buenos Aires, Ciudad Universitaria Buenos Aires, Argentina
| | - Noel Federman
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE, UBA-CONICET), Universidad de Buenos Aires, Ciudad Universitaria Buenos Aires, Argentina
| | - Gisela Zalcman
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE, UBA-CONICET), Universidad de Buenos Aires, Ciudad Universitaria Buenos Aires, Argentina
| | - Angeles Salles
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE, UBA-CONICET), Universidad de Buenos Aires, Ciudad Universitaria Buenos Aires, Argentina
| | - Ramiro Freudenthal
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE, UBA-CONICET), Universidad de Buenos Aires, Ciudad Universitaria Buenos Aires, Argentina
| | - Arturo Romano
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE, UBA-CONICET), Universidad de Buenos Aires, Ciudad Universitaria Buenos Aires, Argentina
| |
Collapse
|
16
|
Abstract
In multicellular organisms differentiated cells must maintain their cellular memory, which will be faithfully inherited and maintained by their progeny. In addition, these specialized cells are exposed to specific environmental and cell-intrinsic signals and will have to appropriately respond to them. Some of these stimuli lead to changes in a subset of genes or to a genome-wide reprogramming of the cells that will remain after stimuli removal and, in some instances, will be inherited by the daughter cells. The molecular substrate that integrates cellular memory and plasticity is the chromatin, a complex of DNA and histones unique to eukaryotes. The nucleosome is the fundamental unit of the chromatin and nucleosomal organization defines different chromatin conformations. Chromatin regulators affect chromatin conformation and accessibility by covalently modifying the DNA or the histones, substituting histone variants, remodeling the nucleosome position or modulating chromatin looping and folding. These regulators frequently act in multiprotein complexes and highly specific interplays among chromatin marks and different chromatin regulators allow a remarkable array of possibilities. Therefore, chromatin regulator nets act to propagate the conformation of different chromatin regions through DNA replication and mitosis, and to remodel the chromatin fiber to regulate the accessibility of the DNA to transcription factors and to the transcription and repair machineries. Here, the state-of-the-art of the best-known chromatin regulators is reviewed.
Collapse
|
17
|
Jiang H, Lun Y, Wu X, Xia Q, Zhang X, Xin S, Zhang J. Association between the hypomethylation of osteopontin and integrin β3 promoters and vascular smooth muscle cell phenotype switching in great saphenous varicose veins. Int J Mol Sci 2014; 15:18747-61. [PMID: 25329616 PMCID: PMC4227244 DOI: 10.3390/ijms151018747] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 09/28/2014] [Accepted: 10/09/2014] [Indexed: 12/28/2022] Open
Abstract
Lower extremity varicose veins are a common condition in vascular surgery and proliferation of vascular smooth muscle cells (VSMCs) in the intima is a significant pathological feature of varicosity. However, the pathogenesis of varicose veins is not fully understood. Osteopontin (OPN) could promote the migration and adhesion of VSMCs through the cell surface receptor integrin β3 and the cooperation of OPN and integrin β3 is involved in many vascular diseases. However, the role of OPN and integrin β3 in varicosity remains unclear. In the current study, we found that the methylation levels in the promoter regions of OPN and integrin β3 genes in the VSMCs of varicose veins are reduced and the protein expression of OPN and integrin β3 are increased, compared with normal veins. Furthermore, it was observed that VSMCs in the neointima of varicose veins were transformed into the synthetic phenotype. Collectively, hypomethylation of the promoter regions for OPN and integrin β3 genes may increase the expression of these genes in varicosity, which is closely related to VSMC phenotype switching. Hypomethylation of the promoter regions for OPN and integrin β3 genes may be a key factor in the pathogenesis of varicosity.
Collapse
Affiliation(s)
- Han Jiang
- Department of Vascular and Thyroid Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| | - Yu Lun
- Department of Vascular and Thyroid Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| | - Xiaoyu Wu
- Department of Vascular and Thyroid Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| | - Qian Xia
- Department of Vascular and Thyroid Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| | - Xiaoyu Zhang
- Department of Vascular and Thyroid Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| | - Shijie Xin
- Department of Vascular and Thyroid Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| | - Jian Zhang
- Department of Vascular and Thyroid Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
18
|
Federman N, Zalcman G, de la Fuente V, Fustiñana MS, Romano A. Epigenetic mechanisms and memory strength: a comparative study. ACTA ACUST UNITED AC 2014; 108:278-85. [PMID: 24978317 DOI: 10.1016/j.jphysparis.2014.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/12/2014] [Accepted: 06/16/2014] [Indexed: 01/04/2023]
Abstract
Memory consolidation requires de novo mRNA and protein synthesis. Transcriptional activation is controlled by transcription factors, their cofactors and repressors. Cofactors and repressors regulate gene expression by interacting with basal transcription machinery, remodeling chromatin structure and/or chemically modifying histones. Acetylation is the most studied epigenetic mechanism of histones modifications related to gene expression. This process is regulated by histone acetylases (HATs) and histone deacetylases (HDACs). More than 5 years ago, we began a line of research about the role of histone acetylation during memory consolidation. Here we review our work, presenting evidence about the critical role of this epigenetic mechanism during consolidation of context-signal memory in the crab Neohelice granulata, as well as during consolidation of novel object recognition memory in the mouse Mus musculus. Our evidence demonstrates that histone acetylation is a key mechanism in memory consolidation, functioning as a distinctive molecular feature of strong memories. Furthermore, we found that the strength of a memory can be characterized by its persistence or its resistance to extinction. Besides, we found that the role of this epigenetic mechanism regulating gene expression only in the formation of strongest memories is evolutionarily conserved.
Collapse
Affiliation(s)
- Noel Federman
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. IFIByNE, CONICET, Ciudad Universitaria, Pab. II, 2do piso, 1428EHA Buenos Aires, Argentina.
| | - Gisela Zalcman
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. IFIByNE, CONICET, Ciudad Universitaria, Pab. II, 2do piso, 1428EHA Buenos Aires, Argentina
| | - Verónica de la Fuente
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. IFIByNE, CONICET, Ciudad Universitaria, Pab. II, 2do piso, 1428EHA Buenos Aires, Argentina
| | - Maria Sol Fustiñana
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Arturo Romano
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. IFIByNE, CONICET, Ciudad Universitaria, Pab. II, 2do piso, 1428EHA Buenos Aires, Argentina
| |
Collapse
|
19
|
SPR-5 and MET-2 function cooperatively to reestablish an epigenetic ground state during passage through the germ line. Proc Natl Acad Sci U S A 2014; 111:9509-14. [PMID: 24979765 DOI: 10.1073/pnas.1321843111] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The Caenorhabditis elegans LSD1 H3K4me2 demethylase SPR-5 reprograms epigenetic transcriptional memory during passage through the germ line. Here we show that mutants in the H3K9me2 methyltransferase, met-2, result in transgenerational epigenetic effects that parallel spr-5 mutants. In addition, we find that spr-5;met-2 double mutants have a synergistic effect on sterility, H3K4me2, and spermatogenesis expression. These results implicate MET-2 as a second histone-modifying enzyme in germ-line reprogramming and suggest a model in which SPR-5 and MET-2 function cooperatively to reestablish an epigenetic ground state required for the continued immortality of the C. elegans germ line. Without SPR-5 and MET-2, we find that the ability to express spermatogenesis genes is transgenerationally passed on to the somatic cells of the subsequent generation. This indicates that H3K4me2 may act in the maintenance of cell fate. Finally, we demonstrate that reducing H3K4me2 causes a large increase in H3K9me2 added by the SPR-5;MET-2 reprogramming mechanism. This finding suggests a novel histone code interaction in which the input chromatin environment dictates the output chromatin state. Taken together, our results provide evidence for a broader reprogramming mechanism in which multiple enzymes coordinately regulate histone information during passage through the germ line.
Collapse
|
20
|
Distinct roles for Sir2 and RNAi in centromeric heterochromatin nucleation, spreading and maintenance. EMBO J 2013; 32:1250-64. [PMID: 23572080 PMCID: PMC3642681 DOI: 10.1038/emboj.2013.72] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 03/08/2013] [Indexed: 11/08/2022] Open
Abstract
Epigenetically regulated heterochromatin domains govern essential cellular activities. A key feature of heterochromatin domains is the presence of hypoacetylated nucleosomes, which are methylated on lysine 9 of histone H3 (H3K9me). Here, we investigate the requirements for establishment, spreading and maintenance of heterochromatin using fission yeast centromeres as a paradigm. We show that establishment of heterochromatin on centromeric repeats is initiated at modular 'nucleation sites' by RNA interference (RNAi), ensuring the mitotic stability of centromere-bearing minichromosomes. We demonstrate that the histone deacetylases Sir2 and Clr3 and the chromodomain protein Swi6(HP1) are required for H3K9me spreading from nucleation sites, thus allowing formation of extended heterochromatin domains. We discovered that RNAi and Sir2 along with Swi6(HP1) operate in two independent pathways to maintain heterochromatin. Finally, we demonstrate that tethering of Sir2 is pivotal to the maintenance of heterochromatin at an ectopic locus in the absence of RNAi. These analyses reveal that Sir2, together with RNAi, are sufficient to ensure heterochromatin integrity and provide evidence for sequential establishment, spreading and maintenance steps in the assembly of centromeric heterochromatin.
Collapse
|
21
|
Zografou T, Turck F. Epigenetic Control of Flowering Time. EPIGENETIC MEMORY AND CONTROL IN PLANTS 2013. [DOI: 10.1007/978-3-642-35227-0_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
22
|
Zabka A, Polit JT, Maszewski J. DNA replication stress induces deregulation of the cell cycle events in root meristems of Allium cepa. ANNALS OF BOTANY 2012; 110:1581-91. [PMID: 23087128 PMCID: PMC3503497 DOI: 10.1093/aob/mcs215] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
BACKGROUND AND AIMS Prolonged treatment of Allium cepa root meristems with changing concentrations of hydroxyurea (HU) results in either premature chromosome condensation or cell nuclei with an uncommon form of biphasic chromatin organization. The aim of the current study was to assess conditions that compromise cell cycle checkpoints and convert DNA replication stress into an abnormal course of mitosis. METHODS Interphase-mitotic (IM) cells showing gradual changes of chromatin condensation were obtained following continuous 72 h treatment of seedlings with 0·75 mm HU (without renewal of the medium). HU-treated root meristems were analysed using histochemical stainings (DNA-DAPI/Feulgen; starch-iodide and DAB staining for H(2)O(2) production), Western blotting [cyclin B-like (CBL) proteins] and immunochemistry (BrdU incorporation, detection of γ-H2AX and H3S10 phosphorylation). KEY RESULTS Continuous treatment of onion seedlings with a low concentration of HU results in shorter root meristems, enhanced production of H(2)O(2), γ-phosphorylation of H2AX histones and accumulation of CBL proteins. HU-induced replication stress gives rise to axially elongated cells with half interphase/half mitotic structures (IM-cells) having both decondensed and condensed domains of chromatin. Long-term HU treatment results in cell nuclei resuming S phase with gradients of BrdU labelling. This suggests a polarized distribution of factors needed to re-initiate stalled replication forks. Furthermore, prolonged HU treatment extends both the relative time span and the spatial scale of H3S10 phosphorylation known in plants. CONCLUSIONS The minimum cell length and a threshold level of accumulated CBL proteins are both determining factors by which the nucleus attains commitment to induce an asynchronous course of chromosome condensation. Replication stress-induced alterations in an orderly route of the cell cycle events probably reflect a considerable reprogramming of metabolic functions of chromatin combined with gradients of morphological changes spread along the nucleus.
Collapse
Affiliation(s)
- Aneta Zabka
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Poland.
| | | | | |
Collapse
|
23
|
Abstract
Cellular memory of past experiences has been observed in several organisms and across a variety of experiences, including bacteria "remembering" prior nutritional status and amoeba "learning" to anticipate future environmental conditions. Here, we show that Saccharomyces cerevisiae maintains a multifaceted memory of prior stress exposure. We previously demonstrated that yeast cells exposed to a mild dose of salt acquire subsequent tolerance to severe doses of H(2)O(2). We set out to characterize the retention of acquired tolerance and in the process uncovered two distinct aspects of cellular memory. First, we found that H(2)O(2) resistance persisted for four to five generations after cells were removed from the prior salt treatment and was transmitted to daughter cells that never directly experienced the pretreatment. Maintenance of this memory did not require nascent protein synthesis after the initial salt pretreatment, but rather required long-lived cytosolic catalase Ctt1p that was synthesized during salt exposure and then distributed to daughter cells during subsequent cell divisions. In addition to and separable from the memory of H(2)O(2) resistance, these cells also displayed a faster gene-expression response to subsequent stress at >1000 genes, representing transcriptional memory. The faster gene-expression response requires the nuclear pore component Nup42p and serves an important function by facilitating faster reacquisition of H(2)O(2) tolerance after a second cycle of salt exposure. Memory of prior stress exposure likely provides a significant advantage to microbial populations living in ever-changing environments.
Collapse
|
24
|
Nicol-Benoît F, Le-Goff P, Le-Dréan Y, Demay F, Pakdel F, Flouriot G, Michel D. Epigenetic memories: structural marks or active circuits? Cell Mol Life Sci 2012; 69:2189-203. [PMID: 22331281 PMCID: PMC11114908 DOI: 10.1007/s00018-012-0923-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/06/2011] [Accepted: 01/10/2012] [Indexed: 12/22/2022]
Abstract
A hallmark of living systems is the management and the storage of information through genetic and epigenetic mechanisms. Although the notion of epigenetics was originally given to any regulation beyond DNA sequence, it has often been restricted to chromatin modifications, supposed to behave as cis-markers, specifying the sets of genes to be expressed or repressed. This definition does not take into account the initial view of epigenetics, based on nonlinear interaction networks whose "attractors" can remain stable without need for any chromatin mark. In addition, most chromatin modifications are the steady state resultants of highly dynamic modification and de-modification activities and, as such, seem poorly appropriate to work as long-term memory keepers. Instead, the basic support of epigenetic memory could remain the attractors, to which chromatin modifications belong as do many other components. The influence of chromatin modifications in memory is highly questionable when envisioned as static structural marks, but can be recovered under the dynamic circuitry perspective, thanks to their self-templating properties. Beside their standard repressive or permissive functions, chromatin modifications can also influence transcription in multiple ways such as: (1) by randomizing or inversely stabilizing gene expression, (2) by mediating cooperativity between pioneer and secondary transcription factors, and (3) in the hysteresis and the ultrasensitivity of gene expression switches, allowing the cells to take unambiguous transcriptional decisions.
Collapse
Affiliation(s)
- Floriane Nicol-Benoît
- Université de Rennes1, Irset. IFR-GFAS Campus de Beaulieu. Bat.13, 35042 Rennes cedex, France
| | - Pascale Le-Goff
- Université de Rennes1, Irset. IFR-GFAS Campus de Beaulieu. Bat.13, 35042 Rennes cedex, France
| | - Yves Le-Dréan
- Université de Rennes1, Irset. IFR-GFAS Campus de Beaulieu. Bat.13, 35042 Rennes cedex, France
| | - Florence Demay
- Université de Rennes1, Irset. IFR-GFAS Campus de Beaulieu. Bat.13, 35042 Rennes cedex, France
| | - Farzad Pakdel
- Université de Rennes1, Irset. IFR-GFAS Campus de Beaulieu. Bat.13, 35042 Rennes cedex, France
| | - Gilles Flouriot
- Université de Rennes1, Irset. IFR-GFAS Campus de Beaulieu. Bat.13, 35042 Rennes cedex, France
| | - Denis Michel
- Université de Rennes1, Irset. IFR-GFAS Campus de Beaulieu. Bat.13, 35042 Rennes cedex, France
| |
Collapse
|
25
|
Miller-Jensen K, Dey SS, Pham N, Foley JE, Arkin AP, Schaffer DV. Chromatin accessibility at the HIV LTR promoter sets a threshold for NF-κB mediated viral gene expression. Integr Biol (Camb) 2012; 4:661-71. [PMID: 22555315 DOI: 10.1039/c2ib20009k] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Higher order chromatin structure in eukaryotes can lead to differential gene expression in response to the same transcription factor; however, how transcription factor inputs integrate with quantitative features of the chromatin environment to regulate gene expression is not clear. In vitro models of HIV gene regulation, in which repressive mechanisms acting locally at an integration site keep proviruses transcriptionally silent until appropriately stimulated, provide a powerful system to study gene expression regulation in different chromatin environments. Here we quantified HIV expression as a function of activating transcription factor nuclear factor-κB RelA/p65 (RelA) levels and chromatin features at a panel of viral integration sites. Variable RelA overexpression demonstrated that the viral genomic location sets a threshold RelA level necessary to induce gene expression. However, once the induction threshold is reached, gene expression increases similarly for all integration sites. Furthermore, we found that higher induction thresholds are associated with repressive histone marks and a decreased sensitivity to nuclease digestion at the LTR promoter. Increasing chromatin accessibility via inhibition of histone deacetylation or DNA methylation lowered the induction threshold, demonstrating that chromatin accessibility sets the level of RelA required to activate gene expression. Finally, a functional relationship between gene expression, RelA level, and chromatin accessibility accurately predicted synergistic HIV activation in response to combinatorial pharmacological perturbations. Different genomic environments thus set a threshold for transcription factor activation of a key viral promoter, which may point toward biological principles that underlie selective gene expression and inform strategies for combinatorial therapies to combat latent HIV.
Collapse
Affiliation(s)
- Kathryn Miller-Jensen
- Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | |
Collapse
|
26
|
Castonguay E, Angers B. The key role of epigenetics in the persistence of asexual lineages. GENETICS RESEARCH INTERNATIONAL 2012; 2012:534289. [PMID: 22567390 PMCID: PMC3335536 DOI: 10.1155/2012/534289] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 10/14/2011] [Accepted: 10/24/2011] [Indexed: 11/24/2022]
Abstract
Asexual organisms, often perceived as evolutionary dead ends, can be long-lived and geographically widespread. We propose that epigenetic mechanisms could play a crucial role in the evolutionary persistence of these lineages. Genetically identical organisms could rely on phenotypic plasticity to face environmental variation. Epigenetic modifications could be the molecular mechanism enabling such phenotypic plasticity; they can be influenced by the environment and act at shorter timescales than mutation. Recent work on the asexual vertebrate Chrosomus eos-neogaeus (Pisces: Cyprinidae) provides broad insights into the contribution of epigenetics in genetically identical individuals. We discuss the extension of these results to other asexual organisms, in particular those resulting from interspecific hybridizations. We finally develop on the evolutionary relevance of epigenetic variation in the context of heritability.
Collapse
Affiliation(s)
- Emilie Castonguay
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Bernard Angers
- Département de Sciences Biologiques, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, QC, Canada H3C 3J7
| |
Collapse
|
27
|
Crider KS, Yang TP, Berry RJ, Bailey LB. Folate and DNA methylation: a review of molecular mechanisms and the evidence for folate's role. Adv Nutr 2012; 3:21-38. [PMID: 22332098 PMCID: PMC3262611 DOI: 10.3945/an.111.000992] [Citation(s) in RCA: 615] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
DNA methylation is an epigenetic modification critical to normal genome regulation and development. The vitamin folate is a key source of the one carbon group used to methylate DNA. Because normal mammalian development is dependent on DNA methylation, there is enormous interest in assessing the potential for changes in folate intake to modulate DNA methylation both as a biomarker for folate status and as a mechanistic link to developmental disorders and chronic diseases including cancer. This review highlights the role of DNA methylation in normal genome function, how it can be altered, and the evidence of the role of folate/folic acid in these processes.
Collapse
Affiliation(s)
- Krista S Crider
- Division of Birth Defects and Developmental Disabilities, National Center on Birth Defects and Developmental Disabilities, Atlanta, GA, USA.
| | | | | | | |
Collapse
|
28
|
Miller-Jensen K, Dey SS, Schaffer DV, Arkin AP. Varying virulence: epigenetic control of expression noise and disease processes. Trends Biotechnol 2011; 29:517-25. [PMID: 21700350 DOI: 10.1016/j.tibtech.2011.05.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/14/2011] [Accepted: 05/17/2011] [Indexed: 12/11/2022]
Abstract
Gene expression noise is a significant source of phenotypic heterogeneity in otherwise identical populations of cells. Phenotypic heterogeneity can cause reversible drug resistance in diseased cells, and thus a better understanding of its origins might improve treatment strategies. In eukaryotes, data strongly suggest that intrinsic noise arises from transcriptional bursts caused by slow, random transitions between inactive and active gene states that are mediated by chromatin remodeling. In this review, we consider how chromatin modifications might modulate gene expression noise and lead to phenotypic diversity in diseases as varied as viral infection and cancer. Additionally, we argue that this fundamental information can be applied to develop innovative therapies that counteract 'pathogenic noise' and sensitize all diseased cells to therapeutic intervention.
Collapse
|
29
|
Shigetomi H, Oonogi A, Tsunemi T, Tanase Y, Yamada Y, Kajihara H, Yoshizawa Y, Furukawa N, Haruta S, Yoshida S, Sado T, Oi H, Kobayashi H. The role of components of the chromatin modification machinery in carcinogenesis of clear cell carcinoma of the ovary (Review). Oncol Lett 2011; 2:591-597. [PMID: 22848233 DOI: 10.3892/ol.2011.316] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 04/27/2011] [Indexed: 12/19/2022] Open
Abstract
Recent data have provided information regarding the profiles of clear cell carcinoma of the ovary (CCC) with adenine-thymine rich interactive domain 1A (ARID1A) mutations. The purpose of this review was to summarize current knowledge regarding the molecular mechanisms involved in CCC tumorigenesis and to describe the central role played by the aberrant chromatin remodeling. The present article reviews the English-language literature for biochemical studies on the ARID1A mutation and chromatin remodeling in CCC. ARID1A is responsible for directing the SWI/SNF complex to target promoters and regulates the transcription of certain genes by altering the chromatin structure around those genes. The mutation spectrum of ARID1A was enriched for C to T transitions. CCC and clear cell renal cell carcinoma (ccRCC) resemble each other pathogenetically. Dysfunction of the ARID1A protein, which occurs with VHL mutations in ccRCC, is responsible for loss of the assembly of the ARID1A-mediated histone H2B complex. Therefore, ARID1A acts as a chromatin remodeling modifier, which stimulates cell signaling that can lead to cell cycle arrest and cell death in the event of DNA damage. The dysfunction of ARID1A may result in susceptibility to CCC carcinogenesis through a defect in the repair or replication of damaged DNA.
Collapse
Affiliation(s)
- Hiroshi Shigetomi
- Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Double-strand breaks and the concept of short- and long-term epigenetic memory. Chromosoma 2010; 120:129-49. [PMID: 21174214 DOI: 10.1007/s00412-010-0305-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 12/06/2010] [Indexed: 12/17/2022]
Abstract
Double-strand breaks represent an extremely cytolethal form of DNA damage and thus pose a serious threat to the preservation of genetic and epigenetic information. Though it is well-known that double-strand breaks such as those generated by ionising radiation are among the principal causative factors behind mutations, chromosomal aberrations, genetic instability and carcinogenesis, significantly less is known about the epigenetic consequences of double-strand break formation and repair for carcinogenesis. Double-strand break repair is a highly coordinated process that requires the unravelling of the compacted chromatin structure to facilitate repair machinery access and then restoration of the original undamaged chromatin state. Recent experimental findings have pointed to a potential mechanism for double-strand break-induced epigenetic silencing. This review will discuss some of the key epigenetic regulatory processes involved in double-strand break (DSB) repair and how incomplete or incorrect restoration of chromatin structure can leave a DSB-induced epigenetic memory of damage with potentially pathological repercussions.
Collapse
|
31
|
Gilbert DM. Cell fate transitions and the replication timing decision point. J Cell Biol 2010; 191:899-903. [PMID: 21115801 PMCID: PMC2995162 DOI: 10.1083/jcb.201007125] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 11/03/2010] [Indexed: 12/11/2022] Open
Abstract
Recent findings suggest that large-scale remodeling of three dimensional (3D) chromatin architecture occurs during a brief period in early G1 phase termed the replication timing decision point (TDP). In this speculative article, I suggest that the TDP may represent an as yet unappreciated window of opportunity for extracellular cues to influence 3D architecture during stem cell fate decisions. I also describe several testable predictions of this hypothesis.
Collapse
Affiliation(s)
- David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
32
|
Small molecule modulators of histone acetylation and methylation: a disease perspective. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:810-28. [PMID: 20888936 DOI: 10.1016/j.bbagrm.2010.09.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 09/18/2010] [Accepted: 09/24/2010] [Indexed: 11/22/2022]
Abstract
Chromatin modifications have gained immense significance in the past few decades as key regulators of gene expression. The enzymes responsible for these modifications along with the other non-histone proteins, remodeling factors and small RNAs modulate the chromatin dynamicity, which in turn directs the chromatin function. A concerted action of different modifying enzymes catalyzes these modifications, which are read by effector modules and converted to functional outcomes by various protein complexes. Several small molecules in the physiological system such as acetyl CoA, NAD(+), and ATP are actively involved in regulating these functional outcomes. Recent understanding in the field of epigenetics indicate the possibility of the existence of a network, 'the epigenetic language' involving cross talk among different modifications that could regulate cellular processes like transcription, replication and repair. Hence, these modifications are essential for the cellular homeostasis, and any alteration in this balance leads to a pathophysiological condition or disease manifestation. Therefore, it is becoming more evident that modulators of these modifying enzymes could be an attractive therapeutic strategy, popularly referred to as 'Epigenetic therapy.' Although this field is currently monopolized by DNA methylation and histone deacetylase inhibitors, this review highlights the modulators of the other modifications namely histone acetylation, lysine methylation and arginine methylation and argues in favor of their therapeutic potential.
Collapse
|
33
|
Andreu-Vieyra CV, Chen R, Agno JE, Glaser S, Anastassiadis K, Stewart AF, Matzuk MM. MLL2 is required in oocytes for bulk histone 3 lysine 4 trimethylation and transcriptional silencing. PLoS Biol 2010; 8. [PMID: 20808952 PMCID: PMC2923083 DOI: 10.1371/journal.pbio.1000453] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 07/02/2010] [Indexed: 11/19/2022] Open
Abstract
Conditional knockout mouse strategies identify the histone methyltranferase MLL2 as a key player in epigenetic reprogramming of female gametes. During gametogenesis and pre-implantation development, the mammalian epigenome is reprogrammed to establish pluripotency in the epiblast. Here we show that the histone 3 lysine 4 (H3K4) methyltransferase, MLL2, controls most of the promoter-specific chromatin modification, H3K4me3, during oogenesis and early development. Using conditional knockout mutagenesis and a hypomorph model, we show that Mll2 deficiency in oocytes results in anovulation and oocyte death, with increased transcription of p53, apoptotic factors, and Iap elements. MLL2 is required for (1) bulk H3K4me3 but not H3K4me1, indicating that MLL2 controls most promoters but monomethylation is regulated by a different H3K4 methyltransferase; (2) the global transcriptional silencing that preceeds resumption of meiosis but not for the concomitant nuclear reorganization into the surrounded nucleolus (SN) chromatin configuration; (3) oocyte survival; and (4) normal zygotic genome activation. These results reveal that MLL2 is autonomously required in oocytes for fertility and imply that MLL2 contributes to the epigenetic reprogramming that takes place before fertilization. We propose that once this task has been accomplished, MLL2 is not required until gastrulation and that other methyltransferases are responsible for bulk H3K4me3, thereby revealing an unexpected epigenetic control switch amongst the H3K4 methyltransferases during development. It is well established that gametes and early mammalian embryos undergo extensive epigenetic changes, which are changes in phenotype or gene expression that do not entail changes in DNA sequence. However, the machinery responsible for epigenetic modification in these situations is poorly understood. In mice, we conditionally deleted the histone 3 lysine 4 (H3K4) methyltransferase Mll2, an enzyme that alters DNA structure and packaging, either in gametes or in somatic cells of the ovary and also produced a mouse hypomorph expressing low levels of MLL2. We show that MLL2 is required in oocytes during gametogenesis and is also needed as a maternally derived factor during early development. Oocytes deficient in Mll2 display decreased methylation of H3K4 (H3K4me3) and show abnormal maturation and gene expression, in particular of pro-apoptotic factors. In addition, we demonstrate that embryonic genome activation is compromised in the absence of Mll2. Together our results identify MLL2 as one of the key players in the epigenetic reprogramming required for female fertility in the mouse.
Collapse
Affiliation(s)
- Claudia V. Andreu-Vieyra
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ruihong Chen
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Julio E. Agno
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Stefan Glaser
- Genomics, BioInnovationsZentrum, Technische Universitaet Dresden, Dresden, Germany
- Walter and Eliza Hall Institute, Melbourne, Australia
| | | | - A. Francis Stewart
- Genomics, BioInnovationsZentrum, Technische Universitaet Dresden, Dresden, Germany
- * E-mail: (MMM); (AFS)
| | - Martin M. Matzuk
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail: (MMM); (AFS)
| |
Collapse
|
34
|
Abstract
Actively transcribed genes are organized into loops in which the 5' and 3' ends of the gene physically associate. Two new papers show that gene looping can persist after genes are repressed, promoting rapid reactivation of transcription, a phenomenon known as transcriptional memory.
Collapse
|
35
|
Methylation of H3K4 Is required for inheritance of active transcriptional states. Curr Biol 2010; 20:397-406. [PMID: 20188556 DOI: 10.1016/j.cub.2010.01.017] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 12/12/2009] [Accepted: 01/05/2010] [Indexed: 01/01/2023]
Abstract
BACKGROUND Maintenance of differentiation programs requires stability, when appropriate, of transcriptional states. However, the extent to which inheritance of active transcriptional states occurs from mother to daughter cells has not been directly addressed in unperturbed cell populations. RESULTS By live imaging of single-gene transcriptional events in individual cells, we have directly recorded the potential for mitotic inheritance of transcriptional states down cell lineages. Our data showed strong similarity in frequency of transcriptional firing between mother and daughter cells. This memory persisted for complete cell cycles. Both transcriptional pulse length and pulsing rate contributed to overall inheritance, and memory was determined by lineage, not cell environment. Analysis of transcription in chromatin mutants demonstrated that the histone H3K4 methylase Set1 and Ash2, a component of the methylase complex, are required for memory. The effects of Set1 methylation may be mediated directly by chromatin, because loss of memory also occurred when endogenous H3K4 was replaced by alanine. Although methylated H3K4 is usually associated with active transcriptional units, the modification was not required for gene activity but stabilized transcriptional frequency between generations. CONCLUSIONS Our data indicate that methylated H3K4 can act as a chromatin mark reflecting the original meaning of "epigenetic."
Collapse
|
36
|
Buchanan L, Durand-Dubief M, Roguev A, Sakalar C, Wilhelm B, Strålfors A, Shevchenko A, Aasland R, Shevchenko A, Ekwall K, Francis Stewart A. The Schizosaccharomyces pombe JmjC-protein, Msc1, prevents H2A.Z localization in centromeric and subtelomeric chromatin domains. PLoS Genet 2009; 5:e1000726. [PMID: 19911051 PMCID: PMC2770259 DOI: 10.1371/journal.pgen.1000726] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 10/15/2009] [Indexed: 12/22/2022] Open
Abstract
Eukaryotic genomes are repetitively packaged into chromatin by nucleosomes, however they are regulated by the differences between nucleosomes, which establish various chromatin states. Local chromatin cues direct the inheritance and propagation of chromatin status via self-reinforcing epigenetic mechanisms. Replication-independent histone exchange could potentially perturb chromatin status if histone exchange chaperones, such as Swr1C, loaded histone variants into wrong sites. Here we show that in Schizosaccharomyces pombe, like Saccharomyces cerevisiae, Swr1C is required for loading H2A.Z into specific sites, including the promoters of lowly expressed genes. However S. pombe Swr1C has an extra subunit, Msc1, which is a JumonjiC-domain protein of the Lid/Jarid1 family. Deletion of Msc1 did not disrupt the S. pombe Swr1C or its ability to bind and load H2A.Z into euchromatin, however H2A.Z was ectopically found in the inner centromere and in subtelomeric chromatin. Normally this subtelomeric region not only lacks H2A.Z but also shows uniformly lower levels of H3K4me2, H4K5, and K12 acetylation than euchromatin and disproportionately contains the most lowly expressed genes during vegetative growth, including many meiotic-specific genes. Genes within and adjacent to subtelomeric chromatin become overexpressed in the absence of either Msc1, Swr1, or paradoxically H2A.Z itself. We also show that H2A.Z is N-terminally acetylated before, and lysine acetylated after, loading into chromatin and that it physically associates with the Nap1 histone chaperone. However, we find a negative correlation between the genomic distributions of H2A.Z and Nap1/Hrp1/Hrp3, suggesting that the Nap1 chaperones remove H2A.Z from chromatin. These data describe H2A.Z action in S. pombe and identify a new mode of chromatin surveillance and maintenance based on negative regulation of histone variant misincorporation. Chromatin is based on a repetitive structural unit called the nucleosome. However, the regulatory properties of chromatin are mediated by the differences between nucleosomes, due to post-translational modifications or the inclusion of histone variants. These differences are maintained by inheritance through cis-acting epigenetic mechanisms. Here we describe a case where the local character of chromatin is not only determined by cis-acting mechanisms but also negatively regulated in trans. The case involves loading of the histone H2A variant, H2A.Z, into chromatin. We show that H2A.Z in the yeast Schizosaccharomyces pombe is mainly found in genes at the first transcribed nucleosome and is inserted into this nucleosome by the Swr1C remodeling machine. However, Swr1C has a regulatory subunit, Msc1, which is not required for H2A.Z promoter loading but prevents H2A.Z occupancy in the inner centromere and subtelomeric regions. These two specialized regions are neither eu- nor heterochromatin and share certain characteristics, which may predispose them to the aberrant inclusion of H2A.Z and the requirement for trans regulation by Msc1.
Collapse
Affiliation(s)
- Luke Buchanan
- Genomics, BioInnovationsZentrum, Technische Universität Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Mickaël Durand-Dubief
- Karolinska Institute, Department of Biosciences and Medical Nutrition, NOVUM, Huddinge, Sweden
| | - Assen Roguev
- Genomics, BioInnovationsZentrum, Technische Universität Dresden, Dresden, Germany
| | - Cagri Sakalar
- Genomics, BioInnovationsZentrum, Technische Universität Dresden, Dresden, Germany
| | - Brian Wilhelm
- Research Institute for Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada
| | - Annelie Strålfors
- Karolinska Institute, Department of Biosciences and Medical Nutrition, NOVUM, Huddinge, Sweden
| | - Anna Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Rein Aasland
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Karl Ekwall
- Karolinska Institute, Department of Biosciences and Medical Nutrition, NOVUM, Huddinge, Sweden
| | - A. Francis Stewart
- Genomics, BioInnovationsZentrum, Technische Universität Dresden, Dresden, Germany
- * E-mail:
| |
Collapse
|