1
|
Xu L, Wang X, Wu J, Wang H, Zhou W, Liu J, Ni M, Zhang K, Yu B, Lin R. Genetic variation analysis of Guanling cattle based on whole-genome resequencing. Anim Biosci 2024; 37:2044-2053. [PMID: 38938024 PMCID: PMC11541021 DOI: 10.5713/ab.24.0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/12/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024] Open
Abstract
OBJECTIVE The objective of this study was to unravel the genetic traits of Guanling cattle, pinpoint genes advantageous for muscle growth, and lay a foundation for the preservation of genetic diversity and further analysis of regulation mechanism of important economic traits in local cattle breed. METHODS In this study, we sequenced the whole genome of 3 Guanling cattle in Guizhou province using the Illumina HiSeq cBo sequencing platform. And, high- multiplex polymerase chain reaction technology was employed to detect high-quality single nucleotide polymorphism (SNP) sites of other 55 Guanling cattle. RESULTS Our study identified 166,411 non-synonymous SNPs (nsSNPs) and 42,423 insertions and deletions (indels). Through SNP annotation, gene function enrichment analysis, and comparing with Simmental, Angus, and Limousin cattle, we identified six genes (LEPR, AKAP9, SIX4, SPIDR, PRG4, FASN) which are potentially influential on meat quality traits, playing crucial roles in muscle growth, fat metabolism, and bodily support. We also examined polymorphisms at seven SNP sites in Guanling cattle and found that all seven were in Hardy-Weinberg equilibrium. CONCLUSION These findings suggested that these gene sites are stable and widespread in the Guanling cattle population. Our research lays the groundwork for future genetic enhancement and variety identification of Guanling cattle.
Collapse
Affiliation(s)
- Longxin Xu
- Institute of Animal Husbandry and Veterinary Science, Guizhou Academy of Agricultural Sciences, Guiyang 550005,
China
| | - Xin Wang
- Institute of Animal Husbandry and Veterinary Science, Guizhou Academy of Agricultural Sciences, Guiyang 550005,
China
| | - Junda Wu
- Institute of Animal Husbandry and Veterinary Science, Guizhou Academy of Agricultural Sciences, Guiyang 550005,
China
| | - Hua Wang
- Institute of Animal Husbandry and Veterinary Science, Guizhou Academy of Agricultural Sciences, Guiyang 550005,
China
| | - Wenzhang Zhou
- Institute of Animal Husbandry and Veterinary Science, Guizhou Academy of Agricultural Sciences, Guiyang 550005,
China
| | - Jing Liu
- Institute of Animal Husbandry and Veterinary Science, Guizhou Academy of Agricultural Sciences, Guiyang 550005,
China
| | - Mengmeng Ni
- College of Animal Sciences, Guizhou University, Guiyang 550000,
China
- Guizhou Yellow Cattle Industry Group Co., Ltd, Guiyang 550001,
China
| | - Kaikai Zhang
- Institute of Animal Husbandry and Veterinary Science, Guizhou Academy of Agricultural Sciences, Guiyang 550005,
China
| | - Bo Yu
- Institute of Animal Husbandry and Veterinary Science, Guizhou Academy of Agricultural Sciences, Guiyang 550005,
China
| | - Ruiyi Lin
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002,
China
| |
Collapse
|
2
|
Ghelich P, Samandari M, Hassani Najafabadi A, Tanguay A, Quint J, Menon N, Ghanbariamin D, Saeedinejad F, Alipanah F, Chidambaram R, Krawetz R, Nuutila K, Toro S, Barnum L, Jay GD, Schmidt TA, Tamayol A. Dissolvable Immunomodulatory Microneedles for Treatment of Skin Wounds. Adv Healthc Mater 2024; 13:e2302836. [PMID: 38299437 DOI: 10.1002/adhm.202302836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/21/2023] [Indexed: 02/02/2024]
Abstract
Sustained inflammation can halt or delay wound healing, and macrophages play a central role in wound healing. Inflammatory macrophages are responsible for the removal of pathogens, debris, and neutrophils, while anti-inflammatory macrophages stimulate various regenerative processes. Recombinant human Proteoglycan 4 (rhPRG4) is shown to modulate macrophage polarization and to prevent fibrosis and scarring in ear wound healing. Here, dissolvable microneedle arrays (MNAs) carrying rhPRG4 are engineered for the treatment of skin wounds. The in vitro experiments suggest that rhPRG4 modulates the inflammatory function of bone marrow-derived macrophages. Degradable and detachable microneedles are developed from gelatin methacryloyl (GelMA) attach to a dissolvable gelatin backing. The developed MNAs are able to deliver a high dose of rhPRG4 through the dissolution of the gelatin backing post-injury, while the GelMA microneedles sustain rhPRG4 bioavailability over the course of treatment. In vivo results in a murine model of full-thickness wounds with impaired healing confirm a decrease in inflammatory biomarkers such as TNF-α and IL-6, and an increase in angiogenesis and collagen deposition. Collectively, these results demonstrate rhPRG4-incorporating MNA is a promising platform in skin wound healing applications.
Collapse
Affiliation(s)
- Pejman Ghelich
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Mohamadmahdi Samandari
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Alireza Hassani Najafabadi
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Adam Tanguay
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Jacob Quint
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Nikhil Menon
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Delaram Ghanbariamin
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Farnoosh Saeedinejad
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Fatemeh Alipanah
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Ramaswamy Chidambaram
- Center for Comparative Medicine, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Roman Krawetz
- McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Department of Surgery, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Kristo Nuutila
- US Army Institute of Surgical Research, Fort Sam Houston, Texas, 78234, USA
| | - Steven Toro
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Lindsay Barnum
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Gregory D Jay
- Emergency Medicine, Brown University, Providence, RI, 02908, USA
| | - Tannin A Schmidt
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| |
Collapse
|
3
|
Colville MJ, Huang LT, Schmidt S, Chen K, Vishwanath K, Su J, Williams RM, Bonassar LJ, Reesink HL, Paszek MJ. Recombinant manufacturing of multispecies biolubricants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.05.592580. [PMID: 38746339 PMCID: PMC11092771 DOI: 10.1101/2024.05.05.592580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Lubricin, a lubricating glycoprotein abundant in synovial fluid, forms a low-friction brush polymer interface in tissues exposed to sliding motion including joints, tendon sheaths, and the surface of the eye. Despite its therapeutic potential in diseases such as osteoarthritis and dry eye disease, there are few sources available. Through rational design, we developed a series of recombinant lubricin analogs that utilize the species-specific tissue-binding domains at the N- and C-termini to increase biocompatibility while replacing the central mucin domain with an engineered variant that retains the lubricating properties of native lubricin. In this study, we demonstrate the tissue binding capacity of our engineered lubricin product and its retention in the joint space of rats. Next, we present a new bioprocess chain that utilizes a human-derived cell line to produce O-glycosylation consistent with that of native lubricin and a purification strategy that capitalizes on the positively charged, hydrophobic N- and C-terminal domains. The bioprocess chain is demonstrated at 10 L scale in industry-standard equipment utilizing commonly available ion exchange, hydrophobic interaction and size exclusion chromatography resins. Finally, we confirmed the purity and lubricating properties of the recombinant biolubricant. The biomolecular engineering and bioprocessing strategies presented here are an effective means of lubricin production and could have broad applications to the study of mucins in general.
Collapse
Affiliation(s)
- Marshall J. Colville
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Ling-Ting Huang
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Samuel Schmidt
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Kevin Chen
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Karan Vishwanath
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY USA
| | - Jin Su
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | | | - Lawrence J. Bonassar
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Heidi L. Reesink
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Matthew J. Paszek
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
4
|
Martin-Alarcon L, Govedarica A, Ewoldt RH, Bryant SL, Jay GD, Schmidt TA, Trifkovic M. Scale-Dependent Rheology of Synovial Fluid Lubricating Macromolecules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306207. [PMID: 38161247 DOI: 10.1002/smll.202306207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/20/2023] [Indexed: 01/03/2024]
Abstract
Synovial fluid (SF) is the complex biofluid that facilitates the exceptional lubrication of articular cartilage in joints. Its primary lubricating macromolecules, the linear polysaccharide hyaluronic acid (HA) and the mucin-like glycoprotein proteoglycan 4 (PRG4 or lubricin), interact synergistically to reduce boundary friction. However, the precise manner in which these molecules influence the rheological properties of SF remains unclear. This study aimed to elucidate this by employing confocal microscopy and multiscale rheometry to examine the microstructure and rheology of solutions containing recombinant human PRG4 (rhPRG4) and HA. Contrary to previous assumptions of an extensive HA-rhPRG4 network, it is discovered that rhPRG4 primarily forms stiff, gel-like aggregates. The properties of these aggregates, including their size and stiffness, are found to be influenced by the viscoelastic characteristics of the surrounding HA matrix. Consequently, the rheology of this system is not governed by a single length scale, but instead responds as a disordered, hierarchical network with solid-like rhPRG4 aggregates distributed throughout the continuous HA phase. These findings provide new insights into the biomechanical function of PRG4 in cartilage lubrication and may have implications in the development of HA-based therapies for joint diseases like osteoarthritis.
Collapse
Affiliation(s)
- Leonardo Martin-Alarcon
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Aleksandra Govedarica
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Randy H Ewoldt
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Steven L Bryant
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Gregory D Jay
- Department of Emergency Medicine - Warren Alpert Medical School & School of Engineering, Brown University, Providence, RI, 02912, USA
| | - Tannin A Schmidt
- Biomedical Engineering Department, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Milana Trifkovic
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
5
|
Fu C, Wang Z, Zhou X, Hu B, Li C, Yang P. Protein-based bioactive coatings: from nanoarchitectonics to applications. Chem Soc Rev 2024; 53:1514-1551. [PMID: 38167899 DOI: 10.1039/d3cs00786c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Protein-based bioactive coatings have emerged as a versatile and promising strategy for enhancing the performance and biocompatibility of diverse biomedical materials and devices. Through surface modification, these coatings confer novel biofunctional attributes, rendering the material highly bioactive. Their widespread adoption across various domains in recent years underscores their importance. This review systematically elucidates the behavior of protein-based bioactive coatings in organisms and expounds on their underlying mechanisms. Furthermore, it highlights notable advancements in artificial synthesis methodologies and their functional applications in vitro. A focal point is the delineation of assembly strategies employed in crafting protein-based bioactive coatings, which provides a guide for their expansion and sustained implementation. Finally, the current trends, challenges, and future directions of protein-based bioactive coatings are discussed.
Collapse
Affiliation(s)
- Chengyu Fu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Zhengge Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Xingyu Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Bowen Hu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Chen Li
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, Henan 453003, China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
6
|
Matheson A, Regmi SC, Jay GD, Schmidt TA, Scott WM. The Effect of Intense Exercise on Equine Serum Proteoglycan-4/Lubricin. Front Vet Sci 2020; 7:599287. [PMID: 33392293 PMCID: PMC7772952 DOI: 10.3389/fvets.2020.599287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/18/2020] [Indexed: 11/20/2022] Open
Abstract
Objective: Local biological and biomechanical-stimuli modulate proteoglycan-4 secretion within synovial joints. For the horse, changes to proteoglycan-4 concentration and function are notable in acute joint injury and osteoarthritis. Proteoglycan-4 (also known as Lubricin) is present in the blood, however the effect of exercise on equine serum levels is unknown. The overall objective of this study was, therefore, to investigate the effect of intense exercise on serum proteoglycan-4 in thoroughbred horses. Methods: Samples of blood were taken from thoroughbreds (n = 12) during a chuckwagon racing event (Alberta, Canada). The chuckwagon race is a sprint racing event where teams of horses pull a combined 1,325 lbs (601 kg) of wagon and driver around a 5/8th mile (1 km) of dirt track, racing at full gallop to the finish. Blood samples were collected 30-min before the race start, and several timepoints post-race: 5-min, 90-min, 3-h, 12-h, and 23-h. Proteoglycan-4 concentrations in serum were quantified by enzyme-linked-immunosorbent-assay using recombinant-human proteoglycan-4 standards and anti-proteoglycan-4 mAb 9G3. The molecular weight of immunoreactive proteoglycan-4 in serum was assessed by western blot. Results: Proteoglyan-4 in serum demonstrated the expected high MW immunoreactivity to mAb 9G3, consistent with that of full length PRG4. Serum proteoglycan-4 decreased five-minutes post-race from baseline concentration (0.815 ± 0.175 to 0.466 ± 0.090 μg/mL, μ ± SEM, p < 0.01). Conclusions: The concentration of serum proteoglycan-4 in horses decreased significantly five min post-exercise. A potential explanation for this finding could be increased proteoglycan-4 clearance from the circulation. Further investigations could extend to complete the detailed characterization of proteoglycan-4 structure and its potential function within the blood as it relates to joint health and exercise.
Collapse
Affiliation(s)
- Austyn Matheson
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| | - Suresh C Regmi
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| | - Gregory D Jay
- Department of Emergency Medicine, Warren Alpert Medical School & School of Engineering, Brown University, Providence, RI, United States
| | - Tannin A Schmidt
- Biomedical Engineering Department, University of Connecticut Health Center, Farmington, CT, United States
| | - W Michael Scott
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada.,Department of Veterinary Clinical and Diagnostic Sciences, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
7
|
Flowers SA, Thomsson KA, Ali L, Huang S, Mthembu Y, Regmi SC, Holgersson J, Schmidt TA, Rolfson O, Björkman LI, Sundqvist M, Karlsson-Bengtsson A, Jay GD, Eisler T, Krawetz R, Karlsson NG. Decrease of core 2 O-glycans on synovial lubricin in osteoarthritis reduces galectin-3 mediated crosslinking. J Biol Chem 2020; 295:16023-16036. [PMID: 32928962 DOI: 10.1074/jbc.ra120.012882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 09/11/2020] [Indexed: 11/06/2022] Open
Abstract
The synovial fluid glycoprotein lubricin (also known as proteoglycan 4) is a mucin-type O-linked glycosylated biological lubricant implicated to be involved in osteoarthritis (OA) development. Lubricin's ability to reduce friction is related to its glycosylation consisting of sialylated and unsialylated Tn-antigens and core 1 and core 2 structures. The glycans on lubricin have also been suggested to be involved in crosslinking and stabilization of the lubricating superficial layer of cartilage by mediating interaction between lubricin and galectin-3. However, with the spectrum of glycans being found on lubricin, the glycan candidates involved in this interaction were unknown. Here, we confirm that the core 2 O-linked glycans mediate this lubricin-galectin-3 interaction, shown by surface plasmon resonance data indicating that recombinant lubricin (rhPRG4) devoid of core 2 structures did not bind to recombinant galectin-3. Conversely, transfection of Chinese hamster ovary cells with the core 2 GlcNAc transferase acting on a mucin-type O-glycoprotein displayed increased galectin-3 binding. Both the level of galectin-3 and the galectin-3 interactions with synovial lubricin were found to be decreased in late-stage OA patients, coinciding with an increase in unsialylated core 1 O-glycans (T-antigens) and Tn-antigens. These data suggest a defect in crosslinking of surface-active molecules in OA and provide novel insights into OA molecular pathology.
Collapse
Affiliation(s)
- Sarah A Flowers
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristina A Thomsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Liaqat Ali
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Shan Huang
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Yolanda Mthembu
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Suresh C Regmi
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Jan Holgersson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tannin A Schmidt
- Biomedical Engineering Department, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Ola Rolfson
- Department of Orthopaedics, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lena I Björkman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Karlsson-Bengtsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Chalmers University of Technology, Gothenburg, Sweden
| | - Gregory D Jay
- Department of Emergency Medicine, Warren Alpert Medical School and Division of Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, USA
| | - Thomas Eisler
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institute, Stockholm, Sweden
| | - Roman Krawetz
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Niclas G Karlsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
8
|
Addition of High Molecular Weight Hyaluronic Acid to Fibroblast-Like Stromal Cells Modulates Endogenous Hyaluronic Acid Metabolism and Enhances Proteolytic Processing and Secretion of Versican. Cells 2020; 9:cells9071681. [PMID: 32668663 PMCID: PMC7407811 DOI: 10.3390/cells9071681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
We have examined the effect of exogenous linear chain high molecular weight hyaluronic acid (HMW HA) on endogenously synthesized hyaluronic acid (HA) and associated binding proteins in primary cultures of fibroblast-like stromal cells that were obtained by collagenase digestion of the murine peripatellar fat pad. The cultures were expanded in DMEM that was supplemented with fetal bovine serum and basic fibroblast growth factor (bFGF) then exposed to macrophage-colony-stimulating factor (MCSF) to induce macrophage properties, before activation of inflammatory pathways using E. coli lipopolysaccharide (LPS). Under all culture conditions, a significant amount of endogenously synthesized HA localized in LAMP1-positive lysosomal vesicles. However, this intracellular pool was depleted after the addition of exogenous HMW HA and was accompanied by enhanced proteolytic processing and secretion of de novo synthesized versican, much of which was associated with endosomal compartments. No changes were detected in synthesis, secretion, or proteolytic processing of aggrecan or lubricin (PRG4). The addition of HMW HA also modulated a range of LPS-affected genes in the TLR signaling and phagocytosis pathways, as well as endogenous HA metabolism genes, such as Has1, Hyal1, Hyal2, and Tmem2. However, there was no evidence for association of endogenous or exogenous HMW HA with cell surface CD44, TLR2 or TLR4 protein, suggesting that its physiochemical effects on pericelluar pH and/or ionic strength might be the primary modulators of signal transduction and vesicular trafficking by this cell type. We discuss the implications of these findings in terms of a potential in vivo effect of therapeutically applied HMW HA on the modification of osteoarthritis-related joint pathologies, such as pro-inflammatory and degradative responses of multipotent mesenchymal cells residing in the synovial membrane, the underlying adipose tissue, and the articular cartilage surface.
Collapse
|
9
|
Abubacker S, Premnath P, Shonak A, Leonard C, Shah S, Zhu Y, Jay GD, Schmidt TA, Boyd S, Krawetz R. Absence of Proteoglycan 4 (Prg4) Leads to Increased Subchondral Bone Porosity Which Can Be Mitigated Through Intra-Articular Injection of PRG4. J Orthop Res 2019; 37:2077-2088. [PMID: 31119776 DOI: 10.1002/jor.24378] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 05/14/2019] [Indexed: 02/04/2023]
Abstract
Proteoglycan 4 (PRG4) is a mucin-like glycoprotein important for joint health. Mice lacking Prg4 demonstrate degeneration of the cartilage and altered skeletal morphology. The purpose of this study was to examine if Prg4 deficiency leads to subchondral bone defects and if these defects could be mitigated through intra-articular injection of recombinant human PRG4 (rhPRG4). Mice deficient in Prg4 expression demonstrated increased cartilage thickness and increased subchondral bone porosity compared with C57BL/6 controls. While the porosity of the subchondral bone of Prg4-/- mice decreased over time with maturation, intra-articular injection of rhPRG4 was able to forestall the increase in porosity. In contrast, neither hyaluronan (HA) nor methylprednisolone injections had beneficial effects on the subchondral bone porosity in the Prg4 knockout mice. Bone marrow progenitor cells from Prg4-/- mice demonstrated reduced osteogenic differentiation capacity at 4 weeks of age, but not at 16 weeks of age. While most studies on PRG4/lubricin focus on the health of the cartilage, this study demonstrates that PRG4 plays a role in the maturation of the subchondral bone. Furthermore, increasing joint lubrication/viscosupplementation through injection of HA or controlling joint inflammation through injection of methylprednisolone may help maintain the cartilage surface, but had no positive effect on the subchondral bone in animals lacking Prg4. Therefore, alterations in the subchondral bone in models with absent or diminished Prg4 expression should not be overlooked when investigating changes within the articular cartilage regarding the pathogenesis of osteoarthritis/arthrosis. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2077-2088, 2019.
Collapse
Affiliation(s)
- Saleem Abubacker
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Priyatha Premnath
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Anchita Shonak
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Catherine Leonard
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Sophia Shah
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Ying Zhu
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Gregory D Jay
- Department of Emergency Medicine, Brown University, Providence, Rhode Island
| | - Tannin A Schmidt
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada.,Graduate Program of Biomedical Engineering, University of Calgary, Calgary, Alberta, Canada.,Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Department of Mechanical Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Steven Boyd
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada.,Graduate Program of Biomedical Engineering, University of Calgary, Calgary, Alberta, Canada.,Department of Mechanical Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Roman Krawetz
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada.,Graduate Program of Biomedical Engineering, University of Calgary, Calgary, Alberta, Canada.,Departments of Surgery, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada.,Departments of Cell Biology & Anatomy, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
10
|
Bloom AK, Samsom ML, Regmi SC, Steele BL, Schmidt TA. Investigating the effect of proteoglycan 4 on hyaluronan solution properties using confocal fluorescence recovery after photobleaching. BMC Musculoskelet Disord 2019; 20:93. [PMID: 30808331 PMCID: PMC6391837 DOI: 10.1186/s12891-019-2469-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/18/2019] [Indexed: 11/17/2022] Open
Abstract
Background The objective of this study was to use confocal fluorescence recovery after photobleaching (FRAP) to examine the specific and dose-dependent effect of proteoglycan 4 (PRG4) on hyaluronan (HA) solutions of different molecular weight; and assess the effect of reduction and alkylation (R/A) of PRG4 on its effects on HA solutions. Methods Confocal FRAP was used to determine the diffusion coefficient of fluorescein isothiocyanate (FITC)-dextran tracer (Dt) through 1500 kDa and 500 kDa HA solutions (0–3.3 mg/ml) ± PRG4 or a control protein, bovine serum albumin (BSA), at physiological (450 μg/ml) or pathophysiological (45 μg/ml) concentrations. The effect of PRG4 or R/A PRG4 on 1500 kDa HA solutions was also investigated. Empirical constants obtained from fitting data to the universal scaling equation were used to calculate the average distribution of apparent mesh sizes. Results PRG4 at both 45 and 450 μg/ml slowed the diffusion of the FITC-dextran tracer for all concentrations of HA and caused a decrease in the apparent mesh size within the HA solution. This effect was specific to PRG4, not observed with BSA, but not dependent on its tertiary/quaternary structure as the effect remained after R/A of PRG4. Conclusions These results demonstrate that PRG4 can significantly alter the solution properties of HA; PRG4 essentially reduced the permeability of the HA network. This effect may be due to PRG4 entangling HA molecules through binding and/or HA crowding PRG4 molecules into a self-assembled network. Collectively these findings contribute to the understanding of PRG4 and HA interaction(s) in solution and therefore the function of SF in diarthroidal joints.
Collapse
Affiliation(s)
- Adam K Bloom
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| | - Michael L Samsom
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| | - Suresh C Regmi
- Faculty of Kinesiology, KNB 426, 2500 University Dr. NW, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Bridgett L Steele
- Faculty of Kinesiology, KNB 426, 2500 University Dr. NW, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Tannin A Schmidt
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada. .,Faculty of Kinesiology, KNB 426, 2500 University Dr. NW, University of Calgary, Calgary, AB, T2N 1N4, Canada. .,Biomedical Engineering Department, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
11
|
Das N, Schmidt TA, Krawetz RJ, Dufour A. Proteoglycan 4: From Mere Lubricant to Regulator of Tissue Homeostasis and Inflammation. Bioessays 2018; 41:e1800166. [DOI: 10.1002/bies.201800166] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/19/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Nabangshu Das
- Faculty of Kinesiology; University of Calgary; Calgary Alberta T2N4N1 Canada
| | - Tannin A. Schmidt
- Biomedical Engineering Department; School of Dental Medicine; University of Connecticut Health Center; Farmington CT 06030 USA
| | - Roman J. Krawetz
- Cell Biology and Anatomy; Cumming School of Medicine; University of Calgary; 3330 Hospital Drive NW Calgary Alberta T2N4N1 Canada
- McCaig institute for Bone and Joint Health; University of Calgary; Calgary Alberta T2N4N1 Canada
| | - Antoine Dufour
- McCaig institute for Bone and Joint Health; University of Calgary; Calgary Alberta T2N4N1 Canada
- Physiology & Pharmacology; Cumming School of Medicine; University of Calgary; Calgary Alberta T2N4N1 Canada
| |
Collapse
|
12
|
Abubacker S, McPeak A, Dorosz SG, Egberts P, Schmidt TA. Effect of counterface on cartilage boundary lubricating ability by proteoglycan 4 and hyaluronan: Cartilage-glass versus cartilage-cartilage. J Orthop Res 2018; 36:2923-2931. [PMID: 29978918 DOI: 10.1002/jor.24104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 07/01/2018] [Indexed: 02/04/2023]
Abstract
The objective of this study was to determine the effect of different sliding interface materials (counterface) on the cartilage lubricating ability of proteoglycan 4 (PRG4) and hyaluronan (HA) by measuring the kinetic coefficient of friction on cartilage-glass and cartilage-cartilage interfaces over a wide range of sliding velocities. The lubrication properties of PRG4 and HA were assessed at cartilage-glass and cartilage-cartilage interfaces using a previously described test setup with a stationary area of contact. Samples were articulated at varying effective sliding velocities of 10, 3, 1, 0.3, 0.1, and 0.01 mm/s. The response of PRG4 and HA as effective friction-reducing cartilage boundary lubricants was varied and was dependent primarily on the test counterface. At a physiological cartilage-cartilage interface both HA and PRG4 effectively reduced friction compared to PBS at slower speeds while at higher speeds PRG4 was similar to PBS, and HA similar to SF. Conversely, at a cartilage-glass interface HA demonstrated no friction reducing ability compared to PBS, and PRG4 appeared just as effective as SF. Cartilage-glass friction coefficients were also significantly greater than cartilage-cartilage friction coefficients. These results indicate the in vitro friction coefficient of putative cartilage boundary lubricants can be affected by the test counterface and suggest that use of synthetic surfaces in studying cartilage boundary lubrication may not always be appropriate for all molecules of interest. As such, care should be taken when interpreting such data, specifically when comparing to in vitro data obtained at a cartilage-cartilage interface, and especially when extrapolating to in vivo situations. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2923-2931, 2018.
Collapse
Affiliation(s)
- Saleem Abubacker
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada
| | - Allison McPeak
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Sam G Dorosz
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada
| | - Philip Egberts
- Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Tannin A Schmidt
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada.,Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
13
|
Morgese G, Benetti EM, Zenobi-Wong M. Molecularly Engineered Biolubricants for Articular Cartilage. Adv Healthc Mater 2018; 7:e1701463. [PMID: 29717824 DOI: 10.1002/adhm.201701463] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 03/07/2018] [Indexed: 12/15/2022]
Abstract
Lubrication within articular joints plays a crucial role in daily life, providing an extremely low coefficient of friction and preventing wear at the surface of the articular cartilage. Natural biomacromolecules responsible for lubrication are part of the synovial fluid and their degradation is associated with the onset of degenerative diseases, such as osteoarthritis (OA). The current absence of effective treatments for OA has captured the attention of chemists and material scientists over the last two decades, triggering the development of partially or fully synthetic biolubricants aimed to reduce friction within the joints and restore cartilage functions. Although there is still a long way to go before synthetic replacements of natural biolubricants can be applied clinically, this review highlights those formulations that meet the fundamental requirements for being efficient lubricants for articular cartilage.
Collapse
Affiliation(s)
- Giulia Morgese
- Polymer Surfaces Group; Laboratory for Surface Science and Technology; Department of Materials; ETH Zürich; Zürich 8093 Switzerland
- Tissue Engineering and Biofabrication Group; Department of Health Science and Technology; ETH Zürich; Zürich 8093 Switzerland
| | - Edmondo M. Benetti
- Polymer Surfaces Group; Laboratory for Surface Science and Technology; Department of Materials; ETH Zürich; Zürich 8093 Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering and Biofabrication Group; Department of Health Science and Technology; ETH Zürich; Zürich 8093 Switzerland
| |
Collapse
|
14
|
Qadri MM, Jay GD, Ostrom RS, Zhang LX, Elsaid KA. cAMP attenuates TGF-β's profibrotic responses in osteoarthritic synoviocytes: involvement of hyaluronan and PRG4. Am J Physiol Cell Physiol 2018; 315:C432-C443. [PMID: 29898378 DOI: 10.1152/ajpcell.00041.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA) is characterized by synovitis and synovial fibrosis. Synoviocytes are fibroblast-like resident cells of the synovium that are activated by transforming growth factor (TGF)-β to proliferate, migrate, and produce extracellular matrix. Synoviocytes secrete hyaluronan (HA) and proteoglycan-4 (PRG4). HA reduces synovial fibrosis in vivo, and the Prg4-/- mouse exhibits synovial hyperplasia. We investigated the antifibrotic effects of increased intracellular cAMP in TGF-β-stimulated human OA synoviocytes. TGF-β1 stimulated collagen I (COL1A1), α-smooth muscle actin (α-SMA), tissue inhibitor of metalloproteinase (TIMP)-1, and procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2) expression, and procollagen I, α-SMA, HA, and PRG4 production, migration, and proliferation of OA synoviocytes were measured. Treatment of OA synoviocytes with forskolin (10 μM) increased intracellular cAMP levels and reduced TGF-β1-stimulated COL1A1, α-SMA, and TIMP-1 expression, with no change in PLOD2 expression. Forskolin also reduced TGF-β1-stimulated procollagen I and α-SMA content as well as synoviocyte migration and proliferation. Forskolin (10 μM) increased HA secretion and PRG4 expression and production. A cell-permeant cAMP analog reduced COL1A1 and α-SMA expression and enhanced HA and PRG4 secretion by OA synoviocytes. HA and PRG4 reduced α-SMA expression and content, and PRG4 reduced COL1A1 expression and procollagen I content in OA synoviocytes. Prg4-/- synovium exhibited increased α-SMA, COL1A1, and TIMP-1 expression compared with Prg4+/+ synovium. Prg4-/- synoviocytes demonstrated strong α-SMA and collagen type I staining, whereas these were undetected in Prg4+/+ synoviocytes and were reduced with PRG4 treatment. We conclude that increasing intracellular cAMP levels in synoviocytes mitigates synovial fibrosis through enhanced production of HA and PRG4, possibly representing a novel approach for treatment of OA synovial fibrosis.
Collapse
Affiliation(s)
- Marwa M Qadri
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University , Irvine, California
| | - Gregory D Jay
- Department of Emergency Medicine, Rhode Island Hospital , Providence, Rhode Island.,Department of Biomedical Engineering, Brown University , Providence, Rhode Island
| | - Rennolds S Ostrom
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University , Irvine, California
| | - Ling X Zhang
- Department of Emergency Medicine, Rhode Island Hospital , Providence, Rhode Island
| | - Khaled A Elsaid
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University , Irvine, California
| |
Collapse
|
15
|
Flowers SA, Kalamajski S, Ali L, Björkman LI, Raj JR, Aspberg A, Karlsson NG, Jin C. Cartilage oligomeric matrix protein forms protein complexes with synovial lubricin via non-covalent and covalent interactions. Osteoarthritis Cartilage 2017; 25:1496-1504. [PMID: 28373131 DOI: 10.1016/j.joca.2017.03.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 03/17/2017] [Accepted: 03/23/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Understanding the cartilage surface structure, lost in arthritic disease, is essential for developing strategies to effectively restore it. Given that adherence of the lubricating protein, lubricin, to the cartilage surface is critical for boundary lubrication, an interaction with cartilage oligomeric matrix protein (COMP) was investigated. COMP, an abundant cartilage protein, is known to be important for matrix formation. DESIGN Synovial fluid (SF) from arthritic patients was used to detect possible COMP-lubricin complexes by immunological methods. Recombinant (RC) COMP and lubricin fragments were expressed to characterize this bonding and mass spectrometry employed to specifically identify the cysteines involved in inter-protein disulfide bonds. RESULTS COMP-lubricin complexes were identified in the SF of arthritic patients by Western blot, co-immunoprecipitation and sandwich ELISA. RC fragment solid-phase binding assays showed that the C-terminal (amino acids (AA) 518-757) of COMP bound non-covalently to the N-terminal of lubricin (AA 105-202). Mass spectrometry determined that although cysteines throughout COMP were involved in binding with lubricin, the cysteines in lubricin were primarily focused to an N-terminal region (AA 64-86). The close proximity of the non-covalent and disulfide binding domains on lubricin suggest a two-step mechanism to strongly bind lubricin to COMP. CONCLUSION These data demonstrate that lubricin forms a complex network with COMP involving both non-covalent and covalent bonds. This complex between lubricin and the cartilage protein COMP can be identified in the SF of patients with arthritis conditions including osteoarthritis (OA) and rheumatoid arthritis (RA).
Collapse
Affiliation(s)
- S A Flowers
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - S Kalamajski
- Department of Clinical Sciences Lund, Division of Rheumatology and Molecular Skeletal Biology, Lund University, Lund, Sweden.
| | - L Ali
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - L I Björkman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - J R Raj
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - A Aspberg
- Department of Clinical Sciences Lund, Division of Rheumatology and Molecular Skeletal Biology, Lund University, Lund, Sweden.
| | - N G Karlsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - C Jin
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
16
|
Larson KM, Zhang L, Elsaid KA, Schmidt TA, Fleming BC, Badger GJ, Jay GD. Reduction of friction by recombinant human proteoglycan 4 in IL-1α stimulated bovine cartilage explants. J Orthop Res 2017; 35:580-589. [PMID: 27411036 PMCID: PMC5957283 DOI: 10.1002/jor.23367] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 07/02/2016] [Indexed: 02/04/2023]
Abstract
A boundary lubricant attaches and protects sliding bearing surfaces by preventing interlocking asperity-asperity contact. Proteoglycan-4 (PRG4) is a boundary lubricant found in the synovial fluid that provides chondroprotection to articular surfaces. Inflammation of the diarthrodial joint modulates local PRG4 concentration. Thus, we measured the effects of inflammation, with Interleukin-1α (IL-1α) incubation, upon boundary lubrication and PRG4 expression in bovine cartilage explants. We further aimed to determine whether the addition of exogenous human recombinant PRG4 (rhPRG4) could mitigate the effects of inflammation on boundary lubrication and PRG4 expression in vitro. Cartilage explants, following a 7 day incubation with IL-1α, were tested in a disc-on-disc configuration using either rhPRG4 or saline (PBS control) as a lubricant. Following mechanical testing, explants were studied immunohistochemically or underwent RNA extraction for real-time polymerase chain reaction (RT-PCR). We found that static coefficient of friction (COF) significantly decreased to 0.14 ± 0.065 from 0.21 ± 0.059 (p = 0.014) in IL-1α stimulated explants lubricated with rhPRG4, as compared to PBS. PRG4 expression was significantly up regulated from 30.8 ± 19 copies in control explants lubricated with PBS to 3330 ± 1760 copies in control explants lubricated with rhPRG4 (p < 0.001). Explants stimulated with IL-1α displayed no increase in PRG4 expression upon lubrication with rhPRG4, but with PBS as the lubricant, IL-1α stimulation significantly increased PRG4 expression compared to the control condition from 30.8 ± 19 copies to 401 ± 340 copies (p = 0.015). Overall, these data suggest that exogenous rhPRG4 may provide a therapeutic option for reducing friction in transient inflammatory conditions and increasing PRG4 expression. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:580-589, 2017.
Collapse
Affiliation(s)
- Katherine M. Larson
- Center for Biomedical Engineering and School of Engineering, Brown University, Providence, RI, USA
| | - Ling Zhang
- Emergency Medicine Research Laboratory, Department of Emergency Medicine, Rhode Island Hospital, Providence, RI, USA
| | - Khaled A. Elsaid
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, USA
| | - Tannin A. Schmidt
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada,Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - Braden C. Fleming
- Center for Biomedical Engineering and School of Engineering, Brown University, Providence, RI, USA,Bioengineering Laboratory, Department of Orthopaedics, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Gary J. Badger
- Department of Medical Biostatistics, University of Vermont, Burlington, VT, USA
| | - Gregory D. Jay
- Center for Biomedical Engineering and School of Engineering, Brown University, Providence, RI, USA,Emergency Medicine Research Laboratory, Department of Emergency Medicine, Rhode Island Hospital, Providence, RI, USA,Department of Emergency Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
17
|
Martin-Alarcon L, Schmidt T. Rheological effects of macromolecular interactions in synovial fluid. Biorheology 2016; 53:49-67. [DOI: 10.3233/bir-15104] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- L. Martin-Alarcon
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| | - T.A. Schmidt
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
18
|
Novel bioadhesive polymers as intra-articular agents: Chondroitin sulfate-cysteine conjugates. Eur J Pharm Biopharm 2016; 101:25-32. [DOI: 10.1016/j.ejpb.2016.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 01/04/2016] [Accepted: 01/08/2016] [Indexed: 11/17/2022]
|
19
|
Abubacker S, Ponjevic D, Ham HO, Messersmith PB, Matyas JR, Schmidt TA. Effect of disulfide bonding and multimerization on proteoglycan 4's cartilage boundary lubricating ability and adsorption. Connect Tissue Res 2016; 57:113-23. [PMID: 26631309 PMCID: PMC4857611 DOI: 10.3109/03008207.2015.1113271] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE The objectives of this study were to assess the cartilage boundary lubricating ability of (1) nonreduced (NR) disulfide-bonded proteoglycan 4 (PRG4) multimers versus PRG4 monomers and (2) NR versus reduced and alkylated (R/A) PRG4 monomers and to assess (3) the ability of NR PRG4 multimers versus monomers to adsorb to an articular cartilage surface. MATERIALS AND METHODS PRG4 was separated into two preparations, PRG4 multimer enriched (PRG4Multi+) and PRG4 multimer deficient (PRG4Multi-), using size exclusion chromatography (SEC) and characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The cartilage boundary lubricating ability of PRG4Multi+ and PRG4Multi- was compared at a physiological concentration (450 μg/mL) and assessed over a range of concentrations (45, 150, and 450 μg/mL). R/A and NR PRG4Multi- were evaluated at 450 μg/mL. Immunohistochemistry with anti-PRG4 antibody 4D6 was performed to visualize the adsorption of PRG4 preparations to the surface of articular cartilage explants. RESULTS Separation into enriched populations of PRG4Multi+ and PRG4Multi- was achieved using SEC and was confirmed by SDS-PAGE. PRG4Multi+ and PRG4Multi- both functioned as effective friction-reducing cartilage boundary lubricants at 450 μg/mL, with PRG4Multi+ being more effective than PRG4Multi-. PRG4Multi+ lubricated in a dose-dependent manner, however, PRG4Multi- did not. R/A PRG4Multi- lubricated similar to NR PRG4Multi-. PRG4-containing solutions showed 4D6 immunoreactivity at the articular surface; the immunoreactive intensity of PRG4Multi+ appeared to be similar to SF, whereas PRG4Multi- appeared to have less intensity. CONCLUSIONS These results demonstrate that the intermolecular disulfide-bonded multimeric structure of PRG4 is important for its ability to adsorb to a cartilage surface and function as a boundary lubricant. These findings contribute to a greater understanding of the molecular basis of cartilage boundary lubrication of PRG4. Elucidating the PRG4 structure-lubrication function relationship will further contribute to the understanding of PRG4's role in diarthrodial joint homeostasis and disease.
Collapse
Affiliation(s)
- Saleem Abubacker
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada.,McCaig Institute of Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Dragana Ponjevic
- McCaig Institute of Bone and Joint Health, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Hyun O. Ham
- Biomedical Engineering Department, Northwestern University, Evanston, IL, USA
| | - Phillip B. Messersmith
- Biomedical Engineering Department, Northwestern University, Evanston, IL, USA.,Departments of Bioengineering and Materials Science and Engineering Department, University of California, Berkeley, CA, USA
| | - John R. Matyas
- McCaig Institute of Bone and Joint Health, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Tannin A. Schmidt
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada.,McCaig Institute of Bone and Joint Health, University of Calgary, Calgary, AB, Canada.,Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
20
|
Svala E, Jin C, Rüetschi U, Ekman S, Lindahl A, Karlsson NG, Skiöldebrand E. Characterisation of lubricin in synovial fluid from horses with osteoarthritis. Equine Vet J 2015; 49:116-123. [PMID: 26507102 DOI: 10.1111/evj.12521] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 10/14/2015] [Indexed: 12/19/2022]
Abstract
REASON FOR PERFORMING STUDY The glycoprotein lubricin contributes to the boundary lubrication of the articular cartilage surface. The early events of osteoarthritis involve the superficial layer where lubricin is synthesised. OBJECTIVES To characterise the glycosylation profile of lubricin in synovial fluid from horses with osteoarthritis and study secretion and degradation of lubricin in an in vitro inflammation cartilage model. STUDY DESIGN In vitro study. METHODS Synovial fluid samples collected from horses with joints with normal articular cartilage and structural osteoarthritic lesions; with and without osteochondral fragments, were analysed for the lubricin glycosylation profiles. Articular cartilage explants were stimulated with or without interleukin-1β for 25 days. Media samples collected at 3-day intervals were analysed by quantitative proteomics, western blot and enzyme-linked immunosorbent assay. RESULTS O-glycosylation profiles in synovial fluid revealed both Core 1 and 2 O-glycans, with Core 1 O-glycans predominating. Synovial fluid from normal joints (49.5 ± 1.9%) contained significantly lower amounts of monosialylated Core 1 O-glycans compared with joints with osteoarthritis (53.8 ± 7.8%, P = 0.03) or joints with osteochondral fragments (57.3 ± 8.8%, P = 0.001). Additionally, synovial fluid from normal joints (26.7 ± 6.7%) showed higher amounts of disialylated Core 1 O-glycan than from joints with osteochondral fragments (21.2 ± 4.9%, P = 0.03). A C-terminal proteolytic cleavage site in lubricin was found in synovial fluid from normal and osteochondral fragment joints and in media from interleukin-1β stimulated and unstimulated articular cartilage explants. CONCLUSIONS This is the first demonstration of a change in the glycosylation profile of lubricin in synovial fluid from diseased equine joints compared with that from normal joints. We demonstrate an identical proteolytic cleavage site of lubricin both in vitro and in vivo. The reduced sialation of lubricin in synovial fluid from diseased joints may affect the boundary lubricating ability of the superficial layer of articular cartilage and could be one of the early events in the progression of osteoarthritis.
Collapse
Affiliation(s)
- E Svala
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, Sweden.,Section of Pathology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - C Jin
- Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, Sweden
| | - U Rüetschi
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, Sweden
| | - S Ekman
- Section of Pathology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - A Lindahl
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, Sweden
| | - N G Karlsson
- Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, Sweden
| | - E Skiöldebrand
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, Sweden.,Section of Pathology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
21
|
Ludwig TE, Hunter MM, Schmidt TA. Cartilage boundary lubrication synergism is mediated by hyaluronan concentration and PRG4 concentration and structure. BMC Musculoskelet Disord 2015; 16:386. [PMID: 26666513 PMCID: PMC4678696 DOI: 10.1186/s12891-015-0842-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 12/02/2015] [Indexed: 11/26/2022] Open
Abstract
Background Proteoglycan 4 (PRG4) and hyaluronan (HA) are key synovial fluid constituents that contribute synergistically to cartilage boundary lubrication; however, the effects of their concentrations as well as their structure, both of which can be altered in osteoarthritis, on this functional synergism are unknown. The objectives of this study were to evaluate cartilage boundary lubricating ability of 1) PRG4 + HA in solution at constant HA concentration in a range of PRG4 concentrations, 2) constant PRG4 concentration in a range of HA concentrations, 3) HA + reduced/alkylated (R/A) PRG4, and 4) hylan G-F 20 + PRG4. Methods Static and kinetic friction coefficients (μstatic,Neq, <μkinetic,Neq>) were measured using a previously characterized cartilage-cartilage boundary mode friction test for the following concentrations of purified PRG4 and HA: Test 1: HA (1.5 MDa, 3.3 mg/mL) + PRG4 from 4.5 – 1500 μg/mL; Test 2: PRG4 (450, 150, 45 μg/mL) + HA (1.5 MDa) from 0.3 – 3.3 mg/mL. Test 3: hylan G-F 20 (3. 3 mg/mL) + PRG4 (450 μg/mL). Test 4: HA (3.3 mg/mL) + R/A PRG4 (450 μg/mL). ANOVA was used to compare lubricants within (comparing 6 lubricants of interest) and between (comparing 3 lubricants of interest) test sequences, with Tukey and Fishers post-hoc testing respectively. Results This study demonstrates that both PRG4 and HA concentration, as well as PRG4 disulfide-bonded structure, can alter the cartilage boundary lubricating ability of PRG4 + HA solutions. The boundary lubricating ability of high MW HA + PRG4 solutions was limited by very low concentrations of PRG4. Decreased concentrations of high MW HA also limited the cartilage boundary lubricating ability of HA + PRG4 solutions, with the effect exacerbated by low PRG4 concentrations. The reduction of friction by addition of PRG4 to a cross-linked HA viscosupplement product, but not with addition of R/A PRG4 to HA, is consistent with a non-covalent mechanism of interaction where tertiary and quaternary PRG4 structure are important. Conclusions Collectively, these results demonstrate that deficiency of either or both PRG4 and HA, or alterations in PRG4 structure, may be detrimental to SF cartilage boundary lubricating function. This study provides further insight into the nature of cartilage boundary lubrication and advancement towards potential formulation of new intra-articular biotherapeutic treatments for osteoarthritis using PRG4 ± HA.
Collapse
Affiliation(s)
- Taryn E Ludwig
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Canada.
| | - Miles M Hunter
- Faculty of Kinesiology, University of Calgary, Calgary, Canada.
| | - Tannin A Schmidt
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Canada. .,Faculty of Kinesiology, University of Calgary, Calgary, Canada.
| |
Collapse
|
22
|
Abubacker S, Dorosz SG, Ponjevic D, Jay GD, Matyas JR, Schmidt TA. Full-Length Recombinant Human Proteoglycan 4 Interacts with Hyaluronan to Provide Cartilage Boundary Lubrication. Ann Biomed Eng 2015; 44:1128-37. [PMID: 26194040 DOI: 10.1007/s10439-015-1390-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/11/2015] [Indexed: 11/28/2022]
Abstract
Proteoglycan 4 (PRG4) is a mucin-like glycoprotein present in synovial fluid and at the surface of articular cartilage. The objectives of this study were to (1) assess the articular cartilage surface adsorption and in vitro cartilage boundary lubricating ability of full-length recombinant human PRG4 (rhPRG4), and (2) cartilage boundary lubricating ability of purified rhPRG4, both alone and in combination with hyaluronan (HA). rhPRG4 adsorption onto articular cartilage explants was assessed by immunohistochemistry and dot blot. An in vitro cartilage-cartilage friction test was used to assess rhPRG4's cartilage boundary lubricating ability compared to bovine PRG4, and that of purified rhPRG4 both alone and in combination with HA. rhPRG4 was able to adsorb to the articular surface, as well as the cut surface, of cartilage explants. The kinetic coefficient of friction of rhPRG4 was similar to that of PRG4 (p = 0.16) and lower than phosphate-buffered saline (p < 0.05), while that of purified rhPRG4 + HA was significantly lower than rhPRG4 alone (p < 0.05). This study demonstrates that rhPRG4 can adsorb to an intact articular cartilage surface and functions as an effective boundary lubricant, both alone and with HA, and provides the foundation for in vivo evaluation of this clinically relevant full-length rhPRG4 for treatment of osteoarthritis.
Collapse
Affiliation(s)
- Saleem Abubacker
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Dr NW, KNB 426, Calgary, AB, T2N 1N4, Canada.,McCaig Institute of Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Samuel G Dorosz
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Dr NW, KNB 426, Calgary, AB, T2N 1N4, Canada.,McCaig Institute of Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Dragana Ponjevic
- McCaig Institute of Bone and Joint Health, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Gregory D Jay
- Center for Biomedical Engineering and the School of Engineering, Brown University, Providence, RI, USA
| | - John R Matyas
- McCaig Institute of Bone and Joint Health, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Tannin A Schmidt
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Dr NW, KNB 426, Calgary, AB, T2N 1N4, Canada. .,McCaig Institute of Bone and Joint Health, University of Calgary, Calgary, AB, Canada. .,Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
23
|
Articular Joint Lubricants during Osteoarthritis and Rheumatoid Arthritis Display Altered Levels and Molecular Species. PLoS One 2015; 10:e0125192. [PMID: 25933137 PMCID: PMC4416892 DOI: 10.1371/journal.pone.0125192] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 03/11/2015] [Indexed: 12/31/2022] Open
Abstract
Background Hyaluronic acid (HA), lubricin, and phospholipid species (PLs) contribute independently or together to the boundary lubrication of articular joints that is provided by synovial fluid (SF). Our study is the first reporting quantitative data about the molecular weight (MW) forms of HA, lubricin, and PLs in SF from cohorts of healthy donors, patients with early (eOA)- or late (lOA)-stage osteoarthritis (OA), and patients with active rheumatoid arthritis (RA). Methods We used human SF from unaffected controls, eOA, lOA, and RA. HA and lubricin levels were measured by enzyme-linked immunosorbent assay. PLs was quantified by electrospray ionization tandem mass spectrometry. Fatty acids (FAs) were analyzed by gas chromatography, coupled with mass spectrometry. The MW distribution of HA was determined by agarose gel electrophoresis. Results Compared with control SF, the concentrations of HA and lubricin were lower in OA and RA SF, whereas those of PLs were higher in OA and RA SF. Moreover, the MW distribution of HA shifted toward the lower ranges in OA and RA SF. We noted distinct alterations between cohorts in the relative distribution of PLs and the degree of FA saturation and chain lengths of FAs. Conclusions The levels, composition, and MW distribution of all currently known lubricants in SF—HA, lubricin, PLs—vary with joint disease and stage of OA. Our study is the first delivering a comprehensive view about all joint lubricants during health and widespread joint diseases. Thus, we provide the framework to develop new optimal compounded lubricants to reduce joint destruction.
Collapse
|
24
|
Atarod M, Ludwig TE, Frank CB, Schmidt TA, Shrive NG. Cartilage boundary lubrication of ovine synovial fluid following anterior cruciate ligament transection: a longitudinal study. Osteoarthritis Cartilage 2015; 23:640-7. [PMID: 25554643 DOI: 10.1016/j.joca.2014.12.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 12/03/2014] [Accepted: 12/20/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To assess ovine synovial fluid (oSF) from different post-injury time points for (1) proteoglycan-4 (PRG4) and hyaluronan (HA) concentration, (2) HA molecular weight (MW) distribution, (3) cartilage boundary lubrication function, and (4) lubricant composition-function relationships. The association between cartilage boundary lubrication and gross cartilage changes after injury was also examined. METHODS oSF was collected 2, 4, 10, and 20 weeks post anterior cruciate ligament (ACL) transection in five skeletally mature sheep. PRG4 and HA concentrations were measured using sandwich enzyme-linked immunosorbent assay, and HA MW distribution by agarose gel electrophoresis. Cartilage boundary lubrication of oSF was assessed using a cartilage-cartilage friction test. Gross damage to articular cartilage was also quantified at 20 weeks using modified Drez scoring protocol. RESULTS Early (2-4 weeks) after ACL injury, PRG4 concentrations were significantly higher (P = 0.045, P = 0.037), and HA concentrations were substantially lower (P = 0.005, P = 0.005) compared to 20 weeks. The HA MW distribution also shifted towards lower ranges in the early post-injury stage. The kinetic friction coefficients were significantly higher 2-4 weeks post injury (P = 0.008 and P = 0.049) compared to 20 weeks. Poor cartilage boundary lubricating ability early after injury was associated with cartilage damage at 20 weeks. CONCLUSION Altered composition and diminished boundary lubrication of oSF early after ACL transection may pre-dispose the articular cartilage to degenerative changes and initiate osteoarthritis (OA). These observations also provide potential motivation for biotherapeutic interventions at earlier time points post injury.
Collapse
Affiliation(s)
- M Atarod
- McCaig Institute for Bone and Joint Health, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - T E Ludwig
- Biomedical Engineering, University of Calgary, Calgary, Alberta, Canada.
| | - C B Frank
- Department of Surgery, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - T A Schmidt
- Faculty of Kinesiology, Biomedical Engineering, University of Calgary, Calgary, Alberta, Canada.
| | - N G Shrive
- Department of Civil Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
25
|
Ai M, Cui Y, Sy MS, Lee DM, Zhang LX, Larson KM, Kurek KC, Jay GD, Warman ML. Anti-lubricin monoclonal antibodies created using lubricin-knockout mice immunodetect lubricin in several species and in patients with healthy and diseased joints. PLoS One 2015; 10:e0116237. [PMID: 25642942 PMCID: PMC4314068 DOI: 10.1371/journal.pone.0116237] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 12/06/2014] [Indexed: 11/18/2022] Open
Abstract
Lubricin, encoded by the gene PRG4, is the principal lubricant in articulating joints. We immunized mice genetically deficient for lubricin (Prg4-/-) with purified human lubricin, and generated several mAbs. We determined each mAb’s binding epitope, sensitivity, and specificity using biologic samples and recombinant lubricin sub-domains, and we also developed a competition ELISA assay to measure lubricin in synovial fluid and blood. We found the mAbs all recognized epitopes containing O-linked oligosaccharides conjugated to the peptide motif KEPAPTTT. By western blot, the mAbs detected lubricin in 1 μl of synovial fluid from several animal species, including human. The mAbs were specific for lubricin since they did not cross-react with other synovial fluid constituents from patients with camptodactyly-arthropathy-coxa vara-pericarditis syndrome (CACP), who genetically lack this protein. The competition ELISA detected lubricin in blood samples from healthy individuals but not from patients with CACP, indicating blood can be used in a diagnostic test for patients suspected of having CACP. Lubricin epitopes in blood do not represent degradation fragments from synovial fluid. Therefore, although blood lubricin levels did not differentiate patients with inflammatory joint disease from healthy controls, epitope-specific anti-lubricin mAbs could be useful for monitoring disease activity in synovial fluid.
Collapse
Affiliation(s)
- Minrong Ai
- Howard Hughes Medical Institute and Department of Genetics, Case Western Reserve University, School of Medicine, Cleveland, OH, United States of America
| | - Yajun Cui
- Howard Hughes Medical Institute and Department of Genetics, Case Western Reserve University, School of Medicine, Cleveland, OH, United States of America
| | - Man-Sun Sy
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, United States of America
| | - David M Lee
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, United States of America
| | - Ling Xiu Zhang
- Department of Emergency Medicine, Rhode Island Hospital, Providence, RI, United States of America
| | - Katherine M Larson
- Department of Emergency Medicine, Rhode Island Hospital, Providence, RI, United States of America; School of Engineering, Brown University, Providence, RI, United States of America
| | - Kyle C Kurek
- Department of Pathology, Boston Children's Hospital, Boston, MA, United States of America
| | - Gregory D Jay
- Department of Emergency Medicine, Rhode Island Hospital, Providence, RI, United States of America; School of Engineering, Brown University, Providence, RI, United States of America
| | - Matthew L Warman
- Howard Hughes Medical Institute and Department of Genetics, Case Western Reserve University, School of Medicine, Cleveland, OH, United States of America; Howard Hughes Medical Institute and Orthopaedics Research Laboratories, Boston Children's Hospital, and Departments of Genetics and Orthopaedic Surgery, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
26
|
Ali L, Flowers SA, Jin C, Bennet EP, Ekwall AKH, Karlsson NG. The O-glycomap of lubricin, a novel mucin responsible for joint lubrication, identified by site-specific glycopeptide analysis. Mol Cell Proteomics 2014; 13:3396-409. [PMID: 25187573 PMCID: PMC4256492 DOI: 10.1074/mcp.m114.040865] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/15/2014] [Indexed: 11/06/2022] Open
Abstract
The lubricative, heavily glycosylated mucin-like synovial glycoprotein lubricin has previously been observed to contain glycosylation changes related to rheumatoid and osteoarthritis. Thus, a site-specific investigation of the glycosylation of lubricin was undertaken, in order to further understand the pathological mechanisms involved in these diseases. Lubricin contains an serine/threonine/proline (STP)-rich domain composed of imperfect tandem repeats (EPAPTTPK), the target for O-glycosylation. In this study, using a liquid chromatography-tandem mass spectrometry approach, employing both collision-induced and electron-transfer dissociation fragmentation methods, we identified 185 O-glycopeptides within the STP-rich domain of human synovial lubricin. This showed that adjacent threonine residues within the central STP-rich region could be simultaneously and/or individually glycosylated. In addition to core 1 structures responsible for biolubrication, core 2 O-glycopeptides were also identified, indicating that lubricin glycosylation may have other roles. Investigation of the expression of polypeptide N-acetylgalactosaminyltransferase genes was carried out using cultured primary fibroblast-like synoviocytes, a cell type that expresses lubricin in vivo. This analysis showed high mRNA expression levels of the less understood polypeptide N-acetylgalactosaminyltransferase 15 and 5 in addition to the ubiquitously expressed polypeptide N-acetylgalactosaminyltransferase 1 and 2 genes. This suggests that there is a unique combination of transferase genes important for the O-glycosylation of lubricin. The site-specific glycopeptide analysis covered 82% of the protein sequence and showed that lubricin glycosylation displays both micro- and macroheterogeneity. The density of glycosylation was shown to be high: 168 sites of O-glycosylation, predominately sialylated, were identified. These glycosylation sites were focused in the central STP-rich region, giving the domain a negative charge. The more positively charged lysine and arginine residues in the N and C termini suggest that synovial lubricin exists as an amphoteric molecule. The identification of these unique properties of lubricin may provide insight into the important low-friction lubricating functions of lubricin during natural joint movement.
Collapse
Affiliation(s)
- Liaqat Ali
- From the ‡Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30, Gothenburg, Sweden
| | - Sarah A Flowers
- From the ‡Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30, Gothenburg, Sweden
| | - Chunsheng Jin
- From the ‡Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30, Gothenburg, Sweden
| | - Eric Paul Bennet
- §Department of Odontology, Copenhagen Center for Glycomics, University of Copenhagen, Norre Alle 20, DK-2200 Copenhagen N, Denmark
| | - Anna-Karin H Ekwall
- ¶Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Guldhedsgatan 10A, SE-41346, Gothenburg, Sweden
| | - Niclas G Karlsson
- From the ‡Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30, Gothenburg, Sweden;
| |
Collapse
|
27
|
|
28
|
Samsom ML, Morrison S, Masala N, Sullivan BD, Sullivan DA, Sheardown H, Schmidt TA. Characterization of full-length recombinant human Proteoglycan 4 as an ocular surface boundary lubricant. Exp Eye Res 2014; 127:14-9. [PMID: 24997456 DOI: 10.1016/j.exer.2014.06.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/11/2014] [Accepted: 06/20/2014] [Indexed: 11/15/2022]
Abstract
Proteoglycan 4 (PRG4, or lubricin) is a lubricating mucin-like glycoprotein recently discovered at the ocular surface, where it functions as a boundary lubricant and appears to play a protective role. Recent technological advances have enabled abundant expression of full-length recombinant human PRG4 (rhPRG4). The objectives of this study were to 1) biochemically characterize the gross structure and glycosylations of full-length rhPRG4, and 2) assess the ocular surface boundary lubricating ability of rhPRG4 at both human cornea-eyelid and human cornea-polydimethylsiloxane (PDMS) biointerfaces. rhPRG4 expressed by a Chinese hamster ovary cell line was characterized and compared to native bovine PRG4 by SDS-PAGE western blotting, and protein identity was assessed by tandem mass spectrometry (MS/MS). Human corneas were articulated against PDMS or human eyelids, at effective sliding velocities of 0.3-30 mm/s under physiological loads of ∼15 kPa, to assess and compare the ocular lubricating ability of rhPRG4 to PRG4. Samples were tested serially in PRG4, rhPRG4 (both 300 μg/ml), then saline. Western blotting indicated that rhPRG4 had immunoreactivity at the appropriate apparent molecular weight, and possessed O-linked glycosylation consistent with that of PRG4. rhPRG4 protein identity was confirmed by MS/MS. Both PRG4 and rhPRG4 significantly, and similarly, reduced friction compared to saline at both human cornea - PDMS and human cornea-eyelid biointerfaces. In conclusion, the rhPRG4 studied here demonstrated appropriate higher order structure, O-linked glycosylations, and ocular surface boundary lubricating. Purified rhPRG4 may have clinical utility as a topical treatment of dry eye disease or contact lens biomaterial coating to promote more comfortable wear.
Collapse
Affiliation(s)
- Michael L Samsom
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| | - Sheila Morrison
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Nemanja Masala
- Schulich School of Engineering - Centre for Bioengineering Research & Education, University of Calgary, Calgary, AB, Canada
| | | | - David A Sullivan
- Schepens Eye Research Institute, Massachusetts Eye and Ear, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | | | - Tannin A Schmidt
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada; Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada; Schulich School of Engineering - Centre for Bioengineering Research & Education, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
29
|
Schmidt TA, Sullivan DA, Knop E, Richards SM, Knop N, Liu S, Sahin A, Darabad RR, Morrison S, Kam WR, Sullivan BD. Transcription, translation, and function of lubricin, a boundary lubricant, at the ocular surface. JAMA Ophthalmol 2013; 131:766-76. [PMID: 23599181 DOI: 10.1001/jamaophthalmol.2013.2385] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Lubricin may be an important barrier to the development of corneal and conjunctival epitheliopathies that may occur in dry eye disease and contact lens wear. OBJECTIVE To test the hypotheses that lubricin (ie, proteoglycan 4 [PRG4 ]), a boundary lubricant, is produced by ocular surface epithelia and acts to protect the cornea and conjunctiva against significant shear forces generated during an eyelid blink and that lubricin deficiency increases shear stress on the ocular surface and promotes corneal damage. DESIGN, SETTING, AND PARTICIPANTS Human, porcine, and mouse tissues and cells were processed for molecular biological, immunohistochemical, and tribological studies, and wild-type and PRG4 knockout mice were evaluated for corneal damage. RESULTS Our findings demonstrate that lubricin is transcribed and translated by corneal and conjunctival epithelial cells. Lubricin messenger RNA is also present in lacrimal and meibomian glands, as well as in a number of other tissues. Absence of lubricin in PRG4 knockout mice is associated with a significant increase in corneal fluorescein staining. Our studies also show that lubricin functions as an effective friction-lowering boundary lubricant at the human cornea-eyelid interface. This effect is specific and cannot be duplicated by the use of hyaluronate or bovine serum albumin solutions. CONCLUSIONS AND RELEVANCE Our results show that lubricin is transcribed, translated, and expressed by ocular surface epithelia. Moreover, our findings demonstrate that lubricin presence significantly reduces friction between the cornea and conjunctiva and that lubricin deficiency may play a role in promoting corneal damage.
Collapse
Affiliation(s)
- Tannin A Schmidt
- Faculty of Kinesiology, Human Performance Laboratory Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ludwig TE, McAllister JR, Lun V, Wiley JP, Schmidt TA. Diminished cartilage-lubricating ability of human osteoarthritic synovial fluid deficient in proteoglycan 4: Restoration through proteoglycan 4 supplementation. ACTA ACUST UNITED AC 2013; 64:3963-71. [PMID: 22933061 DOI: 10.1002/art.34674] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 08/09/2012] [Indexed: 11/07/2022]
Abstract
OBJECTIVE The purposes of this study were 1) to quantify the proteoglycan 4 (PRG4) and hyaluronan (HA) content in synovial fluid (SF) from normal donors and from patients with chronic osteoarthritis (OA) and 2) to assess the cartilage boundary-lubricating ability of PRG4-deficient OA SF as compared to that of normal SF, with and without supplementation with PRG4 and/or HA. METHODS OA SF was aspirated from the knee joints of patients with symptomatic chronic knee OA prior to therapeutic injection. PRG4 concentrations were measured using a custom sandwich enzyme-linked immunosorbent assay (ELISA), and HA concentrations were measured using a commercially available ELISA. The molecular weight distribution of HA was measured by agarose gel electrophoresis. The cartilage boundary-lubricating ability of PRG4-deficient OA SF, PRG4-deficient OA SF supplemented with PRG4 and/or HA, and normal SF was assessed using a cartilage-on-cartilage friction test. Two friction coefficients (μ) were calculated: static (μ(static, Neq) ) and kinetic (<μ(kinetic, Neq) >) (where N(eq) represents equilibrium axial load and angle brackets indicate that the value is an average). RESULTS The mean ± SEM PRG4 concentration in normal SF was 287.1 ± 31.8 μg/ml. OA SF samples deficient in PRG4 (146.5 ± 28.2 μg/ml) as compared to normal were identified and selected for lubrication testing. The HA concentration in PRG4-deficient OA SF (mean ± SEM 0.73 ± 0.08 mg/ml) was not significantly different from that in normal SF (0.54 ± 0.09 mg/ml). In PRG4-deficient OA SF, the molecular weight distribution of HA was shifted toward the lower range. The cartilage boundary-lubricating ability of PRG4-deficient OA SF was significantly diminished as compared to normal (mean ± SEM <μ(kinetic, Neq) > = 0.043 ± 0.008 versus 0.025 ± 0.002; P < 0.05) and was restored when supplemented with PRG4 (<μ(kinetic, Neq) > = 0.023 ± 0.003; P < 0.05). CONCLUSION These results indicate that some OA SF may have decreased PRG4 levels and diminished cartilage boundary-lubricating ability as compared to normal SF and that PRG4 supplementation can restore normal cartilage boundary lubrication function to these OA SF.
Collapse
|
31
|
Abusara Z, Krawetz R, Steele B, DuVall M, Schmidt T, Herzog W. Muscular loading of joints triggers cellular secretion of PRG4 into the joint fluid. J Biomech 2013; 46:1225-30. [DOI: 10.1016/j.jbiomech.2013.02.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 10/27/2022]
|
32
|
Steele BL, Alvarez-Veronesi MC, Schmidt TA. Molecular weight characterization of PRG4 proteins using multi-angle laser light scattering (MALLS). Osteoarthritis Cartilage 2013; 21:498-504. [PMID: 23257245 DOI: 10.1016/j.joca.2012.12.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 11/30/2012] [Accepted: 12/07/2012] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Alternative splicing and variable post-translational modifications result in proteoglycan 4 (PRG4) proteins with historically reported apparent molecular weights (Ma) ranging from 150 to 400 kDa. The objectives of this study were to (1) identify and determine the weight averaged molecular weights (M(W)'s) of PRG4 proteins purified from medium with transforming growth factor-beta 1 (TGF-β1) conditioned by mature bovine articular cartilage explants and (2) to examine the effect of reduction and alkylation (RA) on PRG4. METHODS Non-reduced (NR) and RA preparations of PRG4 were separated using high performance liquid chromatography-size-exclusion chromatography with an in-line multi-angle laser light scattering (MALLS) detector, which was used for absolute determination of PRG4 M(W). Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), immunoblotting, and tandem mass spectrometry (MS/MS) analysis were used to confirm the identity of separated proteins. RESULTS Three putative PRG4 monomers, one with previously uncharacterized M(W), were identified in NR and RA PRG4 preparations of 239 (223,255), 379 (369,389), and 467 (433,501) kDa. Additionally ∼1 MDa putative PRG4 dimer was identified. Release of a ∼90 kDa PRG4 fragment was also observed on SDS-PAGE after RA. Western Blotting with anti-PRG4 antibodies detected immunoreactive bands with Ma similar to M(W) for all species and excised bands were confirmed to be PRG4 by MS/MS. CONCLUSIONS A variety of monomeric PRG4 proteins and a disulfide-bonded dimer/multimer are secreted by chondrocytes in bovine cartilage explants. The observed decrease in M(W)'s of monomeric PRG4 species upon RA may be due to the release of post-translationally cleaved fragments. Further study of these species will provide insight into the PRG4 molecular structure and function relationship.
Collapse
Affiliation(s)
- B L Steele
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.
| | | | | |
Collapse
|
33
|
Abubacker S, Ham HO, Messersmith PB, Schmidt TA. Cartilage boundary lubricating ability of aldehyde modified proteoglycan 4 (PRG4-CHO). Osteoarthritis Cartilage 2013; 21:186-9. [PMID: 23041437 PMCID: PMC3538920 DOI: 10.1016/j.joca.2012.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/19/2012] [Accepted: 09/24/2012] [Indexed: 02/02/2023]
Affiliation(s)
- Saleem Abubacker
- Biomedical Engineering, University of Calgary, Calgary, AB, Canada
| | - Hyun O. Ham
- Biomedical Engineering Department, Northwestern University, Evanston, IL, USA
| | | | - Tannin A. Schmidt
- Biomedical Engineering, University of Calgary, Calgary, AB, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
34
|
Jin C, Ekwall AKH, Bylund J, Björkman L, Estrella RP, Whitelock JM, Eisler T, Bokarewa M, Karlsson NG. Human synovial lubricin expresses sialyl Lewis x determinant and has L-selectin ligand activity. J Biol Chem 2012; 287:35922-33. [PMID: 22930755 DOI: 10.1074/jbc.m112.363119] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Lubricin (or proteoglycan 4 (PRG4)) is an abundant mucin-like glycoprotein in synovial fluid (SF) and a major component responsible for joint lubrication. In this study, it was shown that O-linked core 2 oligosaccharides (Galβ1-3(GlcNAcβ1-6)GalNAcα1-Thr/Ser) on lubricin isolated from rheumatoid arthritis SF contained both sulfate and fucose residues, and SF lubricin was capable of binding to recombinant L-selectin in a glycosylation-dependent manner. Using resting human polymorphonuclear granulocytes (PMN) from peripheral blood, confocal microscopy showed that lubricin coated circulating PMN and that it partly co-localized with L-selectin expressed by these cells. In agreement with this, activation-induced shedding of L-selectin also mediated decreased lubricin binding to PMN. It was also found that PMN recruited to inflamed synovial area and fluid in rheumatoid arthritis patients kept a coat of lubricin. These observations suggest that lubricin is able to bind to PMN via an L-selectin-dependent and -independent manner and may play a role in PMN-mediated inflammation.
Collapse
Affiliation(s)
- Chunsheng Jin
- Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Dose-dependent and synergistic effects of proteoglycan 4 on boundary lubrication at a human cornea-polydimethylsiloxane biointerface. Eye Contact Lens 2012; 38:27-35. [PMID: 22157393 DOI: 10.1097/icl.0b013e31823f7041] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Proteoglycan 4 (PRG4), also known as lubricin, is a boundary lubricating mucin-like glycoprotein present on several tissue surfaces in the body. The objectives of this study were to (1) implement and characterize an in vitro boundary lubrication test at a human cornea-polydimethylsiloxane (PDMS) biointerface and (2) determine the dose-dependent and synergistic effects of PRG4, with hyaluronan (HA), on ocular surface boundary lubrication using this test. METHODS Human corneas and model PDMS material were articulated against each other, at effective sliding velocities v(eff) between 0.3 and 30 mm/sec under physiologic loads of approximately 8 to 25 kPa. Samples were tested serially in (1) saline, PRG4 at 30, 100, 300 μg/mL resuspended in saline, then saline again or (2) saline, AQuify Comfort Eye Drops (containing 0.1% HA), 300 μg/mL PRG4 in saline, 300 μg/mL PRG4 in AQuify, then saline again. Both static and kinetic friction coefficients were calculated. RESULTS PRG4 effectively lowered friction at the cornea-PDMS biointerface, both alone in a dose-dependent manner and in combination with HA. PRG4 reduced kinetic friction coefficients, <μ(kinetic, Neq)>, from approximately 0.30 in saline, to approximately 0.30, 0.24, and 0.17 in 30, 100, and 300 μg/mL PRG4, respectively. Values of <μ(kinetic, Neq)> in AQuify, approximately 0.32, were similar to those in saline; however, when combined with 300 μg/mL PRG4, values of <μ(kinetic, Neq)> were reduced to approximately 0.15. CONCLUSIONS PRG4 functions as an effective ocular surface boundary lubricant, both alone in a dose-dependent manner and in combination with HA.
Collapse
|
36
|
The effect of molecular weight on hyaluronan's cartilage boundary lubricating ability--alone and in combination with proteoglycan 4. Osteoarthritis Cartilage 2011; 19:1356-62. [PMID: 21872669 DOI: 10.1016/j.joca.2011.07.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 07/27/2011] [Accepted: 07/29/2011] [Indexed: 02/02/2023]
Abstract
OBJECTIVES (1) assess the molecular weight dependence of hyaluronan's (HA) cartilage boundary lubricating ability, alone and in combination with proteoglycan 4 (PRG4), at physiological concentrations; (2) determine if HA and PRG4 interact in solution via electrophoretic mobility shift assay (EMSA). METHODS The cartilage boundary lubricating ability of a broad range of MW HA (20 kDa, 132 kDa, 780 kDa, 1.5 MDa, and 5 MDa) at 3.33 mg/ml, both alone and in combination with PRG4 at 450 μg/ml, was assessed using a previously described cartilage-on-cartilage friction test. Static, μ(static, Neq), and kinetic, <μ(kinetic, Neq)>, were calculated. An EMSA was conducted with PRG4 and monodisperse 150 kDa and 1,000 kDa HA. RESULTS Friction coefficients were reduced by HA, in a MW-dependent manner. Values of <μ(kinetic, Neq)> in 20 kDa HA, 0.098 (0.089, 0.108), were significantly greater compared to both 780 kDa, 0.080 (0.072, 0.088), and 5 MDa, 0.079 (0.070, 0.089). Linear regression showed a significant correlation between both μ(static, Neq) and <μ(kinetic, Neq)>, and log HA MW. Friction coefficients were also reduced by PRG4, and with subsequent addition of HA; however the synergistic effect was not dependent on HA MW. Values of <μ(kinetic, Neq)> in PRG4, 0.080 (0.047, 0.113), were significantly greater than values of PRG4+various MW HA (similar in value, averaging 0.040 (0.033, 0.047)). EMSA indicated that migration of 150 kDa and 1,000 kDa HA was retarded when combined with PRG4 at high PRG4:HA ratios. CONCLUSIONS These results suggest alterations in HA MW could significantly affect synovial fluid's cartilage boundary lubricating ability, yet this diminishment in function could be circumvented by physiological levels of PRG4 forming a complex, potentially in solution, with HA.
Collapse
|
37
|
Chawla K, Ham H, Nguyen T, Messersmith P. Molecular resurfacing of cartilage with proteoglycan 4. Acta Biomater 2010; 6:3388-94. [PMID: 20338268 DOI: 10.1016/j.actbio.2010.03.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 03/11/2010] [Accepted: 03/17/2010] [Indexed: 10/19/2022]
Abstract
Early loss of proteoglycan 4 (PRG4), a lubricating glycoprotein implicated in boundary lubrication, from the cartilage surface has been associated with degeneration of cartilage and early onset of osteoarthritis. Viscosupplementation with hyaluronic acid and other macromolecules has been proposed as a treatment of osteoarthritis. However, the efficacy of viscosupplementation is variable and may be influenced by the short residence time of lubricant in the knee joint after injection. Recent studies have demonstrated the use of aldehyde (CHO) modified extracellular matrix proteins for targeted adherence to a biological tissue surface. It is hypothesized that CHO could be exploited to enhance the binding of lubricating proteoglycans to the surface of PRG4-depleted cartilage. The objective of this study was to determine the feasibility of molecular resurfacing of cartilage with CHO-modified PRG4. PRG4 was chemically functionalized with aldehyde (PRG4-CHO) and aldehyde plus Oregon Green (OG) fluorophore (PRG4-OG-CHO) to allow for differentiation of endogenous and exogenous PRG4. Cartilage disks depleted of native PRG4 were then treated with solutions of PRG4, PRG4-CHO, or PRG4-OG-CHO and then assayed for the presence of PRG4 by immunohistochemistry, ELISA, and fluorescence imaging. Repletion of cartilage surfaces was significantly enhanced with the inclusion of CHO compared with repletion with unmodified PRG4. These findings suggest a generalized approach which may be used for molecular resurfacing of tissue surfaces with PRG4 and other lubricating biomolecules, perhaps leading in the future to a convenient method for overcoming loss of lubrication during the early stages of osteoarthritis.
Collapse
|
38
|
Jay GD, Fleming BC, Watkins BA, McHugh KA, Anderson SC, Zhang LX, Teeple E, Waller KA, Elsaid KA. Prevention of cartilage degeneration and restoration of chondroprotection by lubricin tribosupplementation in the rat following anterior cruciate ligament transection. ARTHRITIS AND RHEUMATISM 2010; 62:2382-91. [PMID: 20506144 PMCID: PMC2921027 DOI: 10.1002/art.27550] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To investigate whether cartilage degeneration is prevented or minimized following intraarticular injections of lubricin derived from human synoviocytes in culture, recombinant human PRG4 (rhPRG4), or human synovial fluid (SF) in a rat model of anterior cruciate ligament (ACL) injury. METHODS Unilateral ACL transection (ACLT) was performed in Lewis rats (n = 45). Nine animals were left untreated. The remaining rats were given intraarticular injections (50 microl/injection) of either phosphate buffered saline (PBS) (n = 9), human synoviocyte lubricin (200 microg/ml; n = 9), rhPRG4 (200 microg/ml; n = 9), or human SF lubricin (200 microg/ml; n = 9) twice weekly beginning on day 7 after injury. Joints were harvested on day 32 after injury. Histologic analysis was performed using Safranin O-fast green staining, and articular cartilage degeneration was graded using the Osteoarthritis Research Society International (OARSI)-modified Mankin criteria. Histologic specimens were immunoprobed for lubricin and sulfated glycosaminoglycans. A 24-hour urine collection was performed on days 17 and 29 postinjury, and urinary C-terminal telopeptide of type II collagen (CTX-II) levels were measured. RESULTS Treatment with human synoviocyte lubricin resulted in significantly lower OARSI scores for cartilage degeneration compared with no treatment or PBS treatment (P < 0.05). Increased immunostaining for lubricin in the superficial zone chondrocytes and on the surface of cartilage was observed in lubricin-treated, but not untreated or PBS-treated, joints. On day 17, urinary CTX-II levels in human synoviocyte lubricin- and human SF lubricin-treated animals were significantly lower than those in untreated animals (P = 0.005 and P = 0.002, respectively) and in PBS-treated animals (P = 0.002 and P < 0.001, respectively). CONCLUSION After treatment with any of the 3 types of lubricin evaluated in this study, a reduction in cartilage damage following ACLT was evident, combined with a reduction in type II collagen degradation. Our findings indicate that intraarticular lubricin injection following an ACL injury may be beneficial in retarding the degeneration of cartilage and the development of posttraumatic OA.
Collapse
Affiliation(s)
- Gregory D Jay
- Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Coles JM, Zhang L, Blum JJ, Warman ML, Jay GD, Guilak F, Zauscher S. Loss of cartilage structure, stiffness, and frictional properties in mice lacking PRG4. ACTA ACUST UNITED AC 2010; 62:1666-74. [PMID: 20191580 PMCID: PMC2943386 DOI: 10.1002/art.27436] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To assess the role of the glycoprotein PRG4 in joint lubrication and chondroprotection by measuring friction, stiffness, surface topography, and subsurface histology of the hip joints of Prg4(-/-) and wild-type (WT) mice. METHODS Friction and elastic modulus were measured in cartilage from the femoral heads of Prg4(-/-) and WT mice ages 2, 4, 10, and 16 weeks using atomic force microscopy, and the surface microstructure was imaged. Histologic sections of each femoral head were stained and graded. RESULTS Histologic analysis of the joints of Prg4(-/-) mice showed an enlarged, fragmented surface layer of variable thickness with Safranin O-positive formations sometimes present, a roughened underlying articular cartilage surface, and a progressive loss of pericellular proteoglycans. Friction was significantly higher on cartilage of Prg4(-/-) mice at age 16 weeks, but statistically significant differences in friction were not detected at younger ages. The elastic modulus of the cartilage was similar between cartilage surfaces of Prg4(-/-) and WT mice at young ages, but cartilage of WT mice showed increasing stiffness with age, with significantly higher moduli than cartilage of Prg4(-/-) mice at older ages. CONCLUSION Deletion of the gene Prg4 results in significant structural and biomechanical changes in the articular cartilage with age, some of which are consistent with osteoarthritic degeneration. These findings suggest that PRG4 plays a significant role in preserving normal joint structure and function.
Collapse
|
40
|
The glycosylation of human synovial lubricin: implications for its role in inflammation. Biochem J 2010; 429:359-67. [DOI: 10.1042/bj20100360] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Acidic proteins were isolated from synovial fluid from two osteoarthritic and two rheumatoid arthritic patients and identified by MS. It was found that the most abundant protein in all of the samples was the mucin-like protein lubricin. Further characterization of lubricin from the different patients by LC (liquid chromatography)–MS of released oligosaccharides showed that the core 1 O-linked oligosaccharides NeuAcα2–3Galβ1–3GalNAc and NeuAcα2–3Galβ1–3(NeuAcα2–6)GalNAc were the dominating structures on lubricin. The latter was found to be more prevalent in the rheumatoid arthritis samples, indicating that sialylation is up-regulated as part of the inflammatory response. In addition to these dominating structures, core 2 structures were also found in low amounts, where the largest was the disialylated hexasaccharide corresponding to the sequence NeuAcα2–3Galβ1–3(NeuAcα2–3Galβ1–3/4GlcNAcβ1–6)GalNAc. It was also found that a small proportion of the core 2 oligosaccharides carried sulfate. The ability of lubricin to present complex glycosylation reflecting the state of the joint tissue makes lubricin a candidate as a carrier of inflammatory oligosaccharide epitopes. In particular, it was shown that lubricin from inflamed arthritic tissue was recognized by the antibody MECA-79 and thus carried the sulfated epitope proposed to be part of the L-selectin ligand that is responsible for recruitment of leucocytes to inflammatory sites.
Collapse
|
41
|
Blewis ME, Lao BJ, Jadin KD, McCarty WJ, Bugbee WD, Firestein GS, Sah RL. Semi-permeable membrane retention of synovial fluid lubricants hyaluronan and proteoglycan 4 for a biomimetic bioreactor. Biotechnol Bioeng 2010; 106:149-60. [PMID: 20014439 DOI: 10.1002/bit.22645] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Synovial fluid (SF) contains lubricant macromolecules, hyaluronan (HA), and proteoglycan 4 (PRG4). The synovium not only contributes lubricants to SF through secretion by synoviocyte lining cells, but also concentrates lubricants in SF due to its semi-permeable nature. A membrane that recapitulates these synovium functions may be useful in a bioreactor system for generating a bioengineered fluid (BF) similar to native SF. The objectives were to analyze expanded polytetrafluoroethylene membranes with pore sizes of 50 nm, 90 nm, 170 nm, and 3 microm in terms of (1) HA and PRG4 secretion rates by adherent synoviocytes, and (2) the extent of HA and PRG4 retention with or without synoviocytes adherent on the membrane. Experiment 1: Synoviocytes were cultured on tissue culture (TC) plastic or membranes +/- IL-1beta + TGF-beta1 + TNF-alpha, a cytokine combination that stimulates lubricant synthesis. HA and PRG4 secretion rates were assessed by analysis of medium. Experiment 2: Bioreactors were fabricated to provide a BF compartment enclosed by membranes +/- adherent synoviocytes, and an external compartment of nutrient fluid (NF). A solution with HA (1 mg/mL, MW ranging from 30 to 4,000 kDa) or PRG4 (50 microg/mL) was added to the BF compartment, and HA and PRG4 loss into the NF compartment after 2, 8, and 24 h was determined. Lubricant loss kinetics were analyzed to estimate membrane permeability. Experiment 1: Cytokine-regulated HA and PRG4 secretion rates on membranes were comparable to those on TC plastic. Experiment 2: Transport of HA and PRG4 across membranes was lowest with 50 nm membranes and highest with 3 microm membranes, and transport of high MW HA was decreased by adherent synoviocytes (for 50 and 90 nm membranes). The permeability to HA mixtures for 50 nm membranes was approximately 20 x 10(-8) cm/s (- cells) and approximately 5 x 10(-8) cm/s (+ cells), for 90 nm membranes was approximately 35 x 10(-8) cm/s (- cells) and approximately 19 x 10(-8) cm/s (+ cells), for 170 nm membranes was approximately 74 x 10(-8) cm/s (+/- cells), and for 3 microm membranes was approximately 139 x 10(-8) cm/s (+/- cells). The permeability of 450 kDa HA was approximately 40x lower than that of 30 kDa HA for 50 nm membranes, but only approximately 2.5x lower for 3 microm membranes. The permeability of 4,000 kDa HA was approximately 250x lower than that of 30 kDa HA for 50 nm membranes, but only approximately 4x lower for 3 microm membranes. The permeability for PRG4 was approximately 4 x 10(-8) cm/s for 50 nm membranes, approximately 48 x 10(-8) cm/s for 90 nm membranes, approximately 144 x 10(-8) cm/s for 170 nm membranes, and approximately 336 x 10(-8) cm/s for 3 microm membranes. The associated loss across membranes after 24 h ranged from 3% to 92% for HA, and from 3% to 93% for PRG4. These results suggest that semi-permeable membranes may be used in a bioreactor system to modulate lubricant retention in a bioengineered SF, and that synoviocytes adherent on the membranes may serve as both a lubricant source and a barrier for lubricant transport.
Collapse
Affiliation(s)
- Megan E Blewis
- Department of Bioengineering, University of California-San Diego, 9500 Gilman Dr., Mail Code 0412, La Jolla, California 92093-0412, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Millotti G, Hoyer H, Engbersen J, Bernkop-Schnürch A. 6-mercaptonicotinamide-functionalized chitosan: a potential excipient for mucoadhesive drug delivery systems. J Drug Deliv Sci Technol 2010. [DOI: 10.1016/s1773-2247(10)50027-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|