1
|
Roy S, Zaker A, Mer A, D’Amours D. Large-scale phenogenomic analysis of human cancers uncovers frequent alterations affecting SMC5/6 complex components in breast cancer. NAR Cancer 2023; 5:zcad047. [PMID: 37705607 PMCID: PMC10495288 DOI: 10.1093/narcan/zcad047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/09/2023] [Accepted: 08/22/2023] [Indexed: 09/15/2023] Open
Abstract
Cancer cells often experience large-scale alterations in genome architecture because of DNA damage and replication stress. Whether mutations in core regulators of chromosome structure can also lead to cancer-promoting loss in genome stability is not fully understood. To address this question, we conducted a systematic analysis of mutations affecting a global regulator of chromosome biology -the SMC5/6 complex- in cancer genomics cohorts. Analysis of 64 959 cancer samples spanning 144 tissue types and 199 different cancer genome studies revealed that the SMC5/6 complex is frequently altered in breast cancer patients. Patient-derived mutations targeting this complex associate with strong phenotypic outcomes such as loss of ploidy control and reduced overall survival. Remarkably, the phenotypic impact of several patient mutations can be observed in a heterozygous context, hence providing an explanation for a prominent role of SMC5/6 mutations in breast cancer pathogenesis. Overall, our findings suggest that genes encoding global effectors of chromosome architecture can act as key contributors to cancer development in humans.
Collapse
Affiliation(s)
- Shamayita Roy
- Ottawa Institute of Systems Biology, Department of Cellular and Molecular Medicine, University of Ottawa, Roger Guindon Hall, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada
| | - Arvin Zaker
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Roger Guindon Hall, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada
| | - Arvind Mer
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Roger Guindon Hall, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada
| | - Damien D’Amours
- Ottawa Institute of Systems Biology, Department of Cellular and Molecular Medicine, University of Ottawa, Roger Guindon Hall, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
2
|
Liu J, Wang Q, Kang Y, Xu S, Pang D. Unconventional protein post-translational modifications: the helmsmen in breast cancer. Cell Biosci 2022; 12:22. [PMID: 35216622 PMCID: PMC8881842 DOI: 10.1186/s13578-022-00756-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/07/2022] [Indexed: 01/10/2023] Open
Abstract
AbstractBreast cancer is the most prevalent malignant tumor and a leading cause of mortality among females worldwide. The tumorigenesis and progression of breast cancer involve complex pathophysiological processes, which may be mediated by post-translational modifications (PTMs) of proteins, stimulated by various genes and signaling pathways. Studies into PTMs have long been dominated by the investigation of protein phosphorylation and histone epigenetic modifications. However, with great advances in proteomic techniques, several other PTMs, such as acetylation, glycosylation, sumoylation, methylation, ubiquitination, citrullination, and palmitoylation have been confirmed in breast cancer. Nevertheless, the mechanisms, effects, and inhibitors of these unconventional PTMs (particularly, the non-histone modifications other than phosphorylation) received comparatively little attention. Therefore, in this review, we illustrate the functions of these PTMs and highlight their impact on the oncogenesis and progression of breast cancer. Identification of novel potential therapeutic drugs targeting PTMs and development of biological markers for the detection of breast cancer would be significantly valuable for the efficient selection of therapeutic regimens and prediction of disease prognosis in patients with breast cancer.
Collapse
|
3
|
NSMCE2, a novel super-enhancer-regulated gene, is linked to poor prognosis and therapy resistance in breast cancer. BMC Cancer 2022; 22:1056. [PMID: 36224576 PMCID: PMC9555101 DOI: 10.1186/s12885-022-10157-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/07/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Despite today's advances in the treatment of cancer, breast cancer-related mortality remains high, in part due to the lack of effective targeted therapies against breast tumor types that do not respond to standard treatments. Therefore, identifying additional breast cancer molecular targets is urgently needed. Super-enhancers are large regions of open chromatin involved in the overactivation of oncogenes. Thus, inhibition of super-enhancers has become a focus in clinical trials for its therapeutic potential. Here, we aimed to identify novel super-enhancer dysregulated genes highly associated with breast cancer patients' poor prognosis and negative response to treatment. METHODS Using existing datasets containing super-enhancer-associated genes identified in breast tumors and public databases comprising genomic and clinical information for breast cancer patients, we investigated whether highly expressed super-enhancer-associated genes correlate to breast cancer patients' poor prognosis and to patients' poor response to therapy. Our computational findings were experimentally confirmed in breast cancer cells by pharmacological SE disruption and gene silencing techniques. RESULTS We bioinformatically identified two novel super-enhancer-associated genes - NSMCE2 and MAL2 - highly upregulated in breast tumors, for which high RNA levels significantly and specifically correlate with breast cancer patients' poor prognosis. Through in-vitro pharmacological super-enhancer disruption assays, we confirmed that super-enhancers upregulate NSMCE2 and MAL2 transcriptionally, and, through bioinformatics, we found that high levels of NSMCE2 strongly associate with patients' poor response to chemotherapy, especially for patients diagnosed with aggressive triple negative and HER2 positive tumor types. Finally, we showed that decreasing NSMCE2 gene expression increases breast cancer cells' sensitivity to chemotherapy treatment. CONCLUSIONS Our results indicate that moderating the transcript levels of NSMCE2 could improve patients' response to standard chemotherapy consequently improving disease outcome. Our approach offers a new avenue to identify a signature of tumor specific genes that are not frequently mutated but dysregulated by super-enhancers. As a result, this strategy can lead to the discovery of potential and novel pharmacological targets for improving targeted therapy and the treatment of breast cancer.
Collapse
|
4
|
Smc5/6 silences episomal transcription by a three-step function. Nat Struct Mol Biol 2022; 29:922-931. [PMID: 36097294 DOI: 10.1038/s41594-022-00829-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 07/29/2022] [Indexed: 11/08/2022]
Abstract
In addition to its role in chromosome maintenance, the six-membered Smc5/6 complex functions as a restriction factor that binds to and transcriptionally silences viral and other episomal DNA. However, the underlying mechanism is unknown. Here, we show that transcriptional silencing by the human Smc5/6 complex is a three-step process. The first step is entrapment of the episomal DNA by a mechanism dependent on Smc5/6 ATPase activity and a function of its Nse4a subunit for which the Nse4b paralog cannot substitute. The second step results in Smc5/6 recruitment to promyelocytic leukemia nuclear bodies by SLF2 (the human ortholog of Nse6). The third step promotes silencing through a mechanism requiring Nse2 but not its SUMO ligase activity. By contrast, the related cohesin and condensin complexes fail to bind to or silence episomal DNA, indicating a property unique to Smc5/6.
Collapse
|
5
|
Shi X, Du Y, Li S, Wu H. The Role of SUMO E3 Ligases in Signaling Pathway of Cancer Cells. Int J Mol Sci 2022; 23:3639. [PMID: 35408996 PMCID: PMC8998487 DOI: 10.3390/ijms23073639] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Small ubiquitin-like modifier (SUMO)ylation is a reversible post-translational modification that plays a crucial role in numerous aspects of cell physiology, including cell cycle regulation, DNA damage repair, and protein trafficking and turnover, which are of importance for cell homeostasis. Mechanistically, SUMOylation is a sequential multi-enzymatic process where SUMO E3 ligases recruit substrates and accelerate the transfer of SUMO onto targets, modulating their interactions, localization, activity, or stability. Accumulating evidence highlights the critical role of dysregulated SUMO E3 ligases in processes associated with the occurrence and development of cancers. In the present review, we summarize the SUMO E3 ligases, in particular, the novel ones recently identified, and discuss their regulatory roles in cancer pathogenesis.
Collapse
Affiliation(s)
| | | | | | - Huijian Wu
- School of Bioengineering & Province Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian 116024, China; (X.S.); (Y.D.); (S.L.)
| |
Collapse
|
6
|
Felicio PS, Bidinotto LT, Melendez ME, Grasel RS, Campacci N, Galvão HCR, Scapulatempo-Neto C, Dufloth RM, Evangelista AF, Palmero EI. Genetic alterations detected by comparative genomic hybridization in BRCAX breast and ovarian cancers of Brazilian population. Oncotarget 2018; 9:27525-27534. [PMID: 29938003 PMCID: PMC6007956 DOI: 10.18632/oncotarget.25537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 05/14/2018] [Indexed: 12/19/2022] Open
Abstract
Background About 5–10% of breast/ovarian cancers are hereditary. However, for a large proportion of cases (around 50%), the genetic cause remains unknown. These cases are grouped in a separated BRCAX category. The aim of this study was to identify genomic alterations in BRCA1/BRCA2 wild-type tumor samples from women with family history strongly suggestive of hereditary breast/ovarian cancer. Results A cohort of 31 Brazilian women was included in the study. Using the GISTIC algorithm, we identified 20 regions with genomic gains and 31 with losses. The most frequent altered regions were 1q21.2, 6p22.1 and 8p23.3 in breast tumors and Xq26 and Xp22.32-22.31 among the ovarian cancer cases. An interesting association identified was the loss of 22q13.31-13.32 and the presence of ovarian cancer cases. Among the genes present in the frequently altered regions, we found FGFR1, NSMCE2, CTTN, CRLF2, ERBB2, STARD3, MIR3201 and several genes of RAET and ULBP family. Conclusions In conclusion, our results suggest that alterations on chromosomes 1, 6, 8 and X are common on BRCAX tumors and that the loss on 22q can be associated with the presence of ovarian cancer. Methods DNA copy number alterations were analyzed by 60K array comparative genomic hybridization in breast and ovarian FFPE tumors.
Collapse
Affiliation(s)
- Paula Silva Felicio
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil
| | - Lucas Tadeu Bidinotto
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil.,Barretos School of Health Sciences-FACISB, Barretos, SP, Brazil
| | | | | | - Natalia Campacci
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil
| | | | | | | | | | - Edenir Inêz Palmero
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil.,Barretos School of Health Sciences-FACISB, Barretos, SP, Brazil
| |
Collapse
|
7
|
Ma L, Feng L, Ding X, Li Y. Effect of TLR4 on the growth of SiHa human cervical cancer cells via the MyD88-TRAF6-TAK1 and NF-κB-cyclin D1-STAT3 signaling pathways. Oncol Lett 2018; 15:3965-3970. [PMID: 29556281 DOI: 10.3892/ol.2018.7801] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/28/2017] [Indexed: 12/25/2022] Open
Abstract
The present study aimed to investigate the effect of Toll-like receptor 4 (TLR4) on SiHa human cervical cancer cells and its potential molecular biological mechanisms. The expression of TLR4 following treatment with lipopolysaccharide (LPS) in in SiHa cervical cancer cells was detected by quantitative polymerase chain reaction (qPCR). LPS-induced cell proliferation and apoptosis were detected by MTT assay as well as staining with propidium iodide (PI) and Annexin V/PI double staining. qPCR was performed to analyze the expression levels of tumor necrosis factor receptor-associated factor 6 (TRAF6) and transforming growth factor-activated kinase 1 (TAK1) genes. Western blot analysis was performed to analyze the expression of myeloid differentiation 88 (MyD88), nuclear factor-κB (NF-κB), cyclin D1 and signal transducer and activator of transcription 3 (STAT3) proteins. In the present study, it was revealed that TLR4 expression in SiHa cervical cancer cells may be upregulated by LPS. Additionally, LPS was able to increase the proliferation of SiHa cells. However, LPS treatment did not have an effect on apoptosis of the cells. In addition, the MyD88-TRAF6-TAK1 and NF-κB-cyclin D1-STAT3 signaling pathways were induced in SiHa cells by LPS. These results suggested the effect of LPS and TLR4 on proliferation of SiHa human cervical cancer cells via the MyD88-TRAF6-TAK1 and NF-κB-cyclin D1-STAT3 signaling pathways.
Collapse
Affiliation(s)
- Li Ma
- Department of Obstetrics and Gynecology, The Second Artillery General Hospital, Beijing 100088, P.R. China
| | - Li Feng
- Department of Obstetrics and Gynecology, The Second Artillery General Hospital, Beijing 100088, P.R. China
| | - Xiaoping Ding
- Department of Obstetrics and Gynecology, The Second Artillery General Hospital, Beijing 100088, P.R. China
| | - Yongwang Li
- Department of Anesthesiology, The Second Artillery General Hospital, Beijing 100088, P.R. China
| |
Collapse
|
8
|
Zheng Y, Jongejan A, Mulder CL, Mastenbroek S, Repping S, Wang Y, Li J, Hamer G. Trivial role for NSMCE2 during in vitro proliferation and differentiation of male germline stem cells. Reproduction 2017; 154:181-195. [DOI: 10.1530/rep-17-0173] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/26/2017] [Accepted: 06/02/2017] [Indexed: 12/12/2022]
Abstract
Spermatogenesis, starting with spermatogonial differentiation, is characterized by ongoing and dramatic alterations in composition and function of chromatin. Failure to maintain proper chromatin dynamics during spermatogenesis may lead to mutations, chromosomal aberrations or aneuploidies. When transmitted to the offspring, these can cause infertility or congenital malformations. The structural maintenance of chromosomes (SMC) 5/6 protein complex has recently been described to function in chromatin modeling and genomic integrity maintenance during spermatogonial differentiation and meiosis. Among the subunits of the SMC5/6 complex, non-SMC element 2 (NSMCE2) is an important small ubiquitin-related modifier (SUMO) ligase. NSMCE2 has been reported to be essential for mouse development, prevention of cancer and aging in adult mice and topological stress relief in human somatic cells. By using in vitro cultured primary mouse spermatogonial stem cells (SSCs), referred to as male germline stem (GS) cells, we investigated the function of NSMCE2 during spermatogonial proliferation and differentiation. We first optimized a protocol to generate genetically modified GS cell lines using CRISPR-Cas9 and generated an Nsmce2−/− GS cell line. Using this Nsmce2−/− GS cell line, we found that NSMCE2 was dispensable for proliferation, differentiation and topological stress relief in mouse GS cells. Moreover, RNA sequencing analysis demonstrated that the transcriptome was only minimally affected by the absence of NSMCE2. Only differential expression of Sgsm1 appeared highly significant, but with SGSM1 protein levels being unaffected without NSMCE2. Hence, despite the essential roles of NSMCE2 in somatic cells, chromatin integrity maintenance seems differentially regulated in the germline.
Collapse
|
9
|
Huang Y, Pan J, Chen D, Zheng J, Qiu F, Li F, Wu Y, Wu W, Huang X, Qian J. Identification and functional analysis of differentially expressed genes in poorly differentiated hepatocellular carcinoma using RNA-seq. Oncotarget 2017; 8:35973-35983. [PMID: 28415592 PMCID: PMC5482631 DOI: 10.18632/oncotarget.16415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/12/2017] [Indexed: 02/06/2023] Open
Abstract
Poorly differentiated (PD) hepatocellular carcinoma (HCC) has a worse prognosis compared to moderately differentiated (MD) and well differentiated (WD) HCC. We aimed to identify differentially expressed genes (DEGs) to explore the mechanism of PD HCC. Transcriptome sequencing was performed on tumor and adjacent non-tumorous tissues of PD, MD and WD HCC patients (3 for each group). DEGs were thus identified and functionally analyzed. Further RT-PCR was performed to validate DEGs specific for PD HCC in 47 pairs of samples (15 for PD, 18 for MD, 14 for WD). A total of 681 PD DEGs were detected, including 368 up-regulated and 313 down-regulated genes. Less DEGs were found for MD and especially for WD HCC. Through bioinformatics analysis, PD HCC DEGs were enriched in liver tissue and liver cancer cells, and in biological process and pathway including metabolism, cell cycle, translation and blood coagulation. Potential drugs and genetic perturbations were found to reverse the cancer condition. The RT-PCR results showed consistency with RNA-seq in the validation of 4 DEGs specific for PD HCC. This study detected and validated DEGs of PD HCC, which provides useful information on molecular mechanism of PD HCC for development of new biomarkers, therapeutic targets and drugs.
Collapse
Affiliation(s)
- Yi Huang
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian 350001, China.,Provincial Clinical College, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Jianbo Pan
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Dunyan Chen
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian 350001, China.,Provincial Clinical College, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Jiaying Zheng
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian 350001, China.,Provincial Clinical College, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Funan Qiu
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian 350001, China.,Department of Hepatobiliary Surgery, Fujian Provincial Hospital, Fuzhou, Fujian 350001, China
| | - Feng Li
- Provincial Clinical College, Fujian Medical University, Fuzhou, Fujian 350001, China.,Department of Pathology, Fujian Provincial Hospital, Fuzhou, Fujian 350001, China
| | - Yanan Wu
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian 350001, China.,Provincial Clinical College, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Wenbing Wu
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian 350001, China.,Provincial Clinical College, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Xiaoli Huang
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian 350001, China.,Provincial Clinical College, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Jiang Qian
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
10
|
Verver DE, Zheng Y, Speijer D, Hoebe R, Dekker HL, Repping S, Stap J, Hamer G. Non-SMC Element 2 (NSMCE2) of the SMC5/6 Complex Helps to Resolve Topological Stress. Int J Mol Sci 2016; 17:ijms17111782. [PMID: 27792189 PMCID: PMC5133783 DOI: 10.3390/ijms17111782] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/14/2016] [Accepted: 10/20/2016] [Indexed: 01/05/2023] Open
Abstract
The structural maintenance of chromosomes (SMC) protein complexes shape and regulate the structure and dynamics of chromatin, thereby controlling many chromosome-based processes such as cell cycle progression, differentiation, gene transcription and DNA repair. The SMC5/6 complex is previously described to promote DNA double-strand breaks (DSBs) repair by sister chromatid recombination, and found to be essential for resolving recombination intermediates during meiotic recombination. Moreover, in budding yeast, SMC5/6 provides structural organization and topological stress relief during replication in mitotically dividing cells. Despite the essential nature of the SMC5/6 complex, the versatile mechanisms by which SMC5/6 functions and its molecular regulation in mammalian cells remain poorly understood. By using a human osteosarcoma cell line (U2OS), we show that after the CRISPR-Cas9-mediated removal of the SMC5/6 subunit NSMCE2, treatment with the topoisomerase II inhibitor etoposide triggered an increased sensitivity in cells lacking NSMCE2. In contrast, NSMCE2 appeared not essential for a proper DNA damage response or cell survival after DSB induction by ionizing irradiation (IR). Interestingly, by way of immunoprecipitations (IPs) and mass spectrometry, we found that the SMC5/6 complex physically interacts with the DNA topoisomerase II α (TOP2A). We therefore propose that the SMC5/6 complex functions in resolving TOP2A-mediated DSB-repair intermediates generated during replication.
Collapse
Affiliation(s)
- Dideke E Verver
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Yi Zheng
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Dave Speijer
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Ron Hoebe
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Henk L Dekker
- Mass Spectrometry of Biomacromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090 GE Amsterdam, The Netherlands.
| | - Sjoerd Repping
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Jan Stap
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Geert Hamer
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Meng F, Qian J, Yue H, Li X, Xue K. SUMOylation of Rb enhances its binding with CDK2 and phosphorylation at early G1 phase. Cell Cycle 2016; 15:1724-32. [PMID: 27163259 PMCID: PMC4957593 DOI: 10.1080/15384101.2016.1182267] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Retinoblastoma protein (Rb) is a prototypical tumor suppressor that is vital to the negative regulation of the cell cycle and tumor progression. Hypo-phosphorylated Rb is associated with G0/G1 arrest by suppressing E2F transcription factor activity, whereas Rb hyper-phosphorylation allows E2F release and cell cycle progression from G0/G1 to S phase. However, the factors that regulate cyclin-dependent protein kinase (CDK)-dependent hyper-phosphorylation of Rb during the cell cycle remain obscure. In this study, we show that throughout the cell cycle, Rb is specifically small ubiquitin-like modifier (SUMO)ylated at early G1 phase. SUMOylation of Rb stimulates its phosphorylation level by recruiting a SUMO-interaction motif (SIM)-containing kinase CDK2, leading to Rb hyper-phosphorylation and E2F-1 release. In contrast, a SUMO-deficient Rb mutant results in reduced SUMOylation and phosphorylation, weakened CDK2 binding, and attenuated E2F-1 sequestration. Furthermore, we reveal that Rb SUMOylation is required for cell proliferation. Therefore, our study describes a novel mechanism that regulates Rb phosphorylation during cell cycle progression.
Collapse
Affiliation(s)
- Fengxi Meng
- a Department of Ophthalmology , Eye and ENT Hospital of Fudan University , Shanghai , China.,b Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University , Shanghai , China
| | - Jiang Qian
- a Department of Ophthalmology , Eye and ENT Hospital of Fudan University , Shanghai , China.,b Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University , Shanghai , China
| | - Han Yue
- a Department of Ophthalmology , Eye and ENT Hospital of Fudan University , Shanghai , China.,b Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University , Shanghai , China
| | - Xiaofeng Li
- a Department of Ophthalmology , Eye and ENT Hospital of Fudan University , Shanghai , China.,b Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University , Shanghai , China
| | - Kang Xue
- a Department of Ophthalmology , Eye and ENT Hospital of Fudan University , Shanghai , China.,b Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University , Shanghai , China
| |
Collapse
|
12
|
Analysis of Prostate Cancer Susceptibility Variants in South African Men: Replicating Associations on Chromosomes 8q24 and 10q11. Prostate Cancer 2015; 2015:465184. [PMID: 26347821 PMCID: PMC4549549 DOI: 10.1155/2015/465184] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/02/2015] [Indexed: 12/11/2022] Open
Abstract
Genome-wide association studies (GWAS) have implicated single nucleotide polymorphisms (SNPs) on chromosomes 2p15, 6q25, 7p15.2, 7q21, 8q24, 10q11, 10q26, 11q13, 17q12, 17q24, 19q13, and Xp11, with prostate cancer (PCa) susceptibility and/or tumour aggressiveness, in populations of African, European, and Asian ancestry. The objective of this study was to confirm these associations in South African Mixed Ancestry and White men. We evaluated 17 prioritised GWAS SNPs in South African cases (331 Mixed Ancestry and 155 White) and controls (178 Mixed Ancestry and 145 White). The replicated SNP associations for the different South African ethnic groups were rs7008482 (8q24) (p = 2.45 × 10−5), rs6983267 (8q24) (p = 4.48 × 10−7), and rs10993994 (10q11) (p = 1.40 × 10−3) in Mixed Ancestry men and rs10993994 (p = 1.56 × 10−9) in White men. No significant associations were observed for the analyses stratified by disease aggressiveness in the individual and the combined population group analysis. The present study demonstrates that a number of known PCa susceptibility variants may contribute to disease susceptibility in South African men. Larger genetic investigations extended to other South African population groups are warranted to confirm the role of these and other SNPs in disease susceptibility.
Collapse
|