1
|
Yeo EJ, Shin MJ, Youn GS, Park JH, Yeo HJ, Kwon HJ, Lee LR, Kim NY, Kwon SY, Kim SM, Lee J, Lee KW, Lee CH, Cho YJ, Kwon OS, Kim DW, Jung HY, Eum WS, Choi SY. Tat-RAN attenuates brain ischemic injury in hippocampal HT-22 cells and ischemia animal model. Neurochem Int 2023; 167:105538. [PMID: 37207854 DOI: 10.1016/j.neuint.2023.105538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/30/2023] [Accepted: 05/07/2023] [Indexed: 05/21/2023]
Abstract
Oxidative stress plays a key role in the pathogenesis of neuronal injury, including ischemia. Ras-related nuclear protein (RAN), a member of the Ras superfamily, involves in a variety of biological roles, such as cell division, proliferation, and signal transduction. Although RAN reveals antioxidant effect, its precise neuroprotective mechanisms are still unclear. Therefore, we investigated the effects of RAN on HT-22 cell which were exposed to H2O2-induced oxidative stress and ischemia animal model by using the cell permeable Tat-RAN fusion protein. We showed that Tat-RAN transduced into HT-22 cells, and markedly inhibited cell death, DNA fragmentation, and reactive oxygen species (ROS) generation under oxidative stress. This fusion protein also controlled cellular signaling pathways, including mitogen-activated protein kinases (MAPKs), NF-κB, and apoptosis (Caspase-3, p53, Bax and Bcl-2). In the cerebral forebrain ischemia animal model, Tat-RAN significantly inhibited both neuronal cell death, and astrocyte and microglia activation. These results indicate that RAN significantly protects against hippocampal neuronal cell death, suggesting Tat-RAN will help to develop the therapies for neuronal brain diseases including ischemic injury.
Collapse
Affiliation(s)
- Eun Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Min Jea Shin
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Gi Soo Youn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Jung Hwan Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Hyeon Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Hyun Jung Kwon
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Lee Re Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Na Yeon Kim
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Su Yeon Kwon
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Su Min Kim
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Jaehak Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Keun Wook Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Chan Hee Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Yong-Jun Cho
- Department of Neurosurgery, Hallym University Medical Center, Chuncheon, 24253, South Korea
| | - Oh-Shin Kwon
- School of Life Sciences, College of Natural Sciences Kyungpook National University, Taegu, 41566, South Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, South Korea
| | - Hyo Young Jung
- Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon, 34134, South Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea.
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea.
| |
Collapse
|
2
|
Jibiki K, Kodama TS, Yasuhara N. Importin alpha family NAAT/IBB domain: Functions of a pleiotropic long chameleon sequence. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:175-209. [PMID: 36858734 DOI: 10.1016/bs.apcsb.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nuclear transport is essential for eukaryotic cell survival and regulates the movement of functional molecules in and out of the nucleus via the nuclear pore. Transport is facilitated by protein-protein interactions between cargo and transport receptors, which contribute to the expression and regulation of downstream genetic information. This chapter focuses on the molecular basis of the multifunctional nature of the importin α family, the representative transport receptors that bring proteins into the nucleus. Importin α performs multiple functions during the nuclear transport cycle through interactions with multiple molecules by a single domain called the IBB domain. This domain is a long chameleon sequence, which can change its conformation and binding mode depending on the interaction partners. By considering the evolutionarily conserved biochemical/physicochemical propensities of the amino acids constituting the functional complex interfaces, together with their structural properties, the mechanisms of switching between multiple complexes formed via IBB and the regulation of downstream functions are examined in detail. The mechanism of regulation by IBB indicates that the time has come for a paradigm shift in the way we view the molecular mechanisms by which proteins regulate downstream functions through their interactions with other molecules.
Collapse
Affiliation(s)
- Kazuya Jibiki
- Graduate School of Integrated Basic Sciences, Nihon University, Setagaya-ku, Tokyo, Japan
| | - Takashi S Kodama
- Laboratory of Molecular Biophysics, Institute for Protein Research, Osaka University, Osaka, Japan.
| | - Noriko Yasuhara
- Graduate School of Integrated Basic Sciences, Nihon University, Setagaya-ku, Tokyo, Japan.
| |
Collapse
|
3
|
Cevik M, Caker S, Deliorman G, Cagatay P, Gunduz MK, Susleyici B. The effects of glipizide on DNA damage and nuclear transport in differentiated 3T3-L1 adipocytes. Mol Biol Rep 2022; 49:1151-1159. [PMID: 35013863 DOI: 10.1007/s11033-021-06942-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Despite commonly use for treatment of type II diabetes, possible effects of glipizide on nuclear transport and DNA damage in cells are unknown. Since clinical response of glipizide may change with aging, the aim of the study was to investigate the effect of glipizide by comparing mature and senescent adipocytes. METHODS AND RESULTS The effects of glipizide were investigated in 3T3-L1 adipocytes. Effective and lethal doses were determined by real-time monitoring iCELLigence system. Comet assay was performed to determine DNA damage and quantitative PCR was conducted to detect gene expression levels. RAN expressions were found to be up regulated in mature 180 µM glipizide treated adipocytes compared to control group (p < 0.05); whereas down regulated in senescent 180 µM glipizide treated adipocytes compared to their control adipocytes (p < 0.05). Olive Tail Moment values were significantly higher in mature 180 µM glipizide treated adipocytes (MTG) and senescent 180 µM glipizide treated adipocytes (STG) comparing their untreated controls (p < 0.001 and p < 0.001 respectively). Also class 5 comets that shows severe DNA damage were found to be higher in both MTG and STG groups than their controls (p < 0.001 and p < 0.001, respectively). OTM values were higher in STG than MTG (p < 0.001). CONCLUSIONS This is the first study that reports glipizide caused DNA damage increasing with senescence in adipocytes. As a response to glipizide treatment Ran gene expression increased in mature; and decreased in senescent adipocytes. Further studies are needed to reveal the effect of glipizide on DNA and nuclear interactions in molecular level.
Collapse
Affiliation(s)
- Mehtap Cevik
- Division of Biology, Department of Molecular Biology, Faculty of Arts and Sciences, Marmara University, Istanbul, Turkey
| | - Selen Caker
- Division of Biology, Department of Molecular Biology, Faculty of Arts and Sciences, Marmara University, Istanbul, Turkey
| | - Gokce Deliorman
- Department of Software Engineering, Faculty of Engineering and Architecture, Beykoz University, Istanbul, Turkey
| | - Penbe Cagatay
- Department of Medical Services and Technics, Vocational School of Health Service, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | | | - Belgin Susleyici
- Division of Biology, Department of Molecular Biology, Faculty of Arts and Sciences, Marmara University, Istanbul, Turkey.
| |
Collapse
|
4
|
Park JH, Ryu SJ, Kim BJ, Cho HJ, Park CH, Choi HJC, Jang EJ, Yang EJ, Hwang JA, Woo SH, Lee JH, Park JH, Choi KM, Kwon YY, Lee CK, Park JT, Cho SC, Lee YI, Lee SB, Han JA, Cho KA, Kim MS, Hwang D, Lee YS, Park SC. Disruption of nucleocytoplasmic trafficking as a cellular senescence driver. Exp Mol Med 2021; 53:1092-1108. [PMID: 34188179 PMCID: PMC8257587 DOI: 10.1038/s12276-021-00643-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 04/20/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
Senescent cells exhibit a reduced response to intrinsic and extrinsic stimuli. This diminished reaction may be explained by the disrupted transmission of nuclear signals. However, this hypothesis requires more evidence before it can be accepted as a mechanism of cellular senescence. A proteomic analysis of the cytoplasmic and nuclear fractions obtained from young and senescent cells revealed disruption of nucleocytoplasmic trafficking (NCT) as an essential feature of replicative senescence (RS) at the global level. Blocking NCT either chemically or genetically induced the acquisition of an RS-like senescence phenotype, named nuclear barrier-induced senescence (NBIS). A transcriptome analysis revealed that, among various types of cellular senescence, NBIS exhibited a gene expression pattern most similar to that of RS. Core proteomic and transcriptomic patterns common to both RS and NBIS included upregulation of the endocytosis-lysosome network and downregulation of NCT in senescent cells, patterns also observed in an aging yeast model. These results imply coordinated aging-dependent reduction in the transmission of extrinsic signals to the nucleus and in the nucleus-to-cytoplasm supply of proteins/RNAs. We further showed that the aging-associated decrease in Sp1 transcription factor expression was critical for the downregulation of NCT. Our results suggest that NBIS is a modality of cellular senescence that may represent the nature of physiological aging in eukaryotes.
Collapse
Affiliation(s)
- Ji-Hwan Park
- grid.249967.70000 0004 0636 3099Korea Bioinformation Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, 34141 Republic of Korea
| | - Sung Jin Ryu
- grid.419666.a0000 0001 1945 5898Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon, 16677 Republic of Korea ,Present Address: UBLBio Corporation, Suwon, 16679 Republic of Korea
| | - Byung Ju Kim
- grid.417736.00000 0004 0438 6721Present Address: Well Aging Research Center, Division of Biotechnology, DGIST, Daegu, 42988 Republic of Korea ,Present Address: UBLBio Corporation, Suwon, 16679 Republic of Korea
| | - Hyun-Ji Cho
- grid.417736.00000 0004 0438 6721Present Address: Well Aging Research Center, Division of Biotechnology, DGIST, Daegu, 42988 Republic of Korea
| | - Chi Hyun Park
- grid.412010.60000 0001 0707 9039Department of Computer Science and Engineering, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Hyo Jei Claudia Choi
- grid.419666.a0000 0001 1945 5898Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon, 16677 Republic of Korea
| | - Eun-Jin Jang
- grid.417736.00000 0004 0438 6721Present Address: Well Aging Research Center, Division of Biotechnology, DGIST, Daegu, 42988 Republic of Korea
| | - Eun Jae Yang
- grid.417736.00000 0004 0438 6721Department of New Biology, DGIST, Daegu, 42988 Republic of Korea
| | - Jeong-A Hwang
- grid.417736.00000 0004 0438 6721Department of New Biology, DGIST, Daegu, 42988 Republic of Korea
| | - Seung-Hwa Woo
- grid.417736.00000 0004 0438 6721Department of New Biology, DGIST, Daegu, 42988 Republic of Korea
| | - Jun Hyung Lee
- grid.417736.00000 0004 0438 6721Department of New Biology, DGIST, Daegu, 42988 Republic of Korea
| | - Ji Hwan Park
- grid.417736.00000 0004 0438 6721Department of New Biology, DGIST, Daegu, 42988 Republic of Korea
| | - Kyung-Mi Choi
- grid.222754.40000 0001 0840 2678Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Young-Yon Kwon
- grid.222754.40000 0001 0840 2678Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Cheol-Koo Lee
- grid.222754.40000 0001 0840 2678Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Joon Tae Park
- grid.412977.e0000 0004 0532 7395Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012 Republic of Korea
| | - Sung Chun Cho
- grid.417736.00000 0004 0438 6721Present Address: Well Aging Research Center, Division of Biotechnology, DGIST, Daegu, 42988 Republic of Korea
| | - Yun-Il Lee
- grid.417736.00000 0004 0438 6721Present Address: Well Aging Research Center, Division of Biotechnology, DGIST, Daegu, 42988 Republic of Korea
| | - Sung Bae Lee
- grid.417736.00000 0004 0438 6721Department of Brain & Cognitive Science, DGIST, Daegu, 42988 Republic of Korea
| | - Jeong A. Han
- grid.412010.60000 0001 0707 9039Department of Biochemistry and Molecular Biology, Kangwon National University School of Medicine, Chuncheon, 24341 Republic of Korea
| | - Kyung A Cho
- grid.14005.300000 0001 0356 9399Department of Biochemistry, Chonnam National University, Medical School, Gwangju, 61469 Republic of Korea
| | - Min-Sik Kim
- grid.417736.00000 0004 0438 6721Department of New Biology, DGIST, Daegu, 42988 Republic of Korea
| | - Daehee Hwang
- grid.31501.360000 0004 0470 5905Department of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Young-Sam Lee
- grid.417736.00000 0004 0438 6721Present Address: Well Aging Research Center, Division of Biotechnology, DGIST, Daegu, 42988 Republic of Korea ,grid.417736.00000 0004 0438 6721Department of New Biology, DGIST, Daegu, 42988 Republic of Korea
| | - Sang Chul Park
- grid.417736.00000 0004 0438 6721Present Address: Well Aging Research Center, Division of Biotechnology, DGIST, Daegu, 42988 Republic of Korea ,grid.14005.300000 0001 0356 9399The Future Life & Society Research Center, Advanced Institute of Aging Science, Chonnam National University, Gwangju, 61469 Republic of Korea
| |
Collapse
|
5
|
Oguro A, Imaoka S. Thioredoxin-related transmembrane protein 2 (TMX2) regulates the Ran protein gradient and importin-β-dependent nuclear cargo transport. Sci Rep 2019; 9:15296. [PMID: 31653923 PMCID: PMC6814788 DOI: 10.1038/s41598-019-51773-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/27/2019] [Indexed: 01/05/2023] Open
Abstract
TMX2 is a thioredoxin family protein, but its functions have not been clarified. To elucidate the function of TMX2, we explored TMX2-interacting proteins by LC-MS. As a result, importin-β, Ran GTPase (Ran), RanGAP, and RanBP2 were identified. Importin-β is an adaptor protein which imports cargoes from cytosol to the nucleus, and is exported into the cytosol by interaction with RanGTP. At the cytoplasmic nuclear pore, RanGAP and RanBP2 facilitate hydrolysis of RanGTP to RanGDP and the disassembly of the Ran-importin-β complex, which allows the recycling of importin-β and reentry of Ran into the nucleus. Despite its interaction of TMX2 with importin-β, we showed that TMX2 is not a transport cargo. We found that TMX2 localizes in the outer nuclear membrane with its N-terminus and C-terminus facing the cytoplasm, where it co-localizes with importin-β and Ran. Ran is predominantly distributed in the nucleus, but TMX2 knockdown disrupted the nucleocytoplasmic Ran gradient, and the cysteine 112 residue of Ran was important in its regulation by TMX2. In addition, knockdown of TMX2 suppressed importin-β-mediated transport of protein. These results suggest that TMX2 works as a regulator of protein nuclear transport, and that TMX2 facilitates the nucleocytoplasmic Ran cycle by interaction with nuclear pore proteins.
Collapse
Affiliation(s)
- Ami Oguro
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan. .,Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan.
| | - Susumu Imaoka
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan.
| |
Collapse
|
6
|
Hua R, Zhou L, Zhang H, Yang H, Peng W, Wu K. Studying the variations in differently expressed serum proteins of Hainan black goat during the breeding cycle using isobaric tags for relative and absolute quantitation (iTRAQ) technology. J Reprod Dev 2019; 65:413-421. [PMID: 31308307 PMCID: PMC6815738 DOI: 10.1262/jrd.2018-105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Hainan black goat is a high-quality local goat breed in Hainan Province of China. It is resistant to high temperatures, humidity, and disease. Although the meat of this breed is tender
and delicious, its reproductive performance and milk yield are low. In this study, isobaric tags for relative and absolute quantitation (iTRAQ) technology was used to analyze the
differentially expressed proteins in the serum of female Hainan black goats during the reproductive cycle (empty pregnant, estrus, gestation, and lactation). The pathway enrichment analysis
results showed that most of the differentially expressed proteins between each period belonged to the complement and coagulation cascades. Analysis of the differential protein expression and
function revealed seven proteins that were directly associated with reproduction, namely pre-SAA21, ANTXR2, vWF, SFRP3, β4GalT1, pre-IGFBP2 and Ran. This study revealed the changing patterns
of differentially expressed proteins in the reproductive cycle of the Hainan black goat. pre-SAA21, ANTXR2, vWF, SFRP3, β4GalT1, pre-IGFBP2, and Ran were identified as candidate proteins for
mediating the physiological state of Hainan black goats and regulating their fertility. This study elucidated the changes in expression levels of differentially expressed proteins during the
reproductive cycle of Hainan black goats and also provides details about its breeding pattern.
Collapse
Affiliation(s)
- Rui Hua
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, Hainan University, Hainan 570228, People's Republic of China
| | - Lu Zhou
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, Hainan University, Hainan 570228, People's Republic of China
| | - Haiwen Zhang
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, Hainan University, Hainan 570228, People's Republic of China.,Laboratory of Tropical Animal Breeding, Reproduction and Nutrition, Hainan University, Hainan 570228, People's Republic of China
| | - Hui Yang
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, Hainan University, Hainan 570228, People's Republic of China
| | - Wenchuan Peng
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, Hainan University, Hainan 570228, People's Republic of China
| | - Kebang Wu
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, Hainan University, Hainan 570228, People's Republic of China.,Laboratory of Tropical Animal Breeding, Reproduction and Nutrition, Hainan University, Hainan 570228, People's Republic of China
| |
Collapse
|
7
|
OKA M, YONEDA Y. Importin α: functions as a nuclear transport factor and beyond. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2018; 94:259-274. [PMID: 30078827 PMCID: PMC6117492 DOI: 10.2183/pjab.94.018] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nucleocytoplasmic transport is an essential process in eukaryotes. The molecular mechanisms underlying nuclear transport that involve the nuclear transport receptor, small GTPase Ran, and the nuclear pore complex are highly conserved from yeast to humans. On the other hand, it has become clear that the nuclear transport system diverged during evolution to achieve various physiological functions in multicellular eukaryotes. In this review, we first summarize the molecular mechanisms of nuclear transport and how these were elucidated. Then, we focus on the diverse functions of importin α, which acts not merely an import factor but also as a multi-functional protein contributing to a variety of cellular functions in higher eukaryotes.
Collapse
Affiliation(s)
- Masahiro OKA
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Yoshihiro YONEDA
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Correspondence should be addressed: Y. Yoneda, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan (e-mail: )
| |
Collapse
|
8
|
Patil H, Yoon D, Bhowmick R, Cai Y, Cho KI, Ferreira PA. Impairments in age-dependent ubiquitin proteostasis and structural integrity of selective neurons by uncoupling Ran GTPase from the Ran-binding domain 3 of Ranbp2 and identification of novel mitochondrial isoforms of ubiquitin-conjugating enzyme E2I (ubc9) and Ranbp2. Small GTPases 2017; 10:146-161. [PMID: 28877029 DOI: 10.1080/21541248.2017.1356432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Ran-binding protein 2 (Ranbp2/Nup358) is a cytoplasmic and peripheral nucleoporin comprised of 4 Ran-GTP-binding domains (RBDs) that are interspersed among diverse structural domains with multifunctional activities. Our prior studies found that the RBD2 and RBD3 of Ranbp2 control mitochondrial motility independently of Ran-GTP-binding in cultured cells, whereas loss of Ran-GTP-binding to RBD2 and RBD3 are essential to support cone photoreceptor development and the survival of mature retinal pigment epithelium (RPE) in mice. Here, we uncover that loss of Ran-GTP-binding to RBD3 alone promotes the robust age-dependent increase of ubiquitylated substrates and S1 subunit (Pmsd1) of the 19S cap of the proteasome in the retina and RPE and that such loss in RBD3 also compromises the structural integrity of the outer segment compartment of cone photoreceptors only and without affecting the viability of these neurons. We also found that the E2-ligase and partner of Ranbp2, ubc9, is localized prominently in the mitochondrial-rich ellipsoid compartment of photoreceptors, where Ranbp2 is also known to localize with and modulate the activity of mitochondrial proteins. However, the natures of Ranbp2 and ubc9 isoforms to the mitochondria are heretofore elusive. Subcellular fractionation, co-immunolocalization and immunoaffinity purification of Ranbp2 complexes show that novel isoforms of Ranbp2 and ubc9 with molecular masses distinct from the large Ranbp2 and unmodified ubc9 isoforms localize specifically to the mitochondrial fraction or associate with mitochondrial components, whereas unmodified and SUMOylated Ran GTPase are excluded from the mitochondrial fraction. Further, liposome-mediated intracellular delivery of an antibody against a domain shared by the mitochondrial and nuclear pore isoforms of Ranbp2 causes the profound fragmentation of mitochondria and their delocalization from Ranbp2 and without affecting Ranbp2 localization at the nuclear pores. Collectively, the data support that Ran GTPase-dependent and independent and moonlighting roles of Ranbp2 or domains thereof and ubc9 control selectively age-dependent, neural-type and mitochondrial functions.
Collapse
Affiliation(s)
- Hemangi Patil
- a Department of Ophthalmology , Duke University Medical Center , Durham , NC , USA
| | - Dosuk Yoon
- a Department of Ophthalmology , Duke University Medical Center , Durham , NC , USA
| | - Reshma Bhowmick
- b Department of Pharmacology and Toxicology , Medical College of Wisconsin , Milwaukee , WI , USA
| | - Yunfei Cai
- b Department of Pharmacology and Toxicology , Medical College of Wisconsin , Milwaukee , WI , USA
| | - Kyoung-In Cho
- a Department of Ophthalmology , Duke University Medical Center , Durham , NC , USA
| | - Paulo A Ferreira
- a Department of Ophthalmology , Duke University Medical Center , Durham , NC , USA.,c Department of Pathology , Duke University Medical Center , Durham , NC , USA
| |
Collapse
|
9
|
Fujiwara K, Hasegawa K, Oka M, Yoneda Y, Yoshikawa K. Terminal differentiation of cortical neurons rapidly remodels RanGAP-mediated nuclear transport system. Genes Cells 2016; 21:1176-1194. [DOI: 10.1111/gtc.12434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 08/16/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Kazushiro Fujiwara
- Institute for Protein Research; Osaka University; Suita Osaka 565-0871 Japan
| | - Koichi Hasegawa
- Institute for Protein Research; Osaka University; Suita Osaka 565-0871 Japan
| | - Masahiro Oka
- National Institutes of Biomedical Innovation, Health and Nutrition; Ibaraki Osaka 567-0085 Japan
| | - Yoshihiro Yoneda
- National Institutes of Biomedical Innovation, Health and Nutrition; Ibaraki Osaka 567-0085 Japan
| | - Kazuaki Yoshikawa
- Institute for Protein Research; Osaka University; Suita Osaka 565-0871 Japan
| |
Collapse
|
10
|
Cekan P, Hasegawa K, Pan Y, Tubman E, Odde D, Chen JQ, Herrmann MA, Kumar S, Kalab P. RCC1-dependent activation of Ran accelerates cell cycle and DNA repair, inhibiting DNA damage-induced cell senescence. Mol Biol Cell 2016; 27:1346-57. [PMID: 26864624 PMCID: PMC4831887 DOI: 10.1091/mbc.e16-01-0025] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/05/2016] [Indexed: 11/11/2022] Open
Abstract
The coordination of cell cycle progression with the repair of DNA damage supports the genomic integrity of dividing cells. The function of many factors involved in DNA damage response (DDR) and the cell cycle depends on their Ran GTPase-regulated nuclear-cytoplasmic transport (NCT). The loading of Ran with GTP, which is mediated by RCC1, the guanine nucleotide exchange factor for Ran, is critical for NCT activity. However, the role of RCC1 or Ran⋅GTP in promoting cell proliferation or DDR is not clear. We show that RCC1 overexpression in normal cells increased cellular Ran⋅GTP levels and accelerated the cell cycle and DNA damage repair. As a result, normal cells overexpressing RCC1 evaded DNA damage-induced cell cycle arrest and senescence, mimicking colorectal carcinoma cells with high endogenous RCC1 levels. The RCC1-induced inhibition of senescence required Ran and exportin 1 and involved the activation of importin β-dependent nuclear import of 53BP1, a large NCT cargo. Our results indicate that changes in the activity of the Ran⋅GTP-regulated NCT modulate the rate of the cell cycle and the efficiency of DNA repair. Through the essential role of RCC1 in regulation of cellular Ran⋅GTP levels and NCT, RCC1 expression enables the proliferation of cells that sustain DNA damage.
Collapse
Affiliation(s)
- Pavol Cekan
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Keisuke Hasegawa
- Department of Physics, Grinnell College, Grinnell, IA 50112 Physiology Course, Marine Biological Laboratory, Woods Hole, MA 02543
| | - Yu Pan
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Emily Tubman
- Physiology Course, Marine Biological Laboratory, Woods Hole, MA 02543 Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455
| | - David Odde
- Physiology Course, Marine Biological Laboratory, Woods Hole, MA 02543 Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455
| | - Jin-Qiu Chen
- Collaborative Protein Technology Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Michelle A Herrmann
- Collaborative Protein Technology Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Sheetal Kumar
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Petr Kalab
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
11
|
Tsujii A, Miyamoto Y, Moriyama T, Tsuchiya Y, Obuse C, Mizuguchi K, Oka M, Yoneda Y. Retinoblastoma-binding Protein 4-regulated Classical Nuclear Transport Is Involved in Cellular Senescence. J Biol Chem 2015; 290:29375-88. [PMID: 26491019 DOI: 10.1074/jbc.m115.681908] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Indexed: 12/19/2022] Open
Abstract
Nucleocytoplasmic trafficking is a fundamental cellular process in eukaryotic cells. Here, we demonstrated that retinoblastoma-binding protein 4 (RBBP4) functions as a novel regulatory factor to increase the efficiency of importin α/β-mediated nuclear import. RBBP4 accelerates the release of importin β1 from importin α via competitive binding to the importin β-binding domain of importin α in the presence of RanGTP. Therefore, it facilitates importin α/β-mediated nuclear import. We showed that the importin α/β pathway is down-regulated in replicative senescent cells, concomitant with a decrease in RBBP4 level. Knockdown of RBBP4 caused both suppression of nuclear transport and induction of cellular senescence. This is the first report to identify a factor that competes with importin β1 to bind to importin α, and it demonstrates that the loss of this factor can trigger cellular senescence.
Collapse
Affiliation(s)
- Akira Tsujii
- From the Graduate School of Medicine and the Laboratories of Nuclear Transport Dynamics and
| | | | | | | | - Chikashi Obuse
- the Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | | | - Masahiro Oka
- the Laboratories of Nuclear Transport Dynamics and Laboratory of Biomedical Innovation, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871,
| | - Yoshihiro Yoneda
- Laboratory of Biomedical Innovation, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, and
| |
Collapse
|
12
|
Patil H, Saha A, Senda E, Cho KI, Haque M, Yu M, Qiu S, Yoon D, Hao Y, Peachey NS, Ferreira PA. Selective impairment of a subset of Ran-GTP-binding domains of ran-binding protein 2 (Ranbp2) suffices to recapitulate the degeneration of the retinal pigment epithelium (RPE) triggered by Ranbp2 ablation. J Biol Chem 2014; 289:29767-89. [PMID: 25187515 DOI: 10.1074/jbc.m114.586834] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Retinal pigment epithelium (RPE) degeneration underpins diseases triggered by disparate genetic lesions, noxious insults, or both. The pleiotropic Ranbp2 controls the expression of intrinsic and extrinsic pathological stressors impinging on cellular viability. However, the physiological targets and mechanisms controlled by Ranbp2 in tissue homeostasis, such as RPE, are ill defined. We show that mice, RPE-cre::Ranbp2(-/-), with selective Ranbp2 ablation in RPE develop pigmentary changes, syncytia, hypoplasia, age-dependent centrifugal and non-apoptotic degeneration of the RPE, and secondary leakage of choriocapillaris. These manifestations are accompanied by the development of F-actin clouds, metalloproteinase-11 activation, deregulation of expression or subcellular localization of critical RPE proteins, atrophic cell extrusions into the subretinal space, and compensatory proliferation of peripheral RPE. To gain mechanistic insights into what Ranbp2 activities are vital to the RPE, we performed genetic complementation analyses of transgenic lines of bacterial artificial chromosomes of Ranbp2 harboring loss of function of selective Ranbp2 domains expressed in a Ranbp2(-/-) background. Among the transgenic lines produced, only Tg(RBD2/3*-HA)::RPE-cre::Ranbp2(-/-)-expressing mutations, which selectively impair binding of RBD2/3 (Ran-binding domains 2 and 3) of Ranbp2 to Ran-GTP, recapitulate RPE degeneration, as observed with RPE-cre::Ranbp2(-/-). By contrast, Tg(RBD2/3*-HA) expression rescues the degeneration of cone photoreceptors lacking Ranbp2. The RPE of RPE-cre::Ranbp2(-/-) and Tg(RBD2/3*-HA)::RPE-cre::Ranbp2(-/-) share proteostatic deregulation of Ran GTPase, serotransferrin, and γ-tubulin and suppression of light-evoked electrophysiological responses. These studies unravel selective roles of Ranbp2 and its RBD2 and RBD3 in RPE survival and functions. We posit that the control of Ran GTPase by Ranbp2 emerges as a novel therapeutic target in diseases promoting RPE degeneration.
Collapse
Affiliation(s)
| | - Arjun Saha
- From the Departments of Ophthalmology and
| | | | | | | | - Minzhong Yu
- the Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - Sunny Qiu
- From the Departments of Ophthalmology and
| | - Dosuk Yoon
- From the Departments of Ophthalmology and
| | - Ying Hao
- From the Departments of Ophthalmology and
| | - Neal S Peachey
- the Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, the Research Service, Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106, and the Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195
| | - Paulo A Ferreira
- From the Departments of Ophthalmology and Pathology, Duke University Medical Center, Durham, North Carolina 27710,
| |
Collapse
|
13
|
Verderio P, Avvakumova S, Alessio G, Bellini M, Colombo M, Galbiati E, Mazzucchelli S, Avila JP, Santini B, Prosperi D. Delivering colloidal nanoparticles to mammalian cells: a nano-bio interface perspective. Adv Healthc Mater 2014; 3:957-76. [PMID: 24443410 DOI: 10.1002/adhm.201300602] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/05/2013] [Indexed: 01/09/2023]
Abstract
Understanding the behavior of multifunctional colloidal nanoparticles capable of biomolecular targeting remains a fascinating challenge in materials science with dramatic implications in view of a possible clinical translation. In several circumstances, assumptions on structure-activity relationships have failed in determining the expected responses of these complex systems in a biological environment. The present Review depicts the most recent advances about colloidal nanoparticles designed for use as tools for cellular nanobiotechnology, in particular, for the preferential transport through different target compartments, including cell membrane, cytoplasm, mitochondria, and nucleus. Besides the conventional entry mechanisms based on crossing the cellular membrane, an insight into modern physical approaches to quantitatively deliver nanomaterials inside cells, such as microinjection and electro-poration, is provided. Recent hypotheses on how the nanoparticle structure and functionalization may affect the interactions at the nano-bio interface, which in turn mediate the nanoparticle internalization routes, are highlighted. In addition, some hurdles when this small interface faces the physiological environment and how this phenomenon can turn into different unexpected responses, are discussed. Finally, possible future developments oriented to synergistically tailor biological and chemical properties of nanoconjugates to improve the control over nanoparticle transport, which could open new scenarios in the field of nanomedicine, are addressed.
Collapse
Affiliation(s)
- Paolo Verderio
- Dipartimento di Biotecnologie e Bioscienze; Università di Milano-Bicocca; piazza della Scienza 2 20126 Milano Italy
| | - Svetlana Avvakumova
- Dipartimento di Biotecnologie e Bioscienze; Università di Milano-Bicocca; piazza della Scienza 2 20126 Milano Italy
- Dipartimento di Scienze Biomediche e Cliniche “Luigi Sacco”; Università di Milano; Ospedale L. Sacco, via G. B. Grassi 74 20157 Milano Italy
| | - Giulia Alessio
- Dipartimento di Scienze Biomediche e Cliniche “Luigi Sacco”; Università di Milano; Ospedale L. Sacco, via G. B. Grassi 74 20157 Milano Italy
| | - Michela Bellini
- Dipartimento di Biotecnologie e Bioscienze; Università di Milano-Bicocca; piazza della Scienza 2 20126 Milano Italy
| | - Miriam Colombo
- Dipartimento di Biotecnologie e Bioscienze; Università di Milano-Bicocca; piazza della Scienza 2 20126 Milano Italy
| | - Elisabetta Galbiati
- Dipartimento di Biotecnologie e Bioscienze; Università di Milano-Bicocca; piazza della Scienza 2 20126 Milano Italy
| | - Serena Mazzucchelli
- Dipartimento di Scienze Biomediche e Cliniche “Luigi Sacco”; Università di Milano; Ospedale L. Sacco, via G. B. Grassi 74 20157 Milano Italy
| | - Jesus Peñaranda Avila
- Dipartimento di Biotecnologie e Bioscienze; Università di Milano-Bicocca; piazza della Scienza 2 20126 Milano Italy
| | - Benedetta Santini
- Dipartimento di Biotecnologie e Bioscienze; Università di Milano-Bicocca; piazza della Scienza 2 20126 Milano Italy
| | - Davide Prosperi
- Dipartimento di Biotecnologie e Bioscienze; Università di Milano-Bicocca; piazza della Scienza 2 20126 Milano Italy
- Laboratory of Nanomedicine and Clinical Biophotonics, Fondazione Don Carlo Gnocchi ONLUS; Via Capecelatro 66 20148 Milan Italy
| |
Collapse
|
14
|
Datta S, Snow CJ, Paschal BM. A pathway linking oxidative stress and the Ran GTPase system in progeria. Mol Biol Cell 2014; 25:1202-15. [PMID: 24523287 PMCID: PMC3982987 DOI: 10.1091/mbc.e13-07-0430] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Maintaining the Ran GTPase at a proper concentration in the nucleus is important for nucleocytoplasmic transport. Previously we found that nuclear levels of Ran are reduced in cells from patients with Hutchinson-Gilford progeria syndrome (HGPS), a disease caused by constitutive attachment of a mutant form of lamin A (termed progerin) to the nuclear membrane. Here we explore the relationship between progerin, the Ran GTPase, and oxidative stress. Stable attachment of progerin to the nuclear membrane disrupts the Ran gradient and results in cytoplasmic localization of Ubc9, a Ran-dependent import cargo. Ran and Ubc9 disruption can be induced reversibly with H2O2. CHO cells preadapted to oxidative stress resist the effects of progerin on Ran and Ubc9. Given that HGPS-patient fibroblasts display elevated ROS, these data suggest that progerin inhibits nuclear transport via oxidative stress. A drug that inhibits pre-lamin A cleavage mimics the effects of progerin by disrupting the Ran gradient, but the effects on Ran are observed before a substantial ROS increase. Moreover, reducing the nuclear concentration of Ran is sufficient to induce ROS irrespective of progerin. We speculate that oxidative stress caused by progerin may occur upstream or downstream of Ran, depending on the cell type and physiological setting.
Collapse
Affiliation(s)
- Sutirtha Datta
- Center for Cell Signaling, Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903
| | | | | |
Collapse
|
15
|
Roles of the Nucleoporin Tpr in Cancer and Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 773:309-22. [DOI: 10.1007/978-1-4899-8032-8_14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|