1
|
Miya V, Kumar C, Breed AA, Idicula-Thomas S, Pathak BR. Mammalian cysteine-rich secretory proteins interact with plasma membrane Ca 2+ exporter PMCA4b. Andrology 2024; 12:1096-1110. [PMID: 37882330 DOI: 10.1111/andr.13549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/28/2023] [Accepted: 10/14/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Mammalian cysteine-rich secretory proteins (CRISPs) are predominantly expressed in the male reproductive tract. Knockout mice lacking two or more CRISPs show defects in sperm transport, sperm-egg interaction and Ca2+ homeostasis. CRISPs play redundant and specific roles via their binding partners. To understand this, a comprehensive analysis of CRISP interactome needs to be undertaken. OBJECTIVES This study aimed to analyse CRISP4 binding partners on the plasma membrane of rat caudal spermatozoa. MATERIALS AND METHODS Total proteins from rat caudal spermatozoa were subjected to immunoprecipitation using anti-CRISP4 antibody followed by liquid chromatography-mass spectrophotometry analysis. Plasma membrane localised proteins were shortlisted, and a key target was validated by co-immunoprecipitation and co-localisation. Co-transfection followed by co-immunoprecipitation was carried out for studying the interaction of full-length as well as deletion mutants of CRISPs with human plasma membrane calcium ATPase, isoform b (hPMCA4b). Calcium assays were performed using Fura-2-AM. The cholesterol binding ability of different CRISPs was evaluated in silico. RESULTS The membrane-specific interactome of rat CRISP4 (rCRISP4) from caudal spermatozoa revealed PMCA4b as a novel binding partner, and their interaction was validated in rat spermatozoa. Human CRISP1 (hCRISP1) and hCRISP3 also interacted with PMCA4b via the N-terminal domain. Interestingly, hCRISP1 and rCRISP4 delayed PMCA4b-mediated calcium extrusion but hCRISP3 did not. In silico analysis demonstrated that hCRISP1 and rCRISP4 have higher binding affinity towards cholesterol than hCRISP3. The secretion profile of different CRISPs also showed that the ratio of secreted to cell-associated proteins was highest for hCRISP3. CONCLUSION Our study identifies PMCA4b as a target of multiple mammalian CRISPs and unravels a new role of CRISPs in regulating calcium homeostasis. Differences in the interaction of different CRISPs with cholesterol may regulate their enrichment in the lipid rafts and redistribution in the membrane post-capacitation, thereby affecting their interaction with PMCA4b.
Collapse
Affiliation(s)
- Vaidehi Miya
- Division of Cellular and Structural Biology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, India
| | - Chandan Kumar
- Biomedical Informatics Centre, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, India
| | - Ananya A Breed
- Division of Cellular and Structural Biology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, India
| | - Susan Idicula-Thomas
- Biomedical Informatics Centre, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, India
| | - Bhakti R Pathak
- Division of Cellular and Structural Biology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, India
| |
Collapse
|
2
|
El Atab O, Ekim Kocabey A, Asojo OA, Schneiter R. Prostate secretory protein 94 (PSP94) inhibits sterol-binding and export by the mammalian CAP protein CRISP2 in a calcium-sensitive manner. J Biol Chem 2022; 298:101600. [PMID: 35063506 PMCID: PMC8857485 DOI: 10.1016/j.jbc.2022.101600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 11/30/2022] Open
Abstract
Members of the CAP protein superfamily are present in all kingdoms of life and have been implicated in many different processes, including pathogen defense, immune evasion, sperm maturation, and cancer progression. Most CAP proteins are secreted glycoproteins and share a unique conserved αβα sandwich fold. The precise mode of action of this class of proteins, however, has remained elusive. Saccharomyces cerevisiae has three CAP family members, termed pathogen related in yeast (Pry). We have previously shown that Pry1 and Pry2 export sterols in vivo and that they bind sterols in vitro. This sterol binding and export function of yeast Pry proteins is conserved in the mammalian CRISP proteins and other CAP superfamily members. CRISP3 is an abundant protein of the human seminal plasma and interacts with prostate secretory protein of 94 amino acids (PSP94), another major protein component in the seminal plasma. Here we examine whether the interaction between CRISP proteins and PSP94 affects the sterol binding function of CAP family members. We show that coexpression of PSP94 with CAP proteins in yeast abolished their sterol export function and the interaction between PSP94 and CAP proteins inhibits sterol binding in vitro. In addition, mutations that affect the formation of the PSP94–CRISP2 heteromeric complex restore sterol binding. Of interest, we found the interaction of PSP94 with CRISP2 is sensitive to high calcium concentrations. The observation that PSP94 modulates the sterol binding function of CRISP2 in a calcium-dependent manner has potential implications for the role of PSP94 and CRISP2 in prostate physiology and progression of prostate cancer.
Collapse
|
3
|
Tadokoro T, M. Modahl C, Maenaka K, Aoki-Shioi N. Cysteine-Rich Secretory Proteins (CRISPs) From Venomous Snakes: An Overview of the Functional Diversity in A Large and Underappreciated Superfamily. Toxins (Basel) 2020; 12:E175. [PMID: 32178374 PMCID: PMC7150914 DOI: 10.3390/toxins12030175] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 01/03/2023] Open
Abstract
The CAP protein superfamily (Cysteine-rich secretory proteins (CRISPs), Antigen 5 (Ag5), and Pathogenesis-related 1 (PR-1) proteins) is widely distributed, but for toxinologists, snake venom CRISPs are the most familiar members. Although CRISPs are found in the majority of venoms, very few of these proteins have been functionally characterized, but those that have been exhibit diverse activities. Snake venom CRISPs (svCRISPs) inhibit ion channels and the growth of new blood vessels (angiogenesis). They also increase vascular permeability and promote inflammatory responses (leukocyte and neutrophil infiltration). Interestingly, CRISPs in lamprey buccal gland secretions also manifest some of these activities, suggesting an evolutionarily conserved function. As we strive to better understand the functions that CRISPs serve in venoms, it is worth considering the broad range of CRISP physiological activities throughout the animal kingdom. In this review, we summarize those activities, known crystal structures and sequence alignments, and we discuss predicted functional sites. CRISPs may not be lethal or major components of venoms, but given their almost ubiquitous occurrence in venoms and the accelerated evolution of svCRISP genes, these venom proteins are likely to have functions worth investigating.
Collapse
Affiliation(s)
- Takashi Tadokoro
- Faculty of Pharmaceutical Sciences, Hokkaido University, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; (T.T.); (K.M.)
| | - Cassandra M. Modahl
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore;
| | - Katsumi Maenaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; (T.T.); (K.M.)
| | - Narumi Aoki-Shioi
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore;
- Department of Chemistry, Faculty of Science, Fukuoka University, 19-1, 8-chomeNanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
4
|
Shioi N, Tadokoro T, Shioi S, Okabe Y, Matsubara H, Kita S, Ose T, Kuroki K, Terada S, Maenaka K. Crystal structure of the complex between venom toxin and serum inhibitor from Viperidae snake. J Biol Chem 2019; 294:1250-1256. [PMID: 30504218 PMCID: PMC6349104 DOI: 10.1074/jbc.ra118.006840] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 01/07/2023] Open
Abstract
Venomous snakes have endogenous proteins that neutralize the toxicity of their venom components. We previously identified five small serum proteins (SSP-1-SSP-5) from a highly venomous snake belonging to the family Viperidae as inhibitors of various toxins from snake venom. The endogenous inhibitors belong to the prostate secretory protein of 94 amino acids (PSP94) family. SSP-2 interacts with triflin, which is a member of the cysteine-rich secretory protein (CRISP) family that blocks smooth muscle contraction. However, the structural basis for the interaction and the biological roles of these inhibitors are largely unknown. Here, we determined the crystal structure of the SSP-2-triflin complex at 2.3 Å resolution. A concave region centrally located in the N-terminal domain of triflin is fully occupied by the terminal β-strands of SSP-2. SSP-2 does not bind tightly to the C-terminal cysteine-rich domain of triflin; this domain is thought to be responsible for its channel-blocker function. Instead, the cysteine-rich domain is tilted 7.7° upon binding to SSP-2, and the inhibitor appears to sterically hinder triflin binding to calcium channels. These results help explain how an endogenous inhibitor prevents the venomous protein from maintaining homeostasis in the host. Furthermore, this interaction also sheds light on the binding interface between the human homologues PSP94 and CRISP-3, which are up-regulated in prostate and ovarian cancers.
Collapse
Affiliation(s)
- Narumi Shioi
- From the Department of Chemistry, Faculty of Science, Fukuoka University, 19-1, 8-chome Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan, , To whom correspondence may be addressed. Tel.:
81-92-870-6631 ext. 6215; Fax:
81-92-865-6030; E-mail:
| | - Takashi Tadokoro
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan, and , To whom correspondence may be addressed. Tel.:
81-11-706-3764; Fax:
81-11-706-4986; E-mail:
| | - Seijiro Shioi
- Radioisotope Center, Fukuoka University, Fukuoka 814-0180, Japan
| | - Yuki Okabe
- From the Department of Chemistry, Faculty of Science, Fukuoka University, 19-1, 8-chome Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Haruki Matsubara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan, and
| | - Shunsuke Kita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan, and
| | - Toyoyuki Ose
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan, and
| | - Kimiko Kuroki
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan, and
| | - Shigeyuki Terada
- From the Department of Chemistry, Faculty of Science, Fukuoka University, 19-1, 8-chome Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Katsumi Maenaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan, and , To whom correspondence may be addressed. Tel.:
81-11-706-3970; Fax:
81-11-706-4986; E-mail:
| |
Collapse
|
5
|
Anklesaria JH, Kulkarni BJ, Pathak BR, Mahale SD. Identification of CRISP2 from human sperm as PSP94-binding protein and generation of CRISP2-specific anti-peptide antibodies. J Pept Sci 2016; 22:383-90. [PMID: 27161017 DOI: 10.1002/psc.2878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 02/26/2016] [Accepted: 03/02/2016] [Indexed: 11/10/2022]
Abstract
Cysteine-rich secretory proteins (CRISPs) are mainly found in the mammalian male reproductive tract and reported to be involved at different stages of fertilization. CRISPs have been shown to interact with prostate secretory protein of 94 amino acids (PSP94) from diverse sources, and the binding of these evolutionarily conserved proteins across species is proposed to be of functional significance. Of the three mammalian CRISPs, PSP94-CRISP3 interaction is well characterized, and specific binding sites have been identified; whereas, CRISP2 has been shown to interact with PSP94 in vitro. Interestingly, human CRISP3 and CRISP2 proteins are closely related showing 71.4% identity. In this study, we identified CRISP2 as a potential binding protein of PSP94 from human sperm. Further, we generated antisera capable of specifically detecting CRISP2 and not CRISP3. In this direction, specific peptides corresponding to the least conserved ion channel regulatory region were synthesized, and polyclonal antibodies were generated against the peptide in rabbits. The binding characteristics of the anti-CRISP2 peptide antibody were evaluated using competitive ELISA. Immunoblotting experiments also confirmed that the peptide was able to generate antibodies capable of detecting the mature CRISP2 protein present in human sperm lysate. Furthermore, this anti-CRISP2 peptide antibody also detected the presence of native CRISP2 on sperm.Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jenifer H Anklesaria
- Division of Structural Biology, National Institute for Research in Reproductive Health, Mumbai, Maharashtra, India
| | - Bhalchandra J Kulkarni
- Division of Structural Biology, National Institute for Research in Reproductive Health, Mumbai, Maharashtra, India
| | - Bhakti R Pathak
- Division of Structural Biology, National Institute for Research in Reproductive Health, Mumbai, Maharashtra, India
| | - Smita D Mahale
- Division of Structural Biology, National Institute for Research in Reproductive Health, Mumbai, Maharashtra, India.,ICMR-Biomedical Informatics Center, National Institute for Research In Reproductive Health, Jehangir Merwanji Street, Parel, 400 012, Mumbai, India
| |
Collapse
|
6
|
Lecht S, Chiaverelli RA, Gerstenhaber J, Calvete JJ, Lazarovici P, Casewell NR, Harrison R, Lelkes PI, Marcinkiewicz C. Anti-angiogenic activities of snake venom CRISP isolated from Echis carinatus sochureki. Biochim Biophys Acta Gen Subj 2015; 1850:1169-79. [DOI: 10.1016/j.bbagen.2015.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/20/2015] [Accepted: 02/01/2015] [Indexed: 02/01/2023]
|
7
|
Evans J, D'Sylva R, Volpert M, Jamsai D, Merriner DJ, Nie G, Salamonsen LA, O'Bryan MK. Endometrial CRISP3 is regulated throughout the mouse estrous and human menstrual cycle and facilitates adhesion and proliferation of endometrial epithelial cells. Biol Reprod 2015; 92:99. [PMID: 25715794 DOI: 10.1095/biolreprod.114.127480] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/20/2015] [Indexed: 02/06/2023] Open
Abstract
The endometrium (the mucosal lining of the uterus) is a dynamic tissue that undergoes extensive remodeling, secretory transformation in preparation for implantation of an embryo, inflammatory and proteolytic activity during menstruation, and rapid postmenstrual repair. A plethora of local factors influence these processes. Recently, a cysteine-rich protein, CRISP3, a clade of the CRISP, antigen 5, pathogenesis-related (CAP) protein superfamily, has been implicated in uterine function. The localization, regulation, and potential function of CRISP3 in both the human and mouse endometrium is described. CRISP3 localizes to the luminal and glandular epithelium of the endometrium within both species, with increased immunoreactivity during the proliferative phase of the human cycle. CRISP3 also localizes to neutrophils, particularly within the premenstrual human endometrium and during the postbreakdown repair phase of a mouse model of endometrial breakdown and repair. Endometrial CRISP3 is produced by primary human endometrial epithelial cells and secreted in vivo to accumulate in the uterine cavity. Secreted CRISP3 is more abundant in uterine lavage fluid during the proliferative phase of the menstrual cycle. Human endometrial epithelial CRISP3 is present in both a glycosylated and a nonglycosylated form in vitro and in vivo. Treatment of endometrial epithelial cells in vitro with recombinant CRISP3 enhances both adhesion and proliferation. These data suggest roles for epithelial and neutrophil-derived CRISP3 in postmenstrual endometrial repair and regeneration.
Collapse
Affiliation(s)
- Jemma Evans
- MIMR-PHI Institute of Medical Research, Clayton, Victoria, Australia Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Rebecca D'Sylva
- MIMR-PHI Institute of Medical Research, Clayton, Victoria, Australia Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Marianna Volpert
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Duangporn Jamsai
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Donna Jo Merriner
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Guiying Nie
- MIMR-PHI Institute of Medical Research, Clayton, Victoria, Australia
| | - Lois A Salamonsen
- MIMR-PHI Institute of Medical Research, Clayton, Victoria, Australia
| | - Moira K O'Bryan
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
8
|
Karunasinghe N, Bishop K, Murray P, Xu Y, Goudie M, Ng L, Zhu S, Han DY, Ferguson LR, Masters J, Benjamin B, Holmes M. Role of β-microseminoprotein from prostate cancer initiation to recurrence: A mini-review. World J Clin Urol 2014; 3:20-30. [DOI: 10.5410/wjcu.v3.i1.20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/19/2013] [Accepted: 02/18/2014] [Indexed: 02/06/2023] Open
Abstract
Medline/Pubmed articles relevant to this topic were considered using the search terms β-microseminoprotein, MSMB, prostate secretory protein of 94 amino acids and PSP94. Full articles were retrieved when the abstract was considered relevant. In addition, other data related to this topic including our own are discussed. Summary of findings-β-microseminoprotein (MSMB) is increasingly being considered as a marker for prostate cancer, as reduced levels have been associated with the disease. Here we review various aspects of this protein including its biological and physiological variants, binding proteins and immune modulation; its importance as a marker for biochemical recurrence of prostate cancer; prostate cancer related splice variants and its therapeutic utility. Two of the most important properties of MSMB are related to anticancer functions and immune modulation. Predominant expression of two (short and full-length) splice variants of MSMB has been observed from normal prostate and several other tissues. In benign prostate hyperplasia the short isoform is dominant, constituting 98% of this isoform, whereas in prostate cancer 96% constitute the full-length isoform. The MSMB promoter single nucleotide polymorphism rs10993994 with the C allele functions as an activated cyclic adenosine monophosphate response element binding protein binding site. This C variant of rs10993994 could be responsible for the production of splice variants under variable conditions. MSMB has binding motifs to a few known proteins including immunoglobulin G and several Cysteine-rich secretory proteins family proteins. MSMB bound to these proteins is considered as immune modulating. Use of MSMB as a urinary marker for detecting aggressive prostate cancers that could resist radiation and surgical treatments, seems possible, but needs further investigation. The ratio of MSMB splice variants could also be a possible approach in understanding prostate cancers, with higher ratios indicating severe disease.
Collapse
|