1
|
Phosphorylation of Arl4A/D promotes their binding by the HYPK chaperone for their stable recruitment to the plasma membrane. Proc Natl Acad Sci U S A 2022; 119:e2207414119. [PMID: 35857868 PMCID: PMC9335210 DOI: 10.1073/pnas.2207414119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Arl4 small GTPases participate in a variety of cellular events, including cytoskeleton remodeling, vesicle trafficking, cell migration, and neuronal development. Whereas small GTPases are typically regulated by their GTPase cycle, Arl4 proteins have been found to act independent of this canonical regulatory mechanism. Here, we show that Arl4A and Arl4D (Arl4A/D) are unstable due to proteasomal degradation, but stimulation of cells by fibronectin (FN) inhibits this degradation to promote Arl4A/D stability. Proteomic analysis reveals that FN stimulation induces phosphorylation at S143 of Arl4A and at S144 of Arl4D. We identify Pak1 as the responsible kinase for these phosphorylations. Moreover, these phosphorylations promote the chaperone protein HYPK to bind Arl4A/D, which stabilizes their recruitment to the plasma membrane to promote cell migration. These findings not only advance a major mechanistic understanding of how Arl4 proteins act in cell migration but also achieve a fundamental understanding of how these small GTPases are modulated by revealing that protein stability, rather than the GTPase cycle, acts as a key regulatory mechanism.
Collapse
|
2
|
Gong X, Huang Y, Liang Y, Yuan Y, Liu Y, Han T, Li S, Gao H, Lv B, Huang X, Linster E, Wang Y, Wirtz M, Wang Y. OsHYPK-mediated protein N-terminal acetylation coordinates plant development and abiotic stress responses in rice. MOLECULAR PLANT 2022; 15:740-754. [PMID: 35381198 DOI: 10.1016/j.molp.2022.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/08/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
N-terminal acetylation is one of the most common protein modifications in eukaryotes, and approximately 40% of human and plant proteomes are acetylated by ribosome-associated N-terminal acetyltransferase A (NatA) in a co-translational manner. However, the in vivo regulatory mechanism of NatA and the global impact of NatA-mediated N-terminal acetylation on protein fate remain unclear. Here, we identify Huntingtin Yeast partner K (HYPK), an evolutionarily conserved chaperone-like protein, as a positive regulator of NatA activity in rice. We found that loss of OsHYPK function leads to developmental defects in rice plant architecture but increased resistance to abiotic stresses, attributable to perturbation of the N-terminal acetylome and accelerated global protein turnover. Furthermore, we demonstrated that OsHYPK is also a substrate of NatA and that N-terminal acetylation of OsHYPK promotes its own degradation, probably through the Ac/N-degron pathway, which could be induced by abiotic stresses. Taken together, our findings suggest that the OsHYPK-NatA complex plays a critical role in coordinating plant development and stress responses by dynamically regulating NatA-mediated N-terminal acetylation and global protein turnover, which are essential for maintaining adaptive phenotypic plasticity in rice.
Collapse
Affiliation(s)
- Xiaodi Gong
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaqian Huang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Liang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agriculture University, Taian, Shandong 271018, China
| | - Yundong Yuan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agriculture University, Taian, Shandong 271018, China
| | - Yuhao Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agriculture University, Taian, Shandong 271018, China
| | - Tongwen Han
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agriculture University, Taian, Shandong 271018, China
| | - Shujia Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hengbin Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agriculture University, Taian, Shandong 271018, China
| | - Bo Lv
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agriculture University, Taian, Shandong 271018, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Eric Linster
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Markus Wirtz
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Yonghong Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agriculture University, Taian, Shandong 271018, China.
| |
Collapse
|
3
|
Abstract
Selective degradation of protein aggregates by macroautophagy/autophagy is an essential homeostatic process of safeguarding cells from the effects of proteotoxicity. Among the ubiquitin-like proteins, NEDD8 conjugation to misfolded proteins is prominent in stress-induced protein aggregates, albeit the function of neddylation in autophagy is unclear. Here, we report that polyneddylation functions as a post-translational modification for autophagic degradation of proteotoxic-stress induced protein aggregates. We also show that HYPK functions as an autophagy receptor in the polyneddylation-dependent aggrephagy. The scaffolding function of HYPK is facilitated by its C-terminal ubiquitin-associated domain and N-terminal tyrosine-type LC3-interacting region which bind to NEDD8 and LC3 respectively. Both NEDD8 and HYPK are positive modulators of basal and proteotoxicity-induced autophagy, leading to protection of cells from protein aggregates, such as aggregates of mutant HTT exon 1. Thus, we propose an indispensable and additive role of neddylation and HYPK in clearance of protein aggregates by autophagy, resulting in cytoprotective effect during proteotoxic stress.Abbreviations: ATG5, autophagy related 5; ATG12, autophagy related 12; ATG14, autophagy related 14; BECN1, beclin 1; CBL, casitas B-lineage lymphoma; CBLB, Cbl proto-oncogene B; GABARAP, GABA type A receptor-associated protein; GABARAPL1, GABA type A receptor associated protein like 1; GABARAPL2, GABA type A receptor associated protein like 2; GFP, green fluorescent protein; HTT, huntingtin; HTT97Q exon 1, huntingtin 97-glutamine exon 1; HUWE1, HECT, UBA and WWE domain containing E3 ubiquitin protein ligase 1; HYPK, huntingtin interacting protein K; IgG, immunoglobulin G; IMR-32, Institute for Medical Research-32; KD, knockdown; Kd, dissociation constant; LAMP1, lysosomal associated membrane protein 1; LIR, LC3 interacting region; MAP1LC3/LC3, microtubule associated protein 1 light chain 3; MAP1LC3A/LC3A, microtubule associated protein 1 light chain 3 alpha; MAP1LC3B/LC3B, microtubule associated protein 1 light chain 3 beta; MARK1, microtubule affinity regulating kinase 1; MARK2, microtubule affinity regulating kinase 2; MARK3, microtubule affinity regulating kinase 3; MARK4, microtubule affinity regulating kinase 4; MCF7, Michigan Cancer Foundation-7; MTOR, mechanistic target of rapamycin kinase; NAE1, NEDD8 activating enzyme E1 subunit 1; NBR1, NBR1 autophagy cargo receptor; NEDD8, NEDD8 ubiquitin like modifier; Ni-NTA, nickel-nitrilotriacetic acid; NUB1, negative regulator of ubiquitin like proteins 1; PIK3C3, phosphatidylinositol 3-kinase catalytic subunit type 3; PolyQ, poly-glutamine; PSMD8, proteasome 26S subunit, non-ATPase 8; RAD23A, RAD23 homolog A, nucleotide excision repair protein; RAD23B, RAD23 homolog B, nucleotide excision repair protein; RFP, red fluorescent protein; RPS27A, ribosomal protein S27a; RSC1A1, regulator of solute carriers 1; SNCA, synuclein alpha; SIK1, salt inducible kinase 1; siRNA, small interfering ribonucleic acid; SOD1, superoxide dismutase 1; SPR, surface plasmon resonance; SQSTM1, sequestosome 1; SUMO1, small ubiquitin like modifier 1; TAX1BP1, Tax1 binding protein 1; TDRD3, tudor domain containing 3; TNRC6C, trinucleotide repeat containing adaptor 6C; TOLLIP, toll interacting protein; TUBA, tubulin alpha; TUBB, tubulin beta class I; UBA, ubiquitin-associated; UBA1, ubiquitin like modifier activating enzyme 1; UBA5, ubiquitin like modifier activating enzyme 5; UBAC1, UBA domain containing 1; UBAC2, UBA domain containing 2; UBAP1, ubiquitin associated protein 1; UBAP2, ubiquitin associated protein 2; UBASH3B, ubiquitin associated and SH3 domain containing B; UBD/FAT10, ubiquitin D; UBE2K, ubiquitin conjugating enzyme E2 K; UBLs, ubiquitin-like proteins; UBL7, ubiquitin like 7; UBQLN1, ubiquilin 1; UBQLN2, ubiquilin 2; UBQLN3, ubiquilin 3; UBQLN4, ubiquilin 4; UBXN1, UBX domain protein 1; ULK1, unc-51 like autophagy activating kinase 1; URM1, ubiquitin related modifier 1; USP5, ubiquitin specific peptidase 5; USP13, ubiquitin specific peptidase 13; VPS13D, vacuolar protein sorting 13 homolog D.
Collapse
Affiliation(s)
- Debasish Kumar Ghosh
- Computational and Functional Genomics Group Centre for Dna Fingerprinting and Diagnostics Uppal Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Akash Ranjan
- Computational and Functional Genomics Group Centre for Dna Fingerprinting and Diagnostics Uppal Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|
4
|
N-alpha-acetylation of Huntingtin protein increases its propensity to aggregate. J Biol Chem 2021; 297:101363. [PMID: 34732320 PMCID: PMC8640455 DOI: 10.1016/j.jbc.2021.101363] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 11/22/2022] Open
Abstract
Huntington’s disease (HD) is a neurodegenerative disorder caused by a poly-CAG expansion in the first exon of the HTT gene, resulting in an extended poly-glutamine tract in the N-terminal domain of the Huntingtin (Htt) protein product. Proteolytic fragments of the poly-glutamine–containing N-terminal domain form intranuclear aggregates that are correlated with HD. Post-translational modification of Htt has been shown to alter its function and aggregation properties. However, the effect of N-terminal Htt acetylation has not yet been considered. Here, we developed a bacterial system to produce unmodified or N-terminally acetylated and aggregation-inducible Htt protein. We used this system together with biochemical, biophysical, and imaging studies to confirm that the Htt N-terminus is an in vitro substrate for the NatA N-terminal acetyltransferase and show that N-terminal acetylation promotes aggregation. These studies represent the first link between N-terminal acetylation and the promotion of a neurodegenerative disease and implicates NatA-mediated Htt acetylation as a new potential therapeutic target in HD.
Collapse
|
5
|
Ghosh DK, Ranjan A. An IRES-dependent translation of HYPK mRNA generates a truncated isoform of the protein that lacks the nuclear localization and functional ability. RNA Biol 2019; 16:1604-1621. [PMID: 31397627 DOI: 10.1080/15476286.2019.1650612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Different mechanisms of translation initiation process exist to start the protein synthesis from various viral and eukaryotic mRNA. The cap-independent and tertiary structure directed translation initiation of mRNAs forms the basis of internal ribosome entry site (IRES) mediated translation initiation that helps in cellular protein production in different conditions. HYPK protein sequesters different aggregation-prone proteins to help in the cellular proteostasis. HYPK mRNA is differentially translated from an internal start/initiation codon to generate an amino terminal-truncated isoform (HSPC136) of HYPK protein. In this study, we report that an IRES-dependent translation initiation of HYPK mRNA results in the formation of the HSPC136/HYPK-ΔN isoform of HYPK protein. The IRES-driven translation product, HYPK-ΔN, lacks the N-terminal tri-arginine motif that acts as the nuclear localization signal (NLS) in the full-length HYPK protein. While the full-length HYPK protein translocates to the nucleus and prevents the aggregation of the mutant p53 (p53-R248Q) protein, the HYPK-ΔN lacks this activity. The NLS of HYPK is not evolutionarily conserved and its exclusive presence in the HYPK of higher eukaryotic animals imparts additional advantage to the HYPK protein in tackling the cytosolic as well as nuclear protein aggregates. The presence of the NLS in full-length HYPK also allows this protein to modulate the cell cycle. These results provide a mechanistic detail of HYPK mRNA's translation initiation control by an IRES that dictates the formation of HYPC136/HYPK-ΔN which lacks the nuclear localization and functional ability.
Collapse
Affiliation(s)
- Debasish Kumar Ghosh
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics , Hyderabad , Telangana , India.,Graduate studies, Manipal Academy of Higher Education , Manipal , Karnataka , India
| | - Akash Ranjan
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics , Hyderabad , Telangana , India
| |
Collapse
|
6
|
Nagashimada M, Ueda T, Ishita Y, Sakurai H. TAF7 is a heat‐inducible unstable protein and is required for sustained expression of heat shock protein genes. FEBS J 2018; 285:3215-3224. [DOI: 10.1111/febs.14604] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/10/2018] [Accepted: 07/17/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Mayumi Nagashimada
- Division of Health Sciences Kanazawa University Graduate School of Medical Science Ishikawa Japan
| | - Takumi Ueda
- Division of Health Sciences Kanazawa University Graduate School of Medical Science Ishikawa Japan
| | - Yuichiro Ishita
- Division of Health Sciences Kanazawa University Graduate School of Medical Science Ishikawa Japan
| | - Hiroshi Sakurai
- Division of Health Sciences Kanazawa University Graduate School of Medical Science Ishikawa Japan
| |
Collapse
|
7
|
Hellwege JN, Russell SB, Williams SM, Edwards TL, Velez Edwards DR. Gene-based evaluation of low-frequency variation and genetically-predicted gene expression impacting risk of keloid formation. Ann Hum Genet 2018; 82:206-215. [PMID: 29484647 DOI: 10.1111/ahg.12245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/08/2017] [Accepted: 01/08/2018] [Indexed: 12/31/2022]
Abstract
Keloids are benign dermal tumors occurring approximately 20 times more often in individuals of African descent as compared to individuals of European descent. While most keloids occur sporadically, a genetic predisposition is supported by both familial aggregation of some keloids and large differences in risk among populations. Despite Africans and African Americans being at increased risk over lighter-skinned individuals, little genetic research exists into this phenotype. Using a combination of admixture mapping and exome analysis, we reported multiple common variants within chr15q21.2-22.3 associated with risk of keloid formation in African Americans. Here we describe a gene-based association analysis using 478 African American samples with exome genotyping data to identify genes containing low-frequency variants associated with keloids, with evaluation of genetically-predicted gene expression in skin tissues using association summary statistics. The strongest signal from gene-based association was located in C15orf63 (P-value = 6.6 × 10-6 ) located at 15q15.3. The top result from gene expression was increased predicted DCAF4 expression (P-value = 5.5 × 10-4 ) in non-sun-exposed skin, followed by increased predicted OR10A3 expression in sun-exposed skin (P-value = 6.9 × 10-4 ). Our findings identify variation with putative roles in keloid formation, enhanced by the use of predicted gene expression to support the biological roles of variation identified only though genetic association studies.
Collapse
Affiliation(s)
- Jacklyn N Hellwege
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shirley B Russell
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Dermatology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Scott M Williams
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Todd L Edwards
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Digna R Velez Edwards
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
8
|
Ueda T, Kohama Y, Kuge A, Kido E, Sakurai H. GADD45 family proteins suppress JNK signaling by targeting MKK7. Arch Biochem Biophys 2017; 635:1-7. [PMID: 29037961 DOI: 10.1016/j.abb.2017.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/01/2017] [Accepted: 10/11/2017] [Indexed: 01/22/2023]
Abstract
Growth arrest and DNA damage-inducible 45 (GADD45) family genes encode related proteins, including GADD45α, GADD45β, and GADD45γ. In HeLa cells, expression of GADD45 members is differentially regulated under a variety of environmental conditions, but thermal and genotoxic stresses induce the expression of all genes. The heat shock response of GADD45β is mediated by the heat shock transcription factor 1 (HSF1), and GADD45β is necessary for heat stress survival. Heat and genotoxic stress-induced activation of c-Jun N-terminal kinase (JNK) is suppressed by the expression of GADD45 proteins. GADD45 proteins bind the JNK kinase mitogen-activated protein kinase kinase 7 (MKK7) and inhibit its activity, even under normal physiological conditions. Our findings indicate that GADD45 essentially suppresses the MKK7-JNK pathway and suggest that differentially expressed GADD45 family members fine-tune stress-inducible JNK activity.
Collapse
Affiliation(s)
- Takumi Ueda
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Yuri Kohama
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Ayana Kuge
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Eriko Kido
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Hiroshi Sakurai
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan.
| |
Collapse
|
9
|
Liu X, Zhang Z, Ma X, Li X, Zhou D, Gao B, Bai Y. Sulfide exposure results in enhanced sqr transcription through upregulating the expression and activation of HSF1 in echiuran worm Urechis unicinctus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 170:229-239. [PMID: 26675369 DOI: 10.1016/j.aquatox.2015.11.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/19/2015] [Accepted: 11/19/2015] [Indexed: 05/26/2023]
Abstract
Sulfide is a natural, widely distributed, poisonous substance. Sulfide: quinone oxidoreductase (SQR) is responsible for the initial oxidation of sulfide in mitochondria. To study transcriptional regulation of sqr after sulfide exposure, a 2.6-kb sqr upstream sequence from echiuran worm Urechis unicinctus was cloned by genome walking. Bioinformatics analysis showed 3 heat shock elements (HSEs) in proximal promoter region of the sqr upstream sequence. Moreover, an Hsf1 cDNA in U. unicinctus (UuHsf1) was isolated with a full-length sequence of 2334 bp and its polyclonal antibody was prepared using U. unicinctus HSF1 (UuHSF1) expressed prokaryotically with whole sequence of its open reading frame (ORF). In vivo ChIP and in vitro EMSA assays revealed UuHSF1 could interact with the sqr proximal promoter region. Transient transfection and mutation assays indicated that UuHSF1 bound specifically to HSE (-155bp to -143bp) and enhanced the transcription of sqr. Furthermore, sulfide treatment experiments demonstrated that sulfide could increase the expression of HSF1 protein, and induce trimerization of the protein which binds to HSEs and then activate sqr transcription. Quantitative real-time PCR analysis revealed sqr mRNA level increased significantly after U. unicinctus was exposed to sulfide for 6h, which corresponded to content changes of both trimeric HSF1 and HSF1-HSE complex. We concluded that UuHSF1 is a transcription factor of sqr and sulfide could induce sqr transcription by upregulating the expression and activation of HSF1 in U. unicinctus exposed to sulfide.
Collapse
Affiliation(s)
- Xiaolong Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhifeng Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Xiaoyu Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xueyu Li
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Di Zhou
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Beibei Gao
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yajiao Bai
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
10
|
Qureshi IA, Mehler MF. Epigenetics and therapeutic targets mediating neuroprotection. Brain Res 2015; 1628:265-272. [PMID: 26236020 DOI: 10.1016/j.brainres.2015.07.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/14/2015] [Accepted: 07/22/2015] [Indexed: 11/29/2022]
Abstract
The rapidly evolving science of epigenetics is transforming our understanding of the nervous system in health and disease and holds great promise for the development of novel diagnostic and therapeutic approaches targeting neurological diseases. Increasing evidence suggests that epigenetic factors and mechanisms serve as important mediators of the pathogenic processes that lead to irrevocable neural injury and of countervailing homeostatic and regenerative responses. Epigenetics is, therefore, of considerable translational significance to the field of neuroprotection. In this brief review, we provide an overview of epigenetic mechanisms and highlight the emerging roles played by epigenetic processes in neural cell dysfunction and death and in resultant neuroprotective responses. This article is part of a Special Issue entitled SI: Neuroprotection.
Collapse
Affiliation(s)
- Irfan A Qureshi
- Roslyn and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Mark F Mehler
- Roslyn and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Ruth L. and David S. Gottesman Stem Cell Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Center for Epigenomics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
11
|
Raychaudhuri S, Banerjee R, Mukhopadhyay S, Bhattacharyya NP. Conserved C-terminal nascent peptide binding domain of HYPK facilitates its chaperone-like activity. J Biosci 2015; 39:659-72. [PMID: 25116620 DOI: 10.1007/s12038-014-9442-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Human HYPK (Huntingtin Yeast-two-hybrid Protein K) is an intrinsically unstructured chaperone-like protein with no sequence homology to known chaperones. HYPK is also known to be a part of ribosome-associated protein complex and present in polysomes. The objective of the present study was to investigate the evolutionary influence on HYPK primary structure and its impact on the protein's function. Amino acid sequence analysis revealed 105 orthologs of human HYPK from plants, lower invertebrates to mammals. C-terminal part of HYPK was found to be particularly conserved and to contain nascent polypeptide-associated alpha subunit (NPAA) domain. This region experiences highest selection pressure, signifying its importance in the structural and functional evolution. NPAA domain of human HYPK has unique amino acid composition preferring glutamic acid and happens to be more stable from a conformational point of view having higher content of a-helices than the rest. Cell biology studies indicate that overexpressed C-terminal human HYPK can interact with nascent proteins, co-localizes with huntingtin, increases cell viability and decreases caspase activities in Huntington's disease (HD) cell culture model. This domain is found to be required for the chaperone-like activity of HYPK in vivo. Our study suggested that by virtue of its flexibility and nascent peptide binding activity, HYPK may play an important role in assisting protein (re)folding.
Collapse
Affiliation(s)
- Swasti Raychaudhuri
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata 700 064, India,
| | | | | | | |
Collapse
|
12
|
Ishikawa Y, Kawabata S, Sakurai H. HSF1 transcriptional activity is modulated by IER5 and PP2A/B55. FEBS Lett 2015; 589:1150-5. [PMID: 25816751 DOI: 10.1016/j.febslet.2015.03.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/16/2015] [Accepted: 03/19/2015] [Indexed: 12/20/2022]
Abstract
Heat shock factor 1 (HSF1) is the master transcriptional regulator of chaperone genes. HSF1 regulates the expression of the immediate-early response gene IER5, which encodes a protein that has roles in the stress response and cell proliferation. Here, we have shown that IER5 interacts with protein phosphatase 2A (PP2A) and its B55 regulatory subunits. Expression of IER5 and B55 in cells leads to HSF1 dephosphorylation and activation of HSF1 target genes. The B55 subunits directly bind to HSF1. These results suggest that IER5 functions as a positive feedback regulator of HSF1 and that this process involves PP2A/B55 and HSF1 dephosphorylation.
Collapse
Affiliation(s)
- Yukio Ishikawa
- Division of Health Sciences, Kanazawa University Graduate School of Medical Science, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Shotaro Kawabata
- Division of Health Sciences, Kanazawa University Graduate School of Medical Science, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Hiroshi Sakurai
- Division of Health Sciences, Kanazawa University Graduate School of Medical Science, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan.
| |
Collapse
|
13
|
Ishikawa Y, Sakurai H. Heat-induced expression of the immediate-early gene IER5 and its involvement in the proliferation of heat-shocked cells. FEBS J 2014; 282:332-40. [PMID: 25355627 DOI: 10.1111/febs.13134] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 09/16/2014] [Accepted: 10/27/2014] [Indexed: 01/15/2023]
Abstract
The serum-inducible and growth factor-inducible gene IER5 encodes a protein that acts as a regulator of cell proliferation. Expression of IER5 is also induced by treatment of cells with ionizing radiation and anticancer agents. In this study, we demonstrate the expression and function of IER5 in heat-shocked cells. Heat treatment causes robust expression of IER5 in a heat shock factor (HSF)1-dependent manner. HSF1 is the master transcriptional regulator of chaperone genes, and the IER5 promoter contains the binding sequence for HSF1 and is bound by heat-activated HSF1. Proteotoxic stressors, such as celastrol and MG132, are known to activate HSF1, and are potent inducers of HSF1 binding and IER5 expression. Overexpression of IER5 leads to upregulation of chaperone gene expression and to an increase in refolding of heat-denatured proteins. Cells expressing IER5 efficiently recover viability after heat challenge. These observations suggest that HSF1-mediated IER5 expression is involved in the expression of chaperone genes and in recovery from thermal stress.
Collapse
Affiliation(s)
- Yukio Ishikawa
- Department of Clinical Laboratory Science, Kanazawa University Graduate School of Medical Science, Japan
| | | |
Collapse
|