1
|
Radziejewska I. Galectin-3 and Epithelial MUC1 Mucin-Interactions Supporting Cancer Development. Cancers (Basel) 2023; 15:2680. [PMID: 37345016 DOI: 10.3390/cancers15102680] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 06/23/2023] Open
Abstract
Aberrant glycosylation of cell surface proteins is a very common feature of many cancers. One of the glycoproteins, which undergoes specific alterations in the glycosylation of tumor cells is epithelial MUC1 mucin, which is highly overexpressed in the malignant state. Such changes lead to the appearance of tumor associated carbohydrate antigens (TACAs) on MUC1, which are rarely seen in healthy cells. One of these structures is the Thomsen-Friedenreich disaccharide Galβ1-3GalNAc (T or TF antigen), which is typical for about 90% of cancers. It was revealed that increased expression of the T antigen has a big impact on promoting cancer progression and metastasis, among others, due to the interaction of this antigen with the β-galactose binding protein galectin-3 (Gal-3). In this review, we summarize current information about the interactions between the T antigen on MUC1 mucin and Gal-3, and their impact on cancer progression and metastasis.
Collapse
Affiliation(s)
- Iwona Radziejewska
- Department of Medical Chemistry, Medical University of Białystok, ul. Mickiewicza 2a, 15-222 Białystok, Poland
| |
Collapse
|
2
|
Qing L, Li Q, Dong Z. MUC1: An emerging target in cancer treatment and diagnosis. Bull Cancer 2022; 109:1202-1216. [DOI: 10.1016/j.bulcan.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/26/2022] [Accepted: 08/01/2022] [Indexed: 10/14/2022]
|
3
|
Kuzevanova A, Apanovich N, Mansorunov D, Korotaeva A, Karpukhin A. The Features of Checkpoint Receptor—Ligand Interaction in Cancer and the Therapeutic Effectiveness of Their Inhibition. Biomedicines 2022; 10:biomedicines10092081. [PMID: 36140182 PMCID: PMC9495440 DOI: 10.3390/biomedicines10092081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 12/12/2022] Open
Abstract
To date, certain problems have been identified in cancer immunotherapy using the inhibition of immune checkpoints (ICs). Despite the excellent effect of cancer therapy in some cases when blocking the PD-L1 (programmed death-ligand 1) ligand and the immune cell receptors PD-1 (programmed cell death protein 1) and CTLA4 (cytotoxic T-lymphocyte-associated protein 4) with antibodies, the proportion of patients responding to such therapy is still far from desirable. This situation has stimulated the exploration of additional receptors and ligands as targets for immunotherapy. In our article, based on the analysis of the available data, the TIM-3 (T-cell immunoglobulin and mucin domain-3), LAG-3 (lymphocyte-activation gene 3), TIGIT (T-cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory motif (ITIM) domains), VISTA (V-domain Ig suppressor of T-cell activation), and BTLA (B- and T-lymphocyte attenuator) receptors and their ligands are comprehensively considered. Data on the relationship between receptor expression and the clinical characteristics of tumors are presented and are analyzed together with the results of preclinical and clinical studies on the therapeutic efficacy of their blocking. Such a comprehensive analysis makes it possible to assess the prospects of receptors of this series as targets for anticancer therapy. The expression of the LAG-3 receptor shows the most unambiguous relationship with the clinical characteristics of cancer. Its inhibition is the most effective of the analyzed series in terms of the antitumor response. The expression of TIGIT and BTLA correlates well with clinical characteristics and demonstrates antitumor efficacy in preclinical and clinical studies, which indicates their high promise as targets for anticancer therapy. At the same time, the relationship of VISTA and TIM-3 expression with the clinical characteristics of the tumor is contradictory, and the results on the antitumor effectiveness of their inhibition are inconsistent.
Collapse
|
4
|
Fujii C, Harumiya S, Sato Y, Kawakubo M, Matoba H, Nakayama J. α1,4-linked N-acetylglucosamine suppresses gastric cancer development by inhibiting MUC1-mediated signaling. Cancer Sci 2022; 113:3852-3863. [PMID: 35959971 PMCID: PMC9633294 DOI: 10.1111/cas.15530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/28/2022] [Accepted: 08/06/2022] [Indexed: 11/29/2022] Open
Abstract
Gastric cancer is the second leading cause of cancer deaths worldwide, and more understanding of its molecular basis is urgently needed. Gastric gland mucin secreted from pyloric gland cells, mucous neck cells, and cardiac gland cells of the gastric mucosa harbors unique O‐glycans carrying terminal α1,4‐linked N‐acetylglucosamine (αGlcNAc) residues. We previously reported that αGlcNAc loss correlated positively with poor outcomes for patients with differentiated‐type gastric cancer. However, the molecular mechanisms underlying these outcomes remained poorly understood. Here, we examined the effects of upregulated αGlcNAc expression on malignant phenotypes of the differentiated‐type gastric cancer cell lines, AGS and MKN7. Upregulation of αGlcNAc following ectopic expression of its biosynthetic enzyme attenuated cell proliferation, motility, and invasiveness of AGS and MKN7 cells in vitro. Moreover, AGS cell tumorigenicity was significantly suppressed by αGlcNAc overexpression in a xenograft model. To define the molecular mechanisms underlying these phenotypes, we investigated αGlcNAc binding proteins in AGS cells and identified Mucin‐1 (MUC1) and podocalyxin. Both proteins were colocalized with αGlcNAc on human gastric cancer cells. We also found that αGlcNAc was bound to MUC1 in murine normal gastric mucosa. When we assessed the effects of αGlcNAc binding to MUC1, we found that αGlcNAc blocked galectin‐3 binding to MUC1, phosphorylation of the MUC1 C‐terminus, and recruitment of Src and β‐catenin to that C‐terminus. These results suggest that αGlcNAc regulates cancer cell phenotypes by dampening MUC1 signal transduction.
Collapse
Affiliation(s)
- Chifumi Fujii
- Department of Molecular Pathology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan.,Department of Biotechnology, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 390-8621, Matsumoto, Japan
| | - Satoru Harumiya
- Department of Molecular Pathology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Yoshiko Sato
- Department of Molecular Pathology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Masatomo Kawakubo
- Department of Molecular Pathology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Hisanori Matoba
- Department of Molecular Pathology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Jun Nakayama
- Department of Molecular Pathology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| |
Collapse
|
5
|
Chen Y, Xu J, Pan W, Xu X, Ma X, Chu Y, Wang L, Pang S, Li Y, Zou B, Zhou G, Gu J. Galectin‐3 enhances trastuzumab resistance by regulating cancer malignancy and stemness in
HER2
‐positive breast cancer cells. Thorac Cancer 2022; 13:1961-1973. [PMID: 35599381 PMCID: PMC9250839 DOI: 10.1111/1759-7714.14474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose The aim of this study was to explore the role of galectin‐3 in human epidermal growth factor receptor 2 (HER2)‐positive breast cancer cells and the potential mechanism. Methods Kaplan–Meier (KM)‐plot and The Cancer Genome Atlas (TCGA) databases were used to study the role of galectin‐3 in the prognosis of HER2‐positive breast cancer. The effects of galectin‐3 on cell proliferation, migration, invasion, and colony formation ability in HER2‐positive breast cancer cells were examined. The relationship between galectin‐3 and important components in the HER2 pathways, including HER2, epidermal growth factor receptor (EGFR), protein kinase B (AKT), and phosphatase and tensin homolog (PTEN), was further studied. Lentivirus and CRISPR/Cas9 were used to construct stable cell lines. Cell counting kit‐8 (CCK‐8) and apoptosis assays were used to study the relationship between galectin‐3 and trastuzumab. The effect of galectin‐3 on cell stemness was studied by mammosphere formation assay. The effects of galectin‐3 on stemness biomarkers and the Notch1 pathway were examined. Tumorigenic models were used to evaluate the effects of galectin‐3 on tumorigenesis and the therapeutic effect of trastuzumab in vivo. Results HER2‐positive breast cancer patients with a high expression level of LGALS3 (the gene encoding galectin‐3) messenger RNA (mRNA) showed a poor prognosis. Galectin‐3 promoted cancer malignancy through phosphoinositide 3‐kinase (PI3K)/AKT signaling pathway activation and upregulated stemness by activating the Notch1 signaling pathway in HER2‐positive breast cancer cells. These two factors contributed to the enhancement of trastuzumab resistance in cells. Knockout of LGALS3 had a synergistic therapeutic effect with trastuzumab both in vitro and in vivo. Conclusions Galectin‐3 may represent a prognostic predictor and therapeutic target for HER2‐positive breast cancer.
Collapse
Affiliation(s)
- Yuqiu Chen
- Research Institute of General Surgery, Affiliated Jinling Hospital Medical School of Nanjing University Nanjing China
- Department of Clinical Pharmacy, Affiliated Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine Medical School of Nanjing University Nanjing China
| | - Jiawei Xu
- Research Institute of General Surgery, Affiliated Jinling Hospital Medical School of Nanjing University Nanjing China
| | - Wang Pan
- Department of Clinical Pharmacy, Affiliated Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine Medical School of Nanjing University Nanjing China
| | - Xiaofan Xu
- Research Institute of General Surgery, Affiliated Jinling Hospital Medical School of Nanjing University Nanjing China
| | - Xueping Ma
- Department of Clinical Pharmacy, Affiliated Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine Medical School of Nanjing University Nanjing China
| | - Ya'nan Chu
- Department of Clinical Pharmacy, Affiliated Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine Medical School of Nanjing University Nanjing China
| | - Lu Wang
- Research Institute of General Surgery, Affiliated Jinling Hospital Medical School of Nanjing University Nanjing China
| | - Shuyun Pang
- Department of Clinical Pharmacy, Affiliated Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine Medical School of Nanjing University Nanjing China
| | - Yujiao Li
- Department of Clinical Pharmacy, Affiliated Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine Medical School of Nanjing University Nanjing China
| | - Bingjie Zou
- Key Laboratory of Drug Quality Control and Pharmacovigilance of Ministry of Education, School of Pharmacy China Pharmaceutical University Nanjing China
| | - Guohua Zhou
- Department of Clinical Pharmacy, Affiliated Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine Medical School of Nanjing University Nanjing China
- Department of Clinical Pharmacy, Jinling Hospital, School of Pharmacy Southern Medical University Guangzhou China
| | - Jun Gu
- Research Institute of General Surgery, Affiliated Jinling Hospital Medical School of Nanjing University Nanjing China
| |
Collapse
|
6
|
Sun Y, Fan L, Mian W, Zhang F, Liu X, Tang Y, Zeng X, Mei Q, Li Y. Modified apple polysaccharide influences MUC-1 expression to prevent ICR mice from colitis-associated carcinogenesis. Int J Biol Macromol 2018; 120:1387-1395. [DOI: 10.1016/j.ijbiomac.2018.09.142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 09/02/2018] [Accepted: 09/22/2018] [Indexed: 12/11/2022]
|
7
|
Kaushal N, Tiruchinapally G, Durmaz YY, Bao L, Gilani R, Merajver SD, ElSayed MEH. Synergistic inhibition of aggressive breast cancer cell migration and invasion by cytoplasmic delivery of anti-RhoC silencing RNA and presentation of EPPT1 peptide on "smart" particles. J Control Release 2018; 289:79-93. [PMID: 30149048 DOI: 10.1016/j.jconrel.2018.07.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 07/27/2018] [Indexed: 01/05/2023]
Abstract
Overexpression of RhoC protein in breast cancer patients has been linked to increased cancer cell invasion, migration, and metastases. Suppressing RhoC expression in aggressive breast cancer cells using silencing RNA (siRNA) molecules is a viable strategy to inhibit the metastatic spread of breast cancer. In this report, we describe the synthesis of a series of asymmetric pH-sensitive, membrane-destabilizing polymers engineered to complex anti-RhoC siRNA molecules forming "smart" nanoparticles. Using β-CD as the particle core, polyethylene glycol (PEG) chains were conjugated to the primary face via non-cleavable bonds and amphiphilic polymers incorporating hydrophobic and cationic monomers were grafted to the secondary face via acid-labile linkages. We investigated the effect of PEG molecular weight (2 & 5 kDa) on transfection capacity and serum stability of the formed particles. We evaluated the efficacy of EPPT1 peptides presented on the free tips of the PEG brush to function as a targeting ligand against underglycosylated MUC1 (uMUC1) receptors overexpressed on the surface of metastatic breast cancer cells. Results show that "smart" nanoparticles successfully delivered anti-RhoC siRNA into the cytoplasm of aggressive SUM149 and MDA-MB-231 breast cancer cells, which resulted in a dose-dependent inhibition of cell migration and invasion. Further, EPPT1-targeted nanoparticles demonstrate a synergistic inhibition of cell migration and invasion imparted via RhoC knockdown and EPPT1-mediated signaling via the uMUC1 receptor.
Collapse
Affiliation(s)
- Neha Kaushal
- University of Michigan, College of Engineering, Department of Biomedical Engineering, Cellular Engineering & Nano-Therapeutics Laboratory, Ann Arbor, MI 48109, USA
| | - Gopinath Tiruchinapally
- University of Michigan, College of Engineering, Department of Biomedical Engineering, Cellular Engineering & Nano-Therapeutics Laboratory, Ann Arbor, MI 48109, USA
| | - Yasemin Yuksel Durmaz
- Istanbul Medipol University, School of Engineering and Natural Sciences, Department of Biomedical Engineering, 34810 Istanbul, Turkey
| | - LiWei Bao
- University of Michigan, School of Medicine, Department of Internal Medicine, Ann Arbor, MI 48109, USA
| | - Rabia Gilani
- University of Michigan, School of Medicine, Department of Internal Medicine, Ann Arbor, MI 48109, USA
| | - Sofia D Merajver
- University of Michigan, School of Medicine, Department of Internal Medicine, Ann Arbor, MI 48109, USA
| | - Mohamed E H ElSayed
- University of Michigan, College of Engineering, Department of Biomedical Engineering, Cellular Engineering & Nano-Therapeutics Laboratory, Ann Arbor, MI 48109, USA; University of Michigan, Macromolecular Science and Engineering Program, 2300 Hayward Avenue, Ann Arbor, MI 48109, USA.
| |
Collapse
|
8
|
Dubé-Delarosbil C, St-Pierre Y. The emerging role of galectins in high-fatality cancers. Cell Mol Life Sci 2018; 75:1215-1226. [PMID: 29119229 PMCID: PMC11105754 DOI: 10.1007/s00018-017-2708-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/16/2017] [Accepted: 11/02/2017] [Indexed: 12/13/2022]
Abstract
Although we witnessed considerable progress in the prevention and treatment of cancer during the past few decades, a number of cancers remain difficult to treat. The main reasons for this are a lack of effective biomarkers necessary for an early detection and inefficient treatments for cancer that are diagnosed at late stages of the disease. Because of their alarmin-like properties and their protumorigenic role during cancer progression, members of the galectin family are uniquely positioned to provide information that could be used for the exploration of possible avenues for the treatment of high fatality cancer (HFC). A rapid overview of studies that examined the expressions and functions of galectins in cancer cells reveals that they play a central role in at least three major features that characterize HFCs: (1) induction of systemic and local immunosuppression, (2) chemoresistance of cancer cells, and (3) increased invasive behavior. Defining the galectinome in HFCs will also lead to a better understanding of tumor heterogeneity while providing critical information that could improve the accuracy of biomarker panels for a more personalized treatment of HFCs. In this review, we discuss the relevance of the galectinome in HFC and its possible contribution to providing potential solutions.
Collapse
Affiliation(s)
| | - Yves St-Pierre
- INRS-Institut Armand-Frappier, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada.
| |
Collapse
|
9
|
Artigas G, Hinou H, Garcia-Martin F, Gabius HJ, Nishimura SI. Synthetic Mucin-Like Glycopeptides as Versatile Tools to Measure Effects of Glycan Structure/Density/Position on the Interaction with Adhesion/Growth-Regulatory Galectins in Arrays. Chem Asian J 2016; 12:159-167. [DOI: 10.1002/asia.201601420] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/21/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Gerard Artigas
- Faculty of Advanced Life Science; Hokkaido University, N21W11, Kita-ku; Sapporo 001-0021 Japan
| | - Hiroshi Hinou
- Faculty of Advanced Life Science; Hokkaido University, N21W11, Kita-ku; Sapporo 001-0021 Japan
- Medicinal Chemistry Pharmaceuticals, Co., Ltd. N9W15, Chuo-ku; Sapporo 060-0009 Japan
| | - Fayna Garcia-Martin
- Faculty of Advanced Life Science; Hokkaido University, N21W11, Kita-ku; Sapporo 001-0021 Japan
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry; Faculty of Veterinary Medicine; Ludwig-Maximilians-University Munich; Veterinärstr. 13 80539 München Germany
| | - Shin-Ichiro Nishimura
- Faculty of Advanced Life Science; Hokkaido University, N21W11, Kita-ku; Sapporo 001-0021 Japan
- Medicinal Chemistry Pharmaceuticals, Co., Ltd. N9W15, Chuo-ku; Sapporo 060-0009 Japan
| |
Collapse
|
10
|
Cascio S, Finn OJ. Intra- and Extra-Cellular Events Related to Altered Glycosylation of MUC1 Promote Chronic Inflammation, Tumor Progression, Invasion, and Metastasis. Biomolecules 2016; 6:biom6040039. [PMID: 27754373 PMCID: PMC5197949 DOI: 10.3390/biom6040039] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/29/2016] [Accepted: 09/27/2016] [Indexed: 12/12/2022] Open
Abstract
Altered glycosylation of mucin 1 (MUC1) on tumor cells compared to normal epithelial cells was previously identified as an important antigenic modification recognized by the immune system in the process of tumor immunosurveillance. This tumor form of MUC1 is considered a viable target for cancer immunotherapy. The importance of altered MUC1 glycosylation extends also to its role as a promoter of chronic inflammatory conditions that lead to malignant transformation and cancer progression. We review here what is known about the role of specific cancer-associated glycans on MUC1 in protein-protein interactions and intracellular signaling in cancer cells and in their adhesion to each other and the tumor stroma. The tumor form of MUC1 also creates a different landscape of inflammatory cells in the tumor microenvironment by controlling the recruitment of inflammatory cells, establishing specific interactions with dendritic cells (DCs) and macrophages, and facilitating tumor escape from the immune system. Through multiple types of short glycans simultaneously present in tumors, MUC1 acquires multiple oncogenic properties that control tumor development, progression, and metastasis at different steps of the process of carcinogenesis.
Collapse
Affiliation(s)
- Sandra Cascio
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
- Fondazione Ri.Med, via Bandiera 11, Palermo 90133, Italy.
| | - Olivera J Finn
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
11
|
Pai P, Rachagani S, Dhawan P, Batra SK. Mucins and Wnt/β-catenin signaling in gastrointestinal cancers: an unholy nexus. Carcinogenesis 2016; 37:223-32. [PMID: 26762229 DOI: 10.1093/carcin/bgw005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/11/2016] [Indexed: 12/15/2022] Open
Abstract
The Wnt/β-catenin signaling pathway is indispensable for embryonic development, maintenance of adult tissue homeostasis and repair of epithelial injury. Unsurprisingly, aberrations in this pathway occur frequently in many cancers and often result in increased nuclear β-catenin. While mutations in key pathway members, such as β-catenin and adenomatous polyposis coli, are early and frequent occurrences in most colorectal cancers (CRC), mutations in canonical pathway members are rare in pancreatic ductal adenocarcinoma (PDAC). Instead, in the majority of PDACs, indirect mechanisms such as promoter methylation, increased ligand secretion and decreased pathway inhibitor secretion work in concert to promote aberrant cytosolic/nuclear localization of β-catenin. Concomitant with alterations in β-catenin localization, changes in mucin expression and localization have been documented in multiple malignancies. Indeed, numerous studies over the years suggest an intricate and mutually regulatory relationship between mucins (MUCs) and β-catenin. In the current review, we summarize several studies that describe the relationship between mucins and β-catenin in gastrointestinal malignancies, with particular emphasis upon colorectal and pancreatic cancer.
Collapse
Affiliation(s)
- Priya Pai
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA, Fred and Pamela Buffett Cancer Center
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA, Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases and
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA, Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases and Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
12
|
Mori Y, Akita K, Yashiro M, Sawada T, Hirakawa K, Murata T, Nakada H. Binding of Galectin-3, a β-Galactoside-binding Lectin, to MUC1 Protein Enhances Phosphorylation of Extracellular Signal-regulated Kinase 1/2 (ERK1/2) and Akt, Promoting Tumor Cell Malignancy. J Biol Chem 2015; 290:26125-40. [PMID: 26342075 DOI: 10.1074/jbc.m115.651489] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Indexed: 11/06/2022] Open
Abstract
Both mucin 1 (MUC1) and galectin-3 are known to be overexpressed in various malignant tumors and associated with a poor prognosis. It has been extensively reported that MUC1 is involved in potentiation of growth factor-dependent signal transduction. Because some carbohydrate moieties carried on MUC1 change to preferable ones for binding of galectin-3 in cancer cells, we speculated that MUC1-mediated signaling may occur through direct binding of galectin-3. Immunochemical studies showed that the distribution of galectin-3 coincided with that of MUC1 in various human tumor tissues but not in human nonmalignant tissues, and the level of galectin-3 retained on the surface of various cancer cells paralleled that of MUC1. Treatment of MUC1-expressing cells with galectin-3 induced phosphorylation of ERK1/2 and Akt following enhanced phosphorylation of MUC1 C-terminal domain, consistently promoting tumor cell malignancy. It is also noted that this enhanced phosphorylation occurred independently of EGF receptor-mediated signaling in both EGF receptor- and MUC1-expressing cells, and multivalency of galectin-3 was important for initiation of MUC1-mediated signaling. Expectedly, both silencing of endogenous galectin-3 and treatment with galectin-3 antagonists down-regulated cell proliferation of MUC1-expressing cells. These results suggest that the binding of galectin-3 to MUC1 plays a key role in MUC1-mediated signaling. Thus, constitutive activation of MUC1-mediated signaling in an autocrine/paracrine manner caused by ligation of galectin-3 promotes uncontrolled tumor cell malignancy. This signaling may be another MUC1-mediated pathway and function in parallel with a growth factor-dependent MUC1-mediated signaling pathway.
Collapse
Affiliation(s)
- Yugo Mori
- From the Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Kaoru Akita
- From the Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Masakazu Yashiro
- the Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan, the Oncology Institute of Geriatrics and Medical Science, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan, and
| | - Tetsuji Sawada
- the Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Kosei Hirakawa
- the Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Takeomi Murata
- the Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan
| | - Hiroshi Nakada
- From the Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan,
| |
Collapse
|
13
|
Haddon L, Hugh J. MUC1-mediated motility in breast cancer: a review highlighting the role of the MUC1/ICAM-1/Src signaling triad. Clin Exp Metastasis 2015; 32:393-403. [PMID: 25759211 DOI: 10.1007/s10585-015-9711-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 03/03/2015] [Indexed: 12/16/2022]
Abstract
Breast cancer is the most common cancer in women with the leading cause of death being metastasis, the spread of cancer to distant organs. For those patients with high-risk estrogen receptor positive (ER+) breast cancer, an increased expression of the glycoprotein MUC1 is associated with resistance to anti-hormonal therapy, metastasis and death. Tumor cells may use MUC1 to metastasize by exploiting the vascular adhesion pathways used by leukocytes during the inflammatory response. MUC1 is a type 1 transmembrane protein whose cytoplasmic tail acts as a scaffold for several signaling pathways including the non-receptor kinase Src, a signaling molecule involved in cell differentiation, proliferation, adhesion and motility. This review will highlight our current knowledge of how MUC1/ICAM-1 binding can lead to the recruitment and activation of Src and propose a novel role for lipid raft microdomains in this promigratory signaling. Improved understanding of the mechanism of metastases and the underlying signaling cascade is a prerequisite to the discovery of therapeutic targets to prevent metastasis and death in ER+ breast cancer patients.
Collapse
Affiliation(s)
- Lacey Haddon
- Department of Laboratory of Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
14
|
ECM1 regulates tumor metastasis and CSC-like property through stabilization of β-catenin. Oncogene 2015; 34:6055-65. [PMID: 25746001 DOI: 10.1038/onc.2015.54] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 12/16/2014] [Accepted: 12/19/2014] [Indexed: 01/01/2023]
Abstract
Extracellular Matrix Protein 1 (ECM1) is a marker for tumorigenesis and is correlated with invasiveness and poor prognosis in various types of cancer. However, the functional role of ECM1 in cancer metastasis is unclear. Here, we detected high ECM1 level in breast cancer patient sera that was associated with recurrence of tumor. The modulation of ECM1 expression affected not only cell migration and invasion, but also sphere-forming ability and drug resistance in breast cancer cell lines. In addition, ECM1 regulated the gene expression associated with the epithelial to mesenchymal transition (EMT) progression and cancer stem cell (CSC) maintenance. Interestingly, ECM1 increased β-catenin expression at the post-translational level through induction of MUC1, which was physically associated with β-catenin. Indeed, the association between β-catenin and the MUC1 cytoplasmic tail was increased by ECM1. Furthermore, forced expression of β-catenin altered the gene expression that potentiated EMT progression and CSC phenotype maintenance in the cells. These data provide evidence that ECM1 has an important role in cancer metastasis through β-catenin stabilization.
Collapse
|
15
|
Xin M, Dong XW, Guo XL. Role of the interaction between galectin-3 and cell adhesion molecules in cancer metastasis. Biomed Pharmacother 2014; 69:179-85. [PMID: 25661355 DOI: 10.1016/j.biopha.2014.11.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 11/12/2014] [Indexed: 12/15/2022] Open
Abstract
Galectin-3, a unique chimera-type member of the β-galactoside-binding soluble lectin family, is present in both normal and cancer cells and plays a crucial role in the regulation of cell adhesion. It is involved both in accelerating detachment of cells from primary tumor sites and promoting cancer cell adhesion and survival to anoikis in the blood stream. Cell adhesion molecules (CAMs) are membrane receptors that mediate cell-cell and cell-matrix interactions, and are essential for transducing intracellular signals responsible for adhesion, migration, invasion, angiogenesis, and organ-specific metastasis. This review will discuss the recent advances in our understanding the biological functions, mechanism and therapeutic implication of the interaction between galectin-3 and CAMs in cancer metastasis.
Collapse
Affiliation(s)
- Ming Xin
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Xin-Wen Dong
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Xiu-Li Guo
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| |
Collapse
|
16
|
Mori Y, Akita K, Tanida S, Ishida A, Toda M, Inoue M, Yashiro M, Sawada T, Hirakawa K, Nakada H. MUC1 protein induces urokinase-type plasminogen activator (uPA) by forming a complex with NF-κB p65 transcription factor and binding to the uPA promoter, leading to enhanced invasiveness of cancer cells. J Biol Chem 2014; 289:35193-204. [PMID: 25371209 DOI: 10.1074/jbc.m114.586461] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mucin 1 (MUC1) is overexpressed in various human malignant tumors and its expression is correlated with a poor prognosis. MUC1 engages in signal transduction by interacting with receptors for growth and differentiation factors, which contributes to the growth and survival of cancer cells. However, the mechanism by which MUC1 promotes cancer cell invasion remains unclear. Microarray analysis revealed that expression of urokinase-type plasminogen activator (uPA) was elevated in MUC1-overexpressing cells. Furthermore, up- and down-modulation of MUC1 expression was clearly correlated with the change of uPA expression. An immunochemical study showed that the distribution of uPA coincided with that of MUC1 in various human cancer tissues. The MUC1 C-terminal domain (MUC1-CD) was associated with nuclear factor-κB (NF-κB) p65 in MUC1-expressing cells. Chromatin immunoprecipitation (ChIP) assays demonstrated that MUC1-CD existed with NF-κB p65 on the uPA promoter. Luciferase assays indicated that the uPA transcriptional activity was correlated with the level of MUC1 expression and that this MUC1-enhancing effect on the uPA transcription was abolished by introduction of mutations into the NF-κB binding sites on the uPA promoter. These results indicate that formation of the MUC1-CD and NF-κB p65 complex enhanced nuclear translocation of NF-κB p65 and subsequent occupancy of NF-κB binding region on the uPA promoter, leading to elevated transcription of uPA. We also demonstrated that uPA induced by MUC1 enhanced the matrix metalloproteinase (MMP)-2 and -9 activities, and consequently promoted cancer cell invasion. Thus, a MUC1 co-operating NF-κB signaling pathway plays a critical role in cancer cell invasion in MUC1-expressing cells.
Collapse
Affiliation(s)
- Yugo Mori
- From the Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Kaoru Akita
- From the Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Shuhei Tanida
- From the Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Akiko Ishida
- From the Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Munetoyo Toda
- From the Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Mizue Inoue
- From the Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Masakazu Yashiro
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan, and Oncology Institute of Geriatrics and Medical Science, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Tetsuji Sawada
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan, and
| | - Kosei Hirakawa
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan, and
| | - Hiroshi Nakada
- From the Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan,
| |
Collapse
|
17
|
Blanchard H, Yu X, Collins PM, Bum-Erdene K. Galectin-3 inhibitors: a patent review (2008–present). Expert Opin Ther Pat 2014; 24:1053-65. [DOI: 10.1517/13543776.2014.947961] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|