1
|
Liu X, Gu J, Wang J, Zhang W, Wang Y, Xu Z. Cell Membrane-Anchored SERS Biosensor for the Monitoring of Cell-Secreted MMP-9 during Cell-Cell Communication. ACS Sens 2023; 8:4307-4314. [PMID: 37923556 DOI: 10.1021/acssensors.3c01663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Matrix metalloproteinase-9 (MMP-9), a proteolytic enzyme, degrades the extracellular matrix and plays a key role in cell communication. However, the real-time monitoring of cell-secreted MMP-9 during cell-cell communication remains a challenge. Herein, we developed a cell-based membrane-anchored surface-enhanced Raman scattering (SERS) biosensor using a Au@4-mercaptobenzonitrile (4-MBN) @Ag@peptide nanoprobe for the monitoring of cell-secreted MMP-9 during cell communication. The multifunctional nanoprobe was created with Au@4-MBN@Ag acting as an interference-free SERS substrate with high enhancement in which the peptide not only serves to anchor the cell membrane but also provides MMP-9-activatable cleaved peptide chains. MMP-9-mediated cleavage resulted in the detachment of the Au@4-MBN@Ag nanoparticles from the cell membrane, thereby decreasing the SERS signals of cancer cells. The cell membrane-anchored SERS biosensor enables the real-time monitoring of cell-secreted MMP-9 during the interaction of MCF-7 and HUVEC cells. This study successfully demonstrates the dynamic change of cell-secreted MMP-9 during the communication between MCF-7 cells and HUVEC cells. The proposed nanoprobe was also utilized to precisely evaluate the breast and hepatoma cancer cell aggressiveness. This study provides a novel strategy for real-time monitoring of MMP-9 secretion during cell communication, which is promising for the investigation of the mechanisms underlying different tumor processes.
Collapse
Affiliation(s)
- Xiaopeng Liu
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Jiahui Gu
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Jie Wang
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Wenshu Zhang
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Yue Wang
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Zhangrun Xu
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| |
Collapse
|
2
|
Chen CG, Kapoor A, Xie C, Moss A, Vadigepalli R, Ricard-Blum S, Iozzo RV. Conditional expression of endorepellin in the tumor vasculature attenuates breast cancer growth, angiogenesis and hyaluronan deposition. Matrix Biol 2023; 118:92-109. [PMID: 36907428 PMCID: PMC10259220 DOI: 10.1016/j.matbio.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
The tumor stroma of most solid malignancies is characterized by a pathological accumulation of pro-angiogenic and pro-tumorigenic hyaluronan driving tumorigenesis and metastatic potential. Of all three hyaluronan synthase isoforms, HAS2 is the primary enzyme that promotes the build-up of tumorigenic HA in breast cancer. Previously, we discovered that endorepellin, the angiostatic C-terminal fragment of perlecan, evokes a catabolic mechanism targeting endothelial HAS2 and hyaluronan via autophagic induction. To explore the translational implications of endorepellin in breast cancer, we created a double transgenic, inducible Tie2CreERT2;endorepellin(ER)Ki mouse line that expresses recombinant endorepellin specifically from the endothelium. We investigated the therapeutic effects of recombinant endorepellin overexpression in an orthotopic, syngeneic breast cancer allograft mouse model. First, adenoviral delivery of Cre evoking intratumor expression of endorepellin in ERKi mice suppressed breast cancer growth, peritumor hyaluronan and angiogenesis. Moreover, tamoxifen-induced expression of recombinant endorepellin specifically from the endothelium in Tie2CreERT2;ERKi mice markedly suppressed breast cancer allograft growth, hyaluronan deposition in the tumor proper and perivascular tissues, and tumor angiogenesis. These results provide insight into the tumor suppressing activity of endorepellin at the molecular level and implicate endorepellin as a promising cancer protein therapy that targets hyaluronan in the tumor microenvironment.
Collapse
Affiliation(s)
- Carolyn G Chen
- Department of Pathology and Genomic Medicine and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Aastha Kapoor
- Department of Pathology and Genomic Medicine and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Christopher Xie
- Department of Pathology and Genomic Medicine and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Alison Moss
- Department of Pathology and Genomic Medicine and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Rajanikanth Vadigepalli
- Department of Pathology and Genomic Medicine and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Sylvie Ricard-Blum
- Institute of Molecular and Supramolecular Chemistry and Biochemistry, University Claude Bernard Lyon 1, Villeurbanne, France
| | - Renato V Iozzo
- Department of Pathology and Genomic Medicine and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
3
|
The Differential Paracrine Role of the Endothelium in Prostate Cancer Cells. Cancers (Basel) 2022; 14:cancers14194750. [PMID: 36230673 PMCID: PMC9563990 DOI: 10.3390/cancers14194750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary A growing body of literature supports the concept that a tumor mass is under the strict control of the microvascular endothelium and that the perfusion of oxygen and nutrients by capillary vessels to the tumor mass is reinforced by potent paracrine activity from the vascular endothelial cells. In our study, we investigate the biological and molecular implications of the paracrine crosstalk between vascular endothelial cells and prostate cancer cells. Our results indicate that the endothelial cells were able to secrete molecular signals that promote the proliferation and growth of low and highly aggressive prostate cancer cells and selectively increased the migration, invasion and metastatic potential of highly aggressive prostate cancer cells. The molecular analyses indicated that endothelial cells induced a differential effect on gene expression profile when comparing low versus highly aggressive prostate cancer cells, causing an enrichment of epigenetic changes in migratory pathways in highly aggressive prostate cancer cells. In conclusion, our results indicate that endothelial cells release signals that favor tumor growth and aggressiveness and that this interaction may play an important role in the progression of prostate cancer. Abstract The survival of patients with solid tumors, such as prostate cancer (PCa), has been limited and fleeting with anti-angiogenic therapies. It was previously thought that the mechanism by which the vasculature regulates tumor growth was driven by a passive movement of oxygen and nutrients to the tumor tissue. However, previous evidence suggests that endothelial cells have an alternative role in changing the behavior of tumor cells and contributing to cancer progression. Determining the impact of molecular signals/growth factors released by endothelial cells (ECs) on established PCa cell lines in vitro and in vivo could help to explain the mechanism by which ECs regulate tumor growth. Using cell-conditioned media collected from HUVEC (HUVEC-CM), our data show the stimulated proliferation of all the PCa cell lines tested. However, in more aggressive PCa cell lines, HUVEC-CM selectively promoted migration and invasion in vitro and in vivo. Using a PCa-cell-line-derived xenograft model co-injected with HUVEC or preincubated with HUVEC-CM, our results are consistent with the in vitro data, showing enhanced tumor growth, increased tumor microvasculature and promoted metastasis. Gene set enrichment analyses from RNA-Seq gene expression profiles showed that HUVEC-CM induced a differential effect on gene expression when comparing low versus highly aggressive PCa cell lines, demonstrating epigenetic and migratory pathway enrichments in highly aggressive PCa cells. In summary, paracrine stimulation by HUVEC increased PCa cell proliferation and tumor growth and selectively promoted migration and metastatic potential in more aggressive PCa cell lines.
Collapse
|
4
|
Stromal Co-Cultivation for Modeling Breast Cancer Dormancy in the Bone Marrow. Cancers (Basel) 2022; 14:cancers14143344. [PMID: 35884405 PMCID: PMC9320268 DOI: 10.3390/cancers14143344] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Cancers metastasize to the bone marrow before primary tumors can be detected. Bone marrow micrometastases are resistant to therapy, and while they are able to remain dormant for decades, they recur steadily and result in incurable metastatic disease. The bone marrow microenvironment maintains the dormancy and chemoresistance of micrometastases through interactions with multiple cell types and through structural and soluble factors. Modeling dormancy in vitro can identify the mechanisms of these interactions. Modeling also identifies mechanisms able to disrupt these interactions or define novel interactions that promote the reawakening of dormant cells. The in vitro modeling of the interactions of cancer cells with various bone marrow elements can generate hypotheses on the mechanisms that control dormancy, treatment resistance and reawakening in vivo. These hypotheses can guide in vivo murine experiments that have high probabilities of succeeding in order to verify in vitro findings while minimizing the use of animals in experiments. This review outlines the existing data on predominant stromal cell types and their use in 2D co-cultures with cancer cells.
Collapse
|
5
|
Neill T, Iozzo RV. The Role of Decorin Proteoglycan in Mitophagy. Cancers (Basel) 2022; 14:804. [PMID: 35159071 PMCID: PMC8834502 DOI: 10.3390/cancers14030804] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
Proteoglycans are emerging as critical regulators of intracellular catabolism. This rise in prominence has transformed our basic understanding and alerted us to the existence of non-canonical pathways, independent of nutrient deprivation, that potently control the autophagy downstream of a cell surface receptor. As a member of the small leucine-rich proteoglycan gene family, decorin has single-handedly pioneered the connection between extracellular matrix signaling and autophagy regulation. Soluble decorin evokes protracted endothelial cell autophagy via Peg3 and breast carcinoma cell mitophagy via mitostatin by interacting with VEGFR2 or the MET receptor tyrosine kinase, respectively. In this paper, we give a mechanistic perspective of the vital factors underlying the nutrient-independent, SLRP-dependent programs utilized for autophagic and/or mitophagic progression in breast cancer. Future protein therapies based on decorin (or fellow proteoglycan members) will represent a quantum leap forward in transforming autophagic progression into a powerful tool to control intracellular cell catabolism from the outside.
Collapse
Affiliation(s)
- Thomas Neill
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
6
|
Kim K, Sohn YJ, Lee R, Yoo HJ, Kang JY, Choi N, Na D, Yeon JH. Cancer-Associated Fibroblasts Differentiated by Exosomes Isolated from Cancer Cells Promote Cancer Cell Invasion. Int J Mol Sci 2020; 21:ijms21218153. [PMID: 33142759 PMCID: PMC7662577 DOI: 10.3390/ijms21218153] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) in the cancer microenvironment play an essential role in metastasis. Differentiation of endothelial cells into CAFs is induced by cancer cell-derived exosomes secreted from cancer cells that transfer molecular signals to surrounding cells. Differentiated CAFs facilitate migration of cancer cells to different regions through promoting extracellular matrix (ECM) modifications. However, in vitro models in which endothelial cells exposed to cancer cell-derived exosomes secreted from various cancer cell types differentiate into CAFs or a microenvironmentally controlled model for investigating cancer cell invasion by CAFs have not yet been studied. In this study, we propose a three-dimensional in vitro cancer cell invasion model for real-time monitoring of the process of forming a cancer invasion site through CAFs induced by exosomes isolated from three types of cancer cell lines. The invasiveness of cancer cells with CAFs induced by cancer cell-derived exosomes (eCAFs) was significantly higher than that of CAFs induced by cancer cells (cCAFs) through physiological and genetic manner. In addition, different genetic tendencies of the invasion process were observed in the process of invading cancer cells according to CAFs. Our 3D microfluidic platform helps to identify specific interactions among multiple factors within the cancer microenvironment and provides a model for cancer drug development.
Collapse
Affiliation(s)
- Kimin Kim
- Department of Integrative Biosciences, University of Brain Education (UBE), Cheonan 31228, Korea; (K.K.); (Y.J.S.); (R.L.); (H.J.Y.)
| | - Yeh Joo Sohn
- Department of Integrative Biosciences, University of Brain Education (UBE), Cheonan 31228, Korea; (K.K.); (Y.J.S.); (R.L.); (H.J.Y.)
| | - Ruri Lee
- Department of Integrative Biosciences, University of Brain Education (UBE), Cheonan 31228, Korea; (K.K.); (Y.J.S.); (R.L.); (H.J.Y.)
| | - Hye Ju Yoo
- Department of Integrative Biosciences, University of Brain Education (UBE), Cheonan 31228, Korea; (K.K.); (Y.J.S.); (R.L.); (H.J.Y.)
| | - Ji Yoon Kang
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (J.Y.K.); (N.C.)
- Division of Bio-Medical Science & Technology (Biomedical Engineering), KIST School, Korea University of Science and Technology (UST), Seoul 02792, Korea
| | - Nakwon Choi
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (J.Y.K.); (N.C.)
- Division of Bio-Medical Science & Technology (Biomedical Engineering), KIST School, Korea University of Science and Technology (UST), Seoul 02792, Korea
| | - Dokyun Na
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, Korea
- Correspondence: (D.N.); (J.H.Y.); Tel.: +82-2-820-5690 (D.N.); +82-41-529-2621 (J.H.Y.); Fax: +82-2-814-2651 (D.N.); +82-41-529-2674 (J.H.Y.)
| | - Ju Hun Yeon
- Department of Integrative Biosciences, University of Brain Education (UBE), Cheonan 31228, Korea; (K.K.); (Y.J.S.); (R.L.); (H.J.Y.)
- Correspondence: (D.N.); (J.H.Y.); Tel.: +82-2-820-5690 (D.N.); +82-41-529-2621 (J.H.Y.); Fax: +82-2-814-2651 (D.N.); +82-41-529-2674 (J.H.Y.)
| |
Collapse
|
7
|
Vadlakonda L, Indracanti M, Kalangi SK, Gayatri BM, Naidu NG, Reddy ABM. The Role of Pi, Glutamine and the Essential Amino Acids in Modulating the Metabolism in Diabetes and Cancer. J Diabetes Metab Disord 2020; 19:1731-1775. [PMID: 33520860 DOI: 10.1007/s40200-020-00566-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
Purpose Re-examine the current metabolic models. Methods Review of literature and gene networks. Results Insulin activates Pi uptake, glutamine metabolism to stabilise lipid membranes. Tissue turnover maintains the metabolic health. Current model of intermediary metabolism (IM) suggests glucose is the source of energy, and anaplerotic entry of fatty acids and amino acids into mitochondria increases the oxidative capacity of the TCA cycle to produce the energy (ATP). The reduced cofactors, NADH and FADH2, have different roles in regulating the oxidation of nutrients, membrane potentials and biosynthesis. Trans-hydrogenation of NADH to NADPH activates the biosynthesis. FADH2 sustains the membrane potential during the cell transformations. Glycolytic enzymes assume the non-canonical moonlighting functions, enter the nucleus to remodel the genetic programmes to affect the tissue turnover for efficient use of nutrients. Glycosylation of the CD98 (4F2HC) stabilises the nutrient transporters and regulates the entry of cysteine, glutamine and BCAA into the cells. A reciprocal relationship between the leucine and glutamine entry into cells regulates the cholesterol and fatty acid synthesis and homeostasis in cells. Insulin promotes the Pi transport from the blood to tissues, activates the mitochondrial respiratory activity, and glutamine metabolism, which activates the synthesis of cholesterol and the de novo fatty acids for reorganising and stabilising the lipid membranes for nutrient transport and signal transduction in response to fluctuations in the microenvironmental cues. Fatty acids provide the lipid metabolites, activate the second messengers and protein kinases. Insulin resistance suppresses the lipid raft formation and the mitotic slippage activates the fibrosis and slow death pathways.
Collapse
Affiliation(s)
| | - Meera Indracanti
- Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| | - Suresh K Kalangi
- Amity Stem Cell Institute, Amity University Haryana, Amity Education Valley Pachgaon, Manesar, Gurugram, HR 122413 India
| | - B Meher Gayatri
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| | - Navya G Naidu
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| | - Aramati B M Reddy
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| |
Collapse
|
8
|
Schinzel RT, Higuchi-Sanabria R, Shalem O, Moehle EA, Webster BM, Joe L, Bar-Ziv R, Frankino PA, Durieux J, Pender C, Kelet N, Kumar SS, Savalia N, Chi H, Simic M, Nguyen NT, Dillin A. The Hyaluronidase, TMEM2, Promotes ER Homeostasis and Longevity Independent of the UPR ER. Cell 2019; 179:1306-1318.e18. [PMID: 31761535 PMCID: PMC6913896 DOI: 10.1016/j.cell.2019.10.018] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/31/2019] [Accepted: 10/18/2019] [Indexed: 12/16/2022]
Abstract
Cells have evolved complex mechanisms to maintain protein homeostasis, such as the UPRER, which are strongly associated with several diseases and the aging process. We performed a whole-genome CRISPR-based knockout (KO) screen to identify genes important for cells to survive ER-based protein misfolding stress. We identified the cell-surface hyaluronidase (HAase), Transmembrane Protein 2 (TMEM2), as a potent modulator of ER stress resistance. The breakdown of the glycosaminoglycan, hyaluronan (HA), by TMEM2 within the extracellular matrix (ECM) altered ER stress resistance independent of canonical UPRER pathways but dependent upon the cell-surface receptor, CD44, a putative HA receptor, and the MAPK cell-signaling components, ERK and p38. Last, and most surprisingly, ectopic expression of human TMEM2 in C. elegans protected animals from ER stress and increased both longevity and pathogen resistance independent of canonical UPRER activation but dependent on the ERK ortholog mpk-1 and the p38 ortholog pmk-1.
Collapse
Affiliation(s)
- Robert Thomas Schinzel
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Regenerative Medicine, Berkeley, CA 94720, USA; University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ryo Higuchi-Sanabria
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Regenerative Medicine, Berkeley, CA 94720, USA; University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ophir Shalem
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Regenerative Medicine, Berkeley, CA 94720, USA; University of California, Berkeley, Berkeley, CA 94720, USA
| | - Erica Ann Moehle
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Regenerative Medicine, Berkeley, CA 94720, USA; University of California, Berkeley, Berkeley, CA 94720, USA
| | - Brant Michael Webster
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Regenerative Medicine, Berkeley, CA 94720, USA; University of California, Berkeley, Berkeley, CA 94720, USA
| | - Larry Joe
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Regenerative Medicine, Berkeley, CA 94720, USA; University of California, Berkeley, Berkeley, CA 94720, USA
| | - Raz Bar-Ziv
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Regenerative Medicine, Berkeley, CA 94720, USA; University of California, Berkeley, Berkeley, CA 94720, USA
| | - Phillip Andrew Frankino
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Regenerative Medicine, Berkeley, CA 94720, USA; University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jenni Durieux
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Regenerative Medicine, Berkeley, CA 94720, USA; University of California, Berkeley, Berkeley, CA 94720, USA
| | - Corinne Pender
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Regenerative Medicine, Berkeley, CA 94720, USA; University of California, Berkeley, Berkeley, CA 94720, USA
| | - Naame Kelet
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Regenerative Medicine, Berkeley, CA 94720, USA; University of California, Berkeley, Berkeley, CA 94720, USA
| | - Saranya Santhosh Kumar
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nupur Savalia
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Regenerative Medicine, Berkeley, CA 94720, USA; University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hannah Chi
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Regenerative Medicine, Berkeley, CA 94720, USA; University of California, Berkeley, Berkeley, CA 94720, USA
| | - Milos Simic
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Regenerative Medicine, Berkeley, CA 94720, USA; University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ngoc-Tram Nguyen
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Regenerative Medicine, Berkeley, CA 94720, USA; University of California, Berkeley, Berkeley, CA 94720, USA
| | - Andrew Dillin
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Regenerative Medicine, Berkeley, CA 94720, USA; University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
9
|
Tavianatou AG, Piperigkou Z, Barbera C, Beninatto R, Masola V, Caon I, Onisto M, Franchi M, Galesso D, Karamanos NK. Molecular size-dependent specificity of hyaluronan on functional properties, morphology and matrix composition of mammary cancer cells. Matrix Biol Plus 2019; 3:100008. [PMID: 33543007 PMCID: PMC7852304 DOI: 10.1016/j.mbplus.2019.100008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/22/2022] Open
Abstract
High levels of hyaluronan (ΗΑ), a major extracellular matrix (ECM) glycosaminoglycan, have been correlated with poor clinical outcome in several malignancies, including breast cancer. The high and low molecular weight HΑ forms exert diverse biological functions. Depending on their molecular size, ΗΑ forms either promote or attenuate signaling cascades that regulate cancer progression. In order to evaluate the effects of different ΗΑ forms on breast cancer cells' behavior, ΗΑ fragments of defined molecular size were synthesized. Breast cancer cells of different estrogen receptor (ER) status - the low metastatic, ERα-positive MCF-7 epithelial cells and the highly aggressive, ERβ-positive MDA-MB-231 mesenchymal cells - were evaluated following treatment with HA fragments. Scanning electron microscopy revealed that HA fragments critically affect the morphology of breast cancer cells in a molecular-size dependent mode. Moreover, the ΗΑ fragments affect cell functional properties, the expression of major ECM mediators and epithelial-to-mesenchymal transition (ΕΜΤ) markers. Notably, treatment with 200 kDa ΗΑ increased the expression levels of the epithelial marker Ε-cadherin and reduced the expression levels of HA synthase 2 and mesenchymal markers, like fibronectin and snail2/slug. These novel data suggest that the effects of HA in breast cancer cells depend on the molecular size and the ER status. An in-depth understanding on the mechanistic basis of these effects may contribute on the development of novel therapeutic strategies for the pharmacological targeting of aggressive breast cancer.
Collapse
Key Words
- BTH, bovine testes hyaluronidase
- Breast cancer
- CD44
- ECM, extracellular matrix
- EMT, epithelial-to-mesenchymal transition
- ER, estrogen receptor
- Epithelial-to-mesenchymal transition
- Estrogen receptors
- HA, hyaluronan or hyaluronic acid
- HAS, hyaluronan synthase
- HMW HA, high molecular weight hyaluronan
- HYAL, hyaluronidase
- Hyaluronan
- LMW HA, low molecular weight hyaluronan
- MET, mesenchymal-to-epithelial transition
- MMPs, matrix metalloproteinases
- SDC, syndecan
- SEM, scanning electron microscopy
- Scanning electron microscopy
- TIMPs, tissue inhibitors of metalloproteinases
- o-HA, hyaluronan oligomers
- s-HA, sulfated hyaluronan
- tPA, tissue plasminogen activator
- uPA, urokinase plasminogen activator
Collapse
Affiliation(s)
- Anastasia-Gerasimoula Tavianatou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
- Foundation for Research and Technology-Hellas (FORTH/ICE-HT), Patras, Greece
| | - Carlo Barbera
- Fidia Farmaceutici S.p.A., via Ponte della Fabbrica 3/A, 35031 Abano Terme, (PD), Italy
| | - Riccardo Beninatto
- Fidia Farmaceutici S.p.A., via Ponte della Fabbrica 3/A, 35031 Abano Terme, (PD), Italy
| | - Valentina Masola
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ilaria Caon
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Maurizio Onisto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marco Franchi
- Department for Life Quality Studies, University of Bologna, Italy
| | - Devis Galesso
- Fidia Farmaceutici S.p.A., via Ponte della Fabbrica 3/A, 35031 Abano Terme, (PD), Italy
| | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
- Foundation for Research and Technology-Hellas (FORTH/ICE-HT), Patras, Greece
| |
Collapse
|
10
|
MSI1 associates glioblastoma radioresistance via homologous recombination repair, tumor invasion and cancer stem-like cell properties. Radiother Oncol 2018; 129:352-363. [PMID: 30322656 DOI: 10.1016/j.radonc.2018.09.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 09/17/2018] [Accepted: 09/21/2018] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Glioblastoma multiforme (GBM) is the most common brain malignancy in adults, and currently available GBM treatments present several unique challenges. It is known that GBM involves cancer stem-like cells (CSCs) and tumor cells that aggressively invade normal brain tissues, and both cell types may cause resistance to radiotherapy (RT) and are thus responsible for therapeutic failure. The radioresistance of GBM cells relies on the efficient activation of the DNA damage response (DDR), but the mechanisms linking this response with stem-cell status and tumor invasion remain unclear. MATERIALS AND METHODS We used irradiation to treat patient-derived GBM (Par) cells and then purified radioresistant GBM (R2M2) cells through two rounds of irradiation and an invasion assay. Musashi-1 (MSI1) is a neural stem-cell marker and key oncogenic factor of GBM. We identified MSI1 expression to predict radioresistance through silencing an MSI1-high-expressing R2M2 cell line or inducing overexpression in a Par cell line with low/no MSI1 expression and assessing the subsequent DDR. RESULT MSI1 enhances tumor invasion via VCAM1 and modulates GBM radioresistance via the hyperactivation of the DDR through increasing homologous recombination repair and evading apoptosis. MSI1 knockdown induces DNA damage accumulation in irradiated GBM cells and promotes their depletion in vitro; MSI1 knockdown also inhibits the formation of GBMs generated by irradiated xeno-transplanted cells. MSI1 inhibition may radiosensitize tumors, prevent CSC-positive selection induced by RT, and reduce tumor invasion. CONCLUSION MSI1 may involve in regulating GBM radioresistance, invasion, and recurrence and could be a novel target for GBM treatment.
Collapse
|
11
|
Sharma R, Sharma R, Khaket TP, Dutta C, Chakraborty B, Mukherjee TK. Breast cancer metastasis: Putative therapeutic role of vascular cell adhesion molecule-1. Cell Oncol (Dordr) 2017; 40:199-208. [PMID: 28534212 DOI: 10.1007/s13402-017-0324-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Breast cancer is a notable cause of cancer-related death in women worldwide. Metastasis to distant organs is responsible for ~90% of this death. Breast cells convert to malignant cancer cells after acquiring the capacity of invasion/intravasation into surrounding tissues and, finally, extravasation/metastasis to distant organs (i.e., lymph nodes, lungs, bone, brain). Metastasis to distant organs depends on interactions between disseminated tumor cells (DTCs) and the endothelium of blood vessels present in the tumor microenvironment. Among several known endothelial adhesion molecules, vascular cell adhesion molecule-1 (VCAM-1) has been found to be involved in this process. It has been shown that VCAM-1 is aberrantly expressed in breast cancer cells and that it can bind to its natural ligand α4β1integrin, also denoted as very late antigen 4 (VLA-4). This binding appears to be responsible for the metastasis of breast cancer cells to lung, bone and brain. The α4β1 integrin - VCAM-1 interaction thus represents a potential therapeutic target for metastatic breast cancer cells. The development of inhibitors of this interaction may be instrumental for the clinical management of breast cancer patients. CONCLUSIONS This study focuses on recent progress on the role of VCAM-1, an important glycoprotein belonging to the immunoglobulin (Ig) superfamily of cell surface adhesion molecules in breast cancer angiogenesis, survival and metastasis. Targeting VCAM-1, expressed on the surface of breast cancer cells, and/or its specific ligand VLA-4/α4β1 integrin, expressed on cells at the site of metastasis, may be a useful strategy to reduce breast cancer cell invasion and metastasis. Various approaches to therapeutically target VCAM-1 and VLA-4 are also discussed.
Collapse
Affiliation(s)
- Rohit Sharma
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala, India
| | - Rohini Sharma
- Department of Botany, University of Jammu, Jammu, India
| | - Tejinder Pal Khaket
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Chanchala Dutta
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala, India
| | - Bornisha Chakraborty
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala, India
| | - Tapan Kumar Mukherjee
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala, India.
| |
Collapse
|
12
|
Pavesi A, Adriani G, Tay A, Warkiani ME, Yeap WH, Wong SC, Kamm RD. Engineering a 3D microfluidic culture platform for tumor-treating field application. Sci Rep 2016; 6:26584. [PMID: 27215466 PMCID: PMC4877588 DOI: 10.1038/srep26584] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 05/04/2016] [Indexed: 12/22/2022] Open
Abstract
The limitations of current cancer therapies highlight the urgent need for a more effective therapeutic strategy. One promising approach uses an alternating electric field; however, the mechanisms involved in the disruption of the cancer cell cycle as well as the potential adverse effects on non-cancerous cells must be clarified. In this study, we present a novel microfluidic device with embedded electrodes that enables the application of an alternating electric field therapy to cancer cells in a 3D extracellular matrix. To demonstrate the potential of our system to aid in designing and testing new therapeutic approaches, cancer cells and cancer cell aggregates were cultured individually or co-cultured with endothelial cells. The metastatic potential of the cancer cells was reduced after electric field treatment. Moreover, the proliferation rate of the treated cancer cells was lower compared with that of the untreated cells, whereas the morphologies and proliferative capacities of the endothelial cells were not significantly affected. These results demonstrate that our novel system can be used to rapidly screen the effect of an alternating electric field on cancer and normal cells within an in vivo-like microenvironment with the potential to optimize treatment protocols and evaluate synergies between tumor-treating field treatment and chemotherapy.
Collapse
Affiliation(s)
- Andrea Pavesi
- Biosym IRG, Singapore-MIT Alliance for Research and Technology, 1 Create Way, 138602 Singapore, Singapore
| | - Giulia Adriani
- Biosym IRG, Singapore-MIT Alliance for Research and Technology, 1 Create Way, 138602 Singapore, Singapore
| | - Andy Tay
- Department of Bioengineering, University of California, Los Angeles, CA 90025, USA.,Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Majid Ebrahimi Warkiani
- School of Mechanical and Manufacturing Engineering, Australian Centre for NanoMedicine, University of New South Wales, Sydney, Australia
| | - Wei Hseun Yeap
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, A*STAR, 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Siew Cheng Wong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, A*STAR, 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Roger D Kamm
- Biosym IRG, Singapore-MIT Alliance for Research and Technology, 1 Create Way, 138602 Singapore, Singapore.,Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA
| |
Collapse
|
13
|
Piperigkou Z, Karamanou K, Engin AB, Gialeli C, Docea AO, Vynios DH, Pavão MS, Golokhvast KS, Shtilman MI, Argiris A, Shishatskaya E, Tsatsakis AM. Emerging aspects of nanotoxicology in health and disease: From agriculture and food sector to cancer therapeutics. Food Chem Toxicol 2016; 91:42-57. [DOI: 10.1016/j.fct.2016.03.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 02/07/2023]
|
14
|
Helal-Neto E, Brandão-Costa RM, Saldanha-Gama R, Ribeiro-Pereira C, Midlej V, Benchimol M, Morandi V, Barja-Fidalgo C. Priming Endothelial Cells With a Melanoma-Derived Extracellular Matrix Triggers the Activation of αvβ3/VEGFR2 Axis. J Cell Physiol 2016; 231:2464-73. [DOI: 10.1002/jcp.25358] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/22/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Edward Helal-Neto
- Laboratório de Farmacologia Celular e Molecular, IBRAG; Universidade do Estado do Rio de Janeiro; Rio de Janeiro Brazil
- Laboratório de Biologia da Célula Endotelial e da Angiogênese, IBRAG; Universidade do Estado do Rio de Janeiro; Rio de Janeiro Brazil
| | - Renata M. Brandão-Costa
- Laboratório de Farmacologia Celular e Molecular, IBRAG; Universidade do Estado do Rio de Janeiro; Rio de Janeiro Brazil
| | - Roberta Saldanha-Gama
- Laboratório de Farmacologia Celular e Molecular, IBRAG; Universidade do Estado do Rio de Janeiro; Rio de Janeiro Brazil
| | - Cristiane Ribeiro-Pereira
- Laboratório de Farmacologia Celular e Molecular, IBRAG; Universidade do Estado do Rio de Janeiro; Rio de Janeiro Brazil
| | - Victor Midlej
- Instituto de Biofísica Carlos Chagas Filho; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| | - Marlene Benchimol
- Instituto de Biofísica Carlos Chagas Filho; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
- Unigranrio; Universidade do Grande Rio; Rio de Janeiro Brazil
| | - Verônica Morandi
- Laboratório de Biologia da Célula Endotelial e da Angiogênese, IBRAG; Universidade do Estado do Rio de Janeiro; Rio de Janeiro Brazil
| | - Christina Barja-Fidalgo
- Laboratório de Farmacologia Celular e Molecular, IBRAG; Universidade do Estado do Rio de Janeiro; Rio de Janeiro Brazil
| |
Collapse
|
15
|
Collagen VI and hyaluronan: the common role in breast cancer. BIOMED RESEARCH INTERNATIONAL 2014; 2014:606458. [PMID: 25126569 PMCID: PMC4121998 DOI: 10.1155/2014/606458] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/18/2014] [Indexed: 12/21/2022]
Abstract
Collagen VI and hyaluronan are widely distributed extracellular matrix macromolecules that play a crucial role in tissue development and are highly expressed in cancers. Both hyaluronan and collagen VI are upregulated in breast cancer, generating a microenvironment that promotes tumour progression and metastasis. A growing number of studies show that these two molecules are involved in inflammation and angiogenesis by recruiting macrophages and endothelial cells, respectively. Additionally, collagen VI induces epithelial-mesenchymal transition that is correlated to increased synthesis of hyaluronan in mammary cells. Hyaluronan has also a specific role in cellular functions that depends mainly on the size of the polymer, whereas the effect of collagen VI in tumour progression may be the result of the intact molecule or the C5 peptide of α3(VI) chain, known as endotrophin. Collectively, these findings strongly support the parallel role of these molecules in tumour progression and suggest that they may be used as prognostic factors for the breast cancer treatment.
Collapse
|