1
|
Huang L, Zhu Y, Kong Q, Guan X, Lei X, Zhang L, Yang H, Yao X, Liang S, An X, Yu J. Inhibition of Integrin α vβ 3-FAK-MAPK signaling constrains the invasion of T-ALL cells. Cell Adh Migr 2023; 17:1-14. [PMID: 36944577 PMCID: PMC10038045 DOI: 10.1080/19336918.2023.2191913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
The role of adhesion receptor integrin αvβ3 in T-ALL was unclear. Firstly, we performed quantitative real-time PCR to assess medullary expression of integrin β3(ITGB3) in T-ALL patients and high ITGB3 expression was relevant with the central nervous system leukemia(CNSL) incidence. Decreasing of cell invasion was observed in Jurkat and Molt4 treated with integrin αvβ3 specific antibody and inhibitor as well as cells with ITGB3 interference. Further, phosphorylation of FAK, cRAF, MEK and ERK decreased in cells with integrin αvβ3 inhibition or interference. Invasion decreased in T-ALL cells treated with FAK and ERK inhibitors. In conclusion, inhibition of integrin αvβ3 signals significantly limits the cell invasion of T-ALL cells.
Collapse
Affiliation(s)
- Lan Huang
- Department of hematology and oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yao Zhu
- Department of hematology and oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Qinglin Kong
- Department of Hematology and Oncology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xianmin Guan
- Department of hematology and oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xiaoying Lei
- Department of hematology and oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Luying Zhang
- Department of hematology and oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Hui Yang
- Department of hematology and oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xinyuan Yao
- Department of hematology and oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Shaoyan Liang
- Department of hematology and oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xizhou An
- Department of hematology and oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Jie Yu
- Department of hematology and oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
2
|
Temozolomide-Acquired Resistance Is Associated with Modulation of the Integrin Repertoire in Glioblastoma, Impact of α5β1 Integrin. Cancers (Basel) 2022; 14:cancers14020369. [PMID: 35053532 PMCID: PMC8773618 DOI: 10.3390/cancers14020369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 02/04/2023] Open
Abstract
Despite extensive treatment, glioblastoma inevitably recurs, leading to an overall survival of around 16 months. Understanding why and how tumours resist to radio/chemotherapies is crucial to overcome this unmet oncological challenge. Primary and acquired resistance to Temozolomide (TMZ), the standard-of-care chemotherapeutic drug, have been the subjects of several studies. This work aimed to evaluate molecular and phenotypic changes occurring during and after TMZ treatment in a glioblastoma cell model, the U87MG. These initially TMZ-sensitive cells acquire long-lasting resistance even after removal of the drug. Transcriptomic analysis revealed that profound changes occurred between parental and resistant cells, particularly at the level of the integrin repertoire. Focusing on α5β1 integrin, which we proposed earlier as a glioblastoma therapeutic target, we demonstrated that its expression was decreased in the presence of TMZ but restored after removal of the drug. In this glioblastoma model of recurrence, α5β1 integrin plays an important role in the proliferation and migration of tumoral cells. We also demonstrated that reactivating p53 by MDM2 inhibitors concomitantly with the inhibition of this integrin in recurrent cells may overcome the TMZ resistance. Our results may explain some integrin-based targeted therapy failure as integrin expressions are highly switchable during the time of treatment. We also propose an alternative way to alter the viability of recurrent glioblastoma cells expressing a high level of α5β1 integrin.
Collapse
|
3
|
El Arawi D, Vézy C, Déturche R, Lehmann M, Kessler H, Dontenwill M, Jaffiol R. Advanced quantification for single-cell adhesion by variable-angle TIRF nanoscopy. BIOPHYSICAL REPORTS 2021; 1:100021. [PMID: 36425460 PMCID: PMC9680782 DOI: 10.1016/j.bpr.2021.100021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/07/2021] [Indexed: 05/25/2023]
Abstract
Over the last decades, several techniques have been developed to study cell adhesion; however, they present significant shortcomings. Such techniques mostly focus on strong adhesion related to specific protein-protein associations, such as ligand-receptor binding in focal adhesions. Therefore, weak adhesion, related to less specific or nonspecific cell-substrate interactions, are rarely addressed. Hence, we propose in this work a complete investigation of cell adhesion, from highly specific to nonspecific adhesiveness, using variable-angle total internal reflection fluorescence (vaTIRF) nanoscopy. This technique allows us to map in real time cell topography with a nanometric axial resolution, along with cell cortex refractive index. These two key parameters allow us to distinguish high and low adhesive cell-substrate contacts. Furthermore, vaTIRF provides cell-substrate binding energy, thus revealing a correlation between cell contractility and cell-substrate binding energy. Here, we highlight the quantitative measurements achieved by vaTIRF on U87MG glioma cells expressing different amounts of α 5 integrins and distinct motility on fibronectin. Regarding integrin expression level, data extracted from vaTIRF measurements, such as the number and size of high adhesive contacts per cell, corroborate the adhesiveness of U87MG cells as intended. Interestingly enough, we found that cells overexpressing α 5 integrins present a higher contractility and lower adhesion energy.
Collapse
Affiliation(s)
- Dalia El Arawi
- Light, nanomaterials, nanotechnologies, ERL CNRS 7004, Université de Technologie de Troyes, Troyes, France
| | - Cyrille Vézy
- Light, nanomaterials, nanotechnologies, ERL CNRS 7004, Université de Technologie de Troyes, Troyes, France
| | - Régis Déturche
- Light, nanomaterials, nanotechnologies, ERL CNRS 7004, Université de Technologie de Troyes, Troyes, France
| | - Maxime Lehmann
- Laboratoire de Bioimagerie et Pathologies, UMR CNRS 7021, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Horst Kessler
- Department Chemie, Institute for Advanced Study, Technische Universität München, Garching, Germany
| | - Monique Dontenwill
- Laboratoire de Bioimagerie et Pathologies, UMR CNRS 7021, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Rodolphe Jaffiol
- Light, nanomaterials, nanotechnologies, ERL CNRS 7004, Université de Technologie de Troyes, Troyes, France
| |
Collapse
|
4
|
Sani S, Messe M, Fuchs Q, Pierrevelcin M, Laquerriere P, Entz-Werle N, Reita D, Etienne-Selloum N, Bruban V, Choulier L, Martin S, Dontenwill M. Biological Relevance of RGD-Integrin Subtype-Specific Ligands in Cancer. Chembiochem 2020; 22:1151-1160. [PMID: 33140906 DOI: 10.1002/cbic.202000626] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/02/2020] [Indexed: 12/13/2022]
Abstract
Integrins are heterodimeric transmembrane proteins able to connect cells with the micro-environment. They represent a family of receptors involved in almost all the hallmarks of cancer. Integrins recognizing the Arg-Gly-Asp (RGD) peptide in their natural extracellular matrix ligands have been particularly investigated as tumoral therapeutic targets. In the last 30 years, intense research has been dedicated to designing specific RGD-like ligands able to discriminate selectively the different RGD-recognizing integrins. Chemists' efforts have led to the proposition of modified peptide or peptidomimetic libraries to be used for tumor targeting and/or tumor imaging. Here we review, from the biological point of view, the rationale underlying the need to clearly delineate each RGD-integrin subtype by selective tools. We describe the complex roles of RGD-integrins (mainly the most studied αvβ3 and α5β1 integrins) in tumors, the steps towards selective ligands and the current usefulness of such ligands. Although the impact of integrins in cancer is well acknowledged, the biological characteristics of each integrin subtype in a specific tumor are far from being completely resolved. Selective ligands might help us to reconsider integrins as therapeutic targets in specific clinical settings.
Collapse
Affiliation(s)
- Saidu Sani
- Laboratoire de Bioimagerie et Pathologies (LBP), UMR CNRS 7021, Institut Thématique Interdisciplinaire InnoVec, Université de Strasbourg, Faculté de Pharmacie, 74 route du, Rhin, CS 60024, 67401, Illkirch Cedex, France
- Cancer and Diabetic Research Group, Department of Biochemistry and Molecular Biology, Faculty of Science, Federal University Ndufu-Alike Ikwo, P.M.B, 1010, Abakaliki, Ebonyi State, Nigeria
| | - Mélissa Messe
- Laboratoire de Bioimagerie et Pathologies (LBP), UMR CNRS 7021, Institut Thématique Interdisciplinaire InnoVec, Université de Strasbourg, Faculté de Pharmacie, 74 route du, Rhin, CS 60024, 67401, Illkirch Cedex, France
- Institut Pluridisciplinaire Hubert Curien (IPHC), UMR CNRS 7178, Université de Strasbourg, 67000, Strasbourg, France
| | - Quentin Fuchs
- Laboratoire de Bioimagerie et Pathologies (LBP), UMR CNRS 7021, Institut Thématique Interdisciplinaire InnoVec, Université de Strasbourg, Faculté de Pharmacie, 74 route du, Rhin, CS 60024, 67401, Illkirch Cedex, France
| | - Marina Pierrevelcin
- Laboratoire de Bioimagerie et Pathologies (LBP), UMR CNRS 7021, Institut Thématique Interdisciplinaire InnoVec, Université de Strasbourg, Faculté de Pharmacie, 74 route du, Rhin, CS 60024, 67401, Illkirch Cedex, France
| | - Patrice Laquerriere
- Institut Pluridisciplinaire Hubert Curien (IPHC), UMR CNRS 7178, Université de Strasbourg, 67000, Strasbourg, France
| | - Natacha Entz-Werle
- Laboratoire de Bioimagerie et Pathologies (LBP), UMR CNRS 7021, Institut Thématique Interdisciplinaire InnoVec, Université de Strasbourg, Faculté de Pharmacie, 74 route du, Rhin, CS 60024, 67401, Illkirch Cedex, France
- Pediatric Onco-Hematology Department, Pediatrics, University Hospital of Strasbourg, 1 avenue Molière, 67098, Strasbourg, France
| | - Damien Reita
- Laboratoire de Bioimagerie et Pathologies (LBP), UMR CNRS 7021, Institut Thématique Interdisciplinaire InnoVec, Université de Strasbourg, Faculté de Pharmacie, 74 route du, Rhin, CS 60024, 67401, Illkirch Cedex, France
- Department of Oncobiology, Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, France
| | - Nelly Etienne-Selloum
- Laboratoire de Bioimagerie et Pathologies (LBP), UMR CNRS 7021, Institut Thématique Interdisciplinaire InnoVec, Université de Strasbourg, Faculté de Pharmacie, 74 route du, Rhin, CS 60024, 67401, Illkirch Cedex, France
- Institut du Cancer Strasbourg Europe (ICANS), Service de Pharmacie, 17 rue Albert Calmette, 67200 Strasbourg, France
| | - Véronique Bruban
- Laboratoire de Bioimagerie et Pathologies (LBP), UMR CNRS 7021, Institut Thématique Interdisciplinaire InnoVec, Université de Strasbourg, Faculté de Pharmacie, 74 route du, Rhin, CS 60024, 67401, Illkirch Cedex, France
| | - Laurence Choulier
- Laboratoire de Bioimagerie et Pathologies (LBP), UMR CNRS 7021, Institut Thématique Interdisciplinaire InnoVec, Université de Strasbourg, Faculté de Pharmacie, 74 route du, Rhin, CS 60024, 67401, Illkirch Cedex, France
| | - Sophie Martin
- Laboratoire de Bioimagerie et Pathologies (LBP), UMR CNRS 7021, Institut Thématique Interdisciplinaire InnoVec, Université de Strasbourg, Faculté de Pharmacie, 74 route du, Rhin, CS 60024, 67401, Illkirch Cedex, France
| | - Monique Dontenwill
- Laboratoire de Bioimagerie et Pathologies (LBP), UMR CNRS 7021, Institut Thématique Interdisciplinaire InnoVec, Université de Strasbourg, Faculté de Pharmacie, 74 route du, Rhin, CS 60024, 67401, Illkirch Cedex, France
| |
Collapse
|
5
|
Attia MF, Swasy MI, Akasov R, Alexis F, Whitehead DC. Strategies for High Grafting Efficiency of Functional Ligands to Lipid Nanoemulsions for RGD-Mediated Targeting of Tumor Cells In Vitro. ACS APPLIED BIO MATERIALS 2020; 3:5067-5079. [DOI: 10.1021/acsabm.0c00567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mohamed F. Attia
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Maria I. Swasy
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Roman Akasov
- National University of Science and Technology “MISIS”, Leninskiy Prospect 4, 119991 Moscow, Russia
- Federal Scientific Research Center “Crystallography and Photonics”, Russian Academy of Sciences, Leninskiy Prospekt 59, 119333 Moscow, Russia
| | - Frank Alexis
- School of Biological Sciences and Engineering, Yachay Tech, San Miguel de Urcuquí 100650, Ecuador
| | - Daniel C. Whitehead
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
6
|
Morshed A, Abbas AB, Hu J, Xu H. Shedding New Light on The Role of ανβ3 and α5β1 Integrins in Rheumatoid Arthritis. Molecules 2019; 24:E1537. [PMID: 31003546 PMCID: PMC6515208 DOI: 10.3390/molecules24081537] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/14/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022] Open
Abstract
ανβ3 and α5β1 are essential glycoproteins involved in the pathogenesis of rheumatoid arthritis (RA). Understanding of the role these integrins play in disease have been analyzed via description of cells-expressing ανβ3 and α5β1 and their mediators to trigger inflammation. ανβ3 and α5β1 facilitate cells-ECM and cell-cell communication, producing pro-inflammatory factors. Pro-inflammatory factors are essential for the building of undesirable new blood vessels termed angiogenesis which can further lead to destruction of bones and joints. Despite many attempts to target these glycoproteins, there are still some problems, therefore, there is still interest in understanding the synergistic role these integrins play in the pathogenesis of RA. The purpose of this review is to gain insights into the biological effects of ανβ3 and α5β1 in synovial tissues that are relevant to pathogenesis and therapy of RA.
Collapse
Affiliation(s)
- Arwa Morshed
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing 210009, China.
| | - Abdul Baset Abbas
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing 210009, China.
| | - Jialiang Hu
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing 210009, China.
| | - Hanmei Xu
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing 210009, China.
- Nanjing Anji Biotechnology Co. Ltd., Nanjing 210046, China.
| |
Collapse
|
7
|
Fibronectin amyloid-like aggregation alters its extracellular matrix incorporation and promotes a single and sparsed cell migration. Exp Cell Res 2018; 371:104-121. [PMID: 30076804 DOI: 10.1016/j.yexcr.2018.07.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 07/05/2018] [Accepted: 07/29/2018] [Indexed: 12/14/2022]
Abstract
Fibronectin (Fn) is an extracellular matrix (ECM) multifunctional glycoprotein essential for regulating cells behaviors. Within ECM, Fn is found as polymerized fibrils. Apart from fibrils, Fn could also form other kind of supramolecular assemblies such as aggregates. To gain insight into the impact of Fn aggregates on cell behavior, we generated several Fn oligomeric assemblies. These assemblies displayed various amyloid-like properties but were not cytotoxic. In presence of the more amyloid-like structured assemblies of Fn, the cell-ECM networks were altered and the cell shapes shifted toward extended mesenchymal morphologies. Additionnaly, the Fn amyloid-like aggregates promoted a single-cell and sparsed migration of SKOV3 cancer cells, which was associated with a relocalization of αv integrins from plasma membrane to perinuclear vesicles. These data pointed out that the features of supramolecular Fn assemblies could represent a higher level of fine-tuning cell phenotype, and especially migration of cancer cells.
Collapse
|
8
|
Kuonen F, Surbeck I, Sarin KY, Dontenwill M, Rüegg C, Gilliet M, Oro AE, Gaide O. TGFβ, Fibronectin and Integrin α5β1 Promote Invasion in Basal Cell Carcinoma. J Invest Dermatol 2018; 138:2432-2442. [PMID: 29758283 DOI: 10.1016/j.jid.2018.04.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/20/2018] [Accepted: 04/25/2018] [Indexed: 12/13/2022]
Abstract
Basal cell carcinoma (BCC) is the most frequent human cancer and is becoming an important health problem in an aging population. Based on their clinical and histological characteristics, thick BCC are typically divided into low-risk nodular and high-risk infiltrative subtypes, although the underlying mechanisms are poorly understood. We have identified molecular mechanisms that explain the aggressiveness of high-risk infiltrative BCC, with a potential direct clinical impact. In this study, we first show that fibroblasts, transforming growth factor-β, and fibronectin are found preferentially in infiltrative human BCC. This allowed us to develop in vivo models for the study of infiltrative BCC, which in turn let us confirm the role of transforming growth factor-β in inducing peritumoral fibronectin deposition and tumor infiltration. We then show that fibronectin promotes adhesion and migration of BCC cell lines through integrin α5β1-mediated phosphorylation of focal adhesion kinase. Fittingly, both inhibition of integrin α5β1 and phospho-focal adhesion kinase prevent fibronectin-induced migration of BCC cells in vitro as well as BCC infiltration in vivo. Altogether, our results open important insights into the pathogenesis of aggressive infiltrative BCC and identify integrin α5β1 or focal adhesion kinase inhibition as promising strategies for the treatment of advanced BCC.
Collapse
Affiliation(s)
- François Kuonen
- Department of Dermatology and Venereology, Hôpital de Beaumont, Lausanne University Hospital Center, Lausanne, Switzerland; Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA.
| | - Isabelle Surbeck
- Department of Dermatology and Venereology, Hôpital de Beaumont, Lausanne University Hospital Center, Lausanne, Switzerland
| | - Kavita Y Sarin
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Monique Dontenwill
- Laboratory of Biophotonic and Pharmacology, UMR7213 CNRS, University of Strasbourg, Strasbourg, France
| | - Curzio Rüegg
- Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland
| | - Michel Gilliet
- Department of Dermatology and Venereology, Hôpital de Beaumont, Lausanne University Hospital Center, Lausanne, Switzerland
| | - Anthony E Oro
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Olivier Gaide
- Department of Dermatology and Venereology, Hôpital de Beaumont, Lausanne University Hospital Center, Lausanne, Switzerland
| |
Collapse
|
9
|
Merlino F, Daniele S, La Pietra V, Di Maro S, Di Leva FS, Brancaccio D, Tomassi S, Giuntini S, Cerofolini L, Fragai M, Luchinat C, Reichart F, Cavallini C, Costa B, Piccarducci R, Taliani S, Da Settimo F, Martini C, Kessler H, Novellino E, Marinelli L. Simultaneous Targeting of RGD-Integrins and Dual Murine Double Minute Proteins in Glioblastoma Multiforme. J Med Chem 2018; 61:4791-4809. [PMID: 29775303 DOI: 10.1021/acs.jmedchem.8b00004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In the fight against Glioblastoma Multiforme, recent literature data have highlighted that integrin α5β1 and p53 are part of convergent pathways in the control of glioma apoptosis. This observation prompted us to seek a molecule able to simultaneously modulate both target families. Analyzing the results of a previous virtual screening against murine double minute 2 protein (MDM2), we envisaged that Arg-Gly-Asp (RGD)-mimetic molecules could be inhibitors of MDM2/4. Herein, we present the discovery of compound 7, which inhibits both MDM2/4 and α5β1/αvβ3 integrins. A lead optimization campaign was carried out on 7 with the aim to preserve the activities on integrins while improving those on MDM proteins. Compound 9 turned out to be a potent MDM2/4 and α5β1/αvβ3 blocker. In p53-wild type glioma cells, 9 arrested cell cycle and proliferation and strongly reduced cell invasiveness, emerging as the first molecule of a novel class of integrin/MDM inhibitors, which might be especially useful in subpopulations of patients with glioblastoma expressing a functional p53 concomitantly with a high level of α5β1 integrin.
Collapse
Affiliation(s)
- Francesco Merlino
- Dipartimento di Farmacia , Università degli Studi di Napoli "Federico II" , via D. Montesano 49 , 80131 Napoli , Italy
| | - Simona Daniele
- Dipartimento di Farmacia , Università di Pisa , via Bonanno 6 , 56126 Pisa , Italy
| | - Valeria La Pietra
- Dipartimento di Farmacia , Università degli Studi di Napoli "Federico II" , via D. Montesano 49 , 80131 Napoli , Italy
| | - Salvatore Di Maro
- DiSTABiF , Università degli Studi della Campania "Luigi Vanvitelli" , via Vivaldi 43 , 81100 Caserta , Italy
| | - Francesco Saverio Di Leva
- Dipartimento di Farmacia , Università degli Studi di Napoli "Federico II" , via D. Montesano 49 , 80131 Napoli , Italy
| | - Diego Brancaccio
- Dipartimento di Farmacia , Università degli Studi di Napoli "Federico II" , via D. Montesano 49 , 80131 Napoli , Italy
| | - Stefano Tomassi
- DiSTABiF , Università degli Studi della Campania "Luigi Vanvitelli" , via Vivaldi 43 , 81100 Caserta , Italy
| | - Stefano Giuntini
- Magnetic Resonance Center (CERM) University of Florence , via L. Sacconi 6 , 50019 Sesto Fiorentino ( FI ), Italy.,Department of Chemistry "Ugo Schiff" , University of Florence , via della Lastruccia 3-13 , 50019 Sesto Fiorentino ( FI ), Italy
| | - Linda Cerofolini
- Magnetic Resonance Center (CERM) University of Florence , via L. Sacconi 6 , 50019 Sesto Fiorentino ( FI ), Italy.,Department of Chemistry "Ugo Schiff" , University of Florence , via della Lastruccia 3-13 , 50019 Sesto Fiorentino ( FI ), Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM) University of Florence , via L. Sacconi 6 , 50019 Sesto Fiorentino ( FI ), Italy.,Department of Chemistry "Ugo Schiff" , University of Florence , via della Lastruccia 3-13 , 50019 Sesto Fiorentino ( FI ), Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) University of Florence , via L. Sacconi 6 , 50019 Sesto Fiorentino ( FI ), Italy.,Department of Chemistry "Ugo Schiff" , University of Florence , via della Lastruccia 3-13 , 50019 Sesto Fiorentino ( FI ), Italy
| | - Florian Reichart
- Institute for Advanced Study and Center for Integrated Protein Science, Department of Chemistry , Technische Universität München , Lichtenbergstr. 4 , 85747 Garching , Germany
| | - Chiara Cavallini
- Dipartimento di Farmacia , Università di Pisa , via Bonanno 6 , 56126 Pisa , Italy
| | - Barbara Costa
- Dipartimento di Farmacia , Università di Pisa , via Bonanno 6 , 56126 Pisa , Italy
| | - Rebecca Piccarducci
- Dipartimento di Farmacia , Università di Pisa , via Bonanno 6 , 56126 Pisa , Italy
| | - Sabrina Taliani
- Dipartimento di Farmacia , Università di Pisa , via Bonanno 6 , 56126 Pisa , Italy
| | - Federico Da Settimo
- Dipartimento di Farmacia , Università di Pisa , via Bonanno 6 , 56126 Pisa , Italy
| | - Claudia Martini
- Dipartimento di Farmacia , Università di Pisa , via Bonanno 6 , 56126 Pisa , Italy
| | - Horst Kessler
- Institute for Advanced Study and Center for Integrated Protein Science, Department of Chemistry , Technische Universität München , Lichtenbergstr. 4 , 85747 Garching , Germany
| | - Ettore Novellino
- Dipartimento di Farmacia , Università degli Studi di Napoli "Federico II" , via D. Montesano 49 , 80131 Napoli , Italy
| | - Luciana Marinelli
- Dipartimento di Farmacia , Università degli Studi di Napoli "Federico II" , via D. Montesano 49 , 80131 Napoli , Italy
| |
Collapse
|
10
|
Expression/activation of α5β1 integrin is linked to the β-catenin signaling pathway to drive migration in glioma cells. Oncotarget 2018; 7:62194-62207. [PMID: 27613837 PMCID: PMC5308720 DOI: 10.18632/oncotarget.11552] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/10/2016] [Indexed: 12/18/2022] Open
Abstract
The Wnt/beta catenin pathway has been highlighted as an important player of brain tumors aggressiveness and resistance to therapies. Increasing knowledges of the regulation of beta-catenin transactivation point out its hub position in different pathophysiological outcomes in glioma such as survival and migration. Crosstalks between integrins and beta-catenin pathways have been suggested in several tumor tissues. As we demonstrated earlier that α5β1 integrin may be considered as a therapeutic target in high grade glioma through its contribution to glioma cell migration and resistance to chemotherapy, we addressed here the potential relationship between α5β1 integrin and beta-catenin activation in glioma cells. We demonstrated that overexpression and activation by fibronectin of α5β1 integrin allowed the transactivation of beta-catenin gene targets included in an EMT-like program that induced an increase in cell migration. Hampering of beta catenin activation and cell migration could be similarly achieved by a specific integrin antagonist. In addition we showed that α5β1 integrin/AKT axis is mainly involved in these processes. However, blockade of beta-catenin by XAV939 (tankyrase inhibitor leading to beta-catenin degradation) did not synergize with p53 activation aiming to cell apoptosis as was the case with integrin antagonists. We therefore propose a dual implication of α5β1 integrin/AKT axis in glioma cell resistance to therapies and migration each supported by different signaling pathways. Our data thus suggest that α5β1 integrin may be added to the growing list of beta-catenin modulators and provide new evidences to assign this integrin as a valuable target to fight high grade glioma.
Collapse
|
11
|
αvβ3 and α5β1 integrin-specific ligands: From tumor angiogenesis inhibitors to vascularization promoters in regenerative medicine? Biotechnol Adv 2017; 36:208-227. [PMID: 29155160 DOI: 10.1016/j.biotechadv.2017.11.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/07/2017] [Accepted: 11/13/2017] [Indexed: 12/30/2022]
Abstract
Integrins are cell adhesion receptors predominantly important during normal and tumor angiogenesis. A sequence present on several extracellular matrix proteins composed of Arg-Gly-Asp (RGD) has attracted attention due to its role in cell adhesion mediated by integrins. The development of ligands that can bind to integrins involved in tumor angiogenesis and brake disease progression has resulted in new investigational drug entities reaching the clinical trial phase in humans. The use of integrin-specific ligands can be useful for the vascularization of regenerative medicine constructs, which remains a major limitation for translation into clinical practice. In order to enhance vascularization, immobilization of integrin-specific RGD peptidomimetics within constructs is a recommended approach, due to their high specificity and selectivity towards certain desired integrins. This review endeavours to address the potential of peptidomimetic-coated biomaterials as vascular network promoters for regenerative medicine purposes. Clinical studies involving molecules tracking active integrins in cancer angiogenesis and reasons for their failure are also addressed.
Collapse
|
12
|
Exploring the Role of RGD-Recognizing Integrins in Cancer. Cancers (Basel) 2017; 9:cancers9090116. [PMID: 28869579 PMCID: PMC5615331 DOI: 10.3390/cancers9090116] [Citation(s) in RCA: 289] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/28/2017] [Accepted: 08/31/2017] [Indexed: 12/18/2022] Open
Abstract
Integrins are key regulators of communication between cells and with their microenvironment. Eight members of the integrin superfamily recognize the tripeptide motif Arg-Gly-Asp (RGD) within extracelluar matrix (ECM) proteins. These integrins constitute an important subfamily and play a major role in cancer progression and metastasis via their tumor biological functions. Such transmembrane adhesion and signaling receptors are thus recognized as promising and well accessible targets for novel diagnostic and therapeutic applications for directly attacking cancer cells and their fatal microenvironment. Recently, specific small peptidic and peptidomimetic ligands as well as antibodies binding to distinct integrin subtypes have been developed and synthesized as new drug candidates for cancer treatment. Understanding the distinct functions and interplay of integrin subtypes is a prerequisite for selective intervention in integrin-mediated diseases. Integrin subtype-specific ligands labelled with radioisotopes or fluorescent molecules allows the characterization of the integrin patterns in vivo and later the medical intervention via subtype specific drugs. The coating of nanoparticles, larger proteins, or encapsulating agents by integrin ligands are being explored to guide cytotoxic reagents directly to the cancer cell surface. These ligands are currently under investigation in clinical studies for their efficacy in interference with tumor cell adhesion, migration/invasion, proliferation, signaling, and survival, opening new treatment approaches in personalized medicine.
Collapse
|
13
|
Jung AC, Ray AM, Ramolu L, Macabre C, Simon F, Noulet F, Blandin AF, Renner G, Lehmann M, Choulier L, Kessler H, Abecassis J, Dontenwill M, Martin S. Caveolin-1-negative head and neck squamous cell carcinoma primary tumors display increased epithelial to mesenchymal transition and prometastatic properties. Oncotarget 2016; 6:41884-901. [PMID: 26474461 PMCID: PMC4747196 DOI: 10.18632/oncotarget.6099] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/17/2015] [Indexed: 12/17/2022] Open
Abstract
Distant metastases arise in 20-30% of patients with squamous cell carcinoma of the head and neck (HNSCC) in the 2 years following treatment. Therapeutic options are limited and the outcome of the patients is poor. The identification of predictive biomarkers of patient at risk for distant metastasis and therapies are urgently needed. We previously identified a clinical subgroup, called "R1" characterized by high propensity for rapid distant metastasis. Here, we showed that "R1" patients do not or at very low level express caveolin-1 (Cav1). Low or no expression of Cav1 is of bad prognosis. Disappearance of Cav1 enables cells to undergo epithelial-mesenchymal transition (EMT). EMT is associated with enhanced migration and invasion. Our study uncovered a new target, α5β1 integrin. Targeting α5β1 integrins might not only prevent metastasis of HNSCC but also delay the development of the primary tumor by reducing tumor cell viability. Cav1 detection might be taken into consideration in the future in the clinic not only to identify patients at high risk of metastasis but also to select patient who might benefit from an anti-integrin therapy.
Collapse
Affiliation(s)
- Alain C Jung
- Laboratoire de Biologie Tumorale, EA 3430 Université de Strasbourg, CRLC Paul Strauss, Strasbourg, France
| | - Anne-Marie Ray
- Université de Strasbourg, LBP, CNRS UMR 7213, Illkirch, France
| | - Ludivine Ramolu
- Laboratoire de Biologie Tumorale, EA 3430 Université de Strasbourg, CRLC Paul Strauss, Strasbourg, France
| | - Christine Macabre
- Laboratoire de Biologie Tumorale, EA 3430 Université de Strasbourg, CRLC Paul Strauss, Strasbourg, France
| | - Florian Simon
- Université de Strasbourg, LBP, CNRS UMR 7213, Illkirch, France
| | - Fanny Noulet
- Université de Strasbourg, LBP, CNRS UMR 7213, Illkirch, France
| | | | | | - Maxime Lehmann
- Université de Strasbourg, LBP, CNRS UMR 7213, Illkirch, France
| | | | - Horst Kessler
- Institute for Advanced Study and Center of Integrated Protein Studies, Technische Universität München, Department Chemie, Garching, Germany
| | - Joseph Abecassis
- Laboratoire de Biologie Tumorale, EA 3430 Université de Strasbourg, CRLC Paul Strauss, Strasbourg, France
| | | | - Sophie Martin
- Université de Strasbourg, LBP, CNRS UMR 7213, Illkirch, France
| |
Collapse
|
14
|
Mas-Moruno C, Fraioli R, Rechenmacher F, Neubauer S, Kapp TG, Kessler H. αvβ3- or α5β1-Integrin-Selective Peptidomimetics for Surface Coating. Angew Chem Int Ed Engl 2016; 55:7048-67. [PMID: 27258759 DOI: 10.1002/anie.201509782] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Indexed: 12/21/2022]
Abstract
Engineering biomaterials with integrin-binding activity is a very powerful approach to promote cell adhesion, modulate cell behavior, and induce specific biological responses at the surface level. The aim of this Review is to illustrate the evolution of surface-coating molecules in this field: from peptides and proteins with relatively low integrin-binding activity and receptor selectivity to highly active and selective peptidomimetic ligands. In particular, we will bring into focus the difficult challenge of achieving selectivity between the two closely related integrin subtypes αvβ3 and α5β1. The functionalization of surfaces with such peptidomimetics opens the way for a new generation of highly specific cell-instructive surfaces to dissect the biological role of integrin subtypes and for application in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Carlos Mas-Moruno
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering and Centre for Research in NanoEngineering, Universitat Politècnica de Catalunya (UPC), Diagonal 647, 08028, Barcelona, Spain.
| | - Roberta Fraioli
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering and Centre for Research in NanoEngineering, Universitat Politècnica de Catalunya (UPC), Diagonal 647, 08028, Barcelona, Spain
| | - Florian Rechenmacher
- Institute for Advanced Study at the Department Chemie und Center of Integrated Protein Science München (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Stefanie Neubauer
- Institute for Advanced Study at the Department Chemie und Center of Integrated Protein Science München (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Tobias G Kapp
- Institute for Advanced Study at the Department Chemie und Center of Integrated Protein Science München (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Horst Kessler
- Institute for Advanced Study at the Department Chemie und Center of Integrated Protein Science München (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany.
| |
Collapse
|
15
|
Mas-Moruno C, Fraioli R, Rechenmacher F, Neubauer S, Kapp TG, Kessler H. αvβ3- oder α5β1-Integrin-selektive Peptidmimetika für die Oberflächenbeschichtung. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201509782] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Carlos Mas-Moruno
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering and Centre for Research in NanoEngineering; Universitat Politècnica de Catalunya (UPC); Diagonal 647 08028 Barcelona Spanien
| | - Roberta Fraioli
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering and Centre for Research in NanoEngineering; Universitat Politècnica de Catalunya (UPC); Diagonal 647 08028 Barcelona Spanien
| | - Florian Rechenmacher
- Institute for Advanced Study at the Department Chemie und Center of Integrated Protein Science München (CIPSM); Technische Universität München; Lichtenbergstraße 4 85748 Garching Deutschland
| | - Stefanie Neubauer
- Institute for Advanced Study at the Department Chemie und Center of Integrated Protein Science München (CIPSM); Technische Universität München; Lichtenbergstraße 4 85748 Garching Deutschland
| | - Tobias G. Kapp
- Institute for Advanced Study at the Department Chemie und Center of Integrated Protein Science München (CIPSM); Technische Universität München; Lichtenbergstraße 4 85748 Garching Deutschland
| | - Horst Kessler
- Institute for Advanced Study at the Department Chemie und Center of Integrated Protein Science München (CIPSM); Technische Universität München; Lichtenbergstraße 4 85748 Garching Deutschland
| |
Collapse
|
16
|
Zhao H, Gao H, Zhai L, Liu X, Jia B, Shi J, Wang F. 99mTc-HisoDGR as a Potential SPECT Probe for Orthotopic Glioma Detection via Targeting of Integrin α5β1. Bioconjug Chem 2016; 27:1259-66. [DOI: 10.1021/acs.bioconjchem.6b00098] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Haitao Zhao
- Medical
Isotopes Research Center and Department of Radiation Medicine, School
of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Hannan Gao
- Medical
Isotopes Research Center and Department of Radiation Medicine, School
of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Luoping Zhai
- Medical
Isotopes Research Center and Department of Radiation Medicine, School
of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Xujie Liu
- Medical
Isotopes Research Center and Department of Radiation Medicine, School
of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Bing Jia
- Medical
Isotopes Research Center and Department of Radiation Medicine, School
of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Jiyun Shi
- Key
Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules,
Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fan Wang
- Medical
Isotopes Research Center and Department of Radiation Medicine, School
of Basic Medical Sciences, Peking University, Beijing 100191, China
- Key
Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules,
Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
17
|
Pharmacology of the cell/matrix form of adhesion. Pharmacol Res 2016; 107:430-436. [DOI: 10.1016/j.phrs.2015.10.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 10/23/2015] [Accepted: 10/23/2015] [Indexed: 12/11/2022]
|
18
|
Blandin AF, Noulet F, Renner G, Mercier MC, Choulier L, Vauchelles R, Ronde P, Carreiras F, Etienne-Selloum N, Vereb G, Lelong-Rebel I, Martin S, Dontenwill M, Lehmann M. Glioma cell dispersion is driven by α5 integrin-mediated cell-matrix and cell-cell interactions. Cancer Lett 2016; 376:328-38. [PMID: 27063097 DOI: 10.1016/j.canlet.2016.04.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 12/11/2022]
Abstract
Glioblastoma multiform (GBM) is the most common and most aggressive primary brain tumor. The fibronectin receptor, α5 integrin is a pertinent novel therapeutic target. Despite numerous data showing that α5 integrin support tumor cell migration and invasion, it has been reported that α5 integrin can also limit cell dispersion by increasing cell-cell interaction. In this study, we showed that α5 integrin was involved in cell-cell interaction and gliomasphere formation. α5-mediated cell-cell cohesion limited cell dispersion from spheroids in fibronectin-poor microenvironment. However, in fibronectin-rich microenvironment, α5 integrin promoted cell dispersion. Ligand-occupied α5 integrin and fibronectin were distributed in fibril-like pattern at cell-cell junction of evading cells, forming cell-cell fibrillar adhesions. Activated focal adhesion kinase was not present in these adhesions but was progressively relocalized with α5 integrin as cell migrates away from the spheroids. α5 integrin function in GBM appears to be more complex than previously suspected. As GBM overexpressed fibronectin, it is most likely that in vivo, α5-mediated dissemination from the tumor mass overrides α5-mediated tumor cell cohesion. In this respect, α5-integrin antagonists may be useful to limit GBM invasion in brain parenchyma.
Collapse
Affiliation(s)
- Anne-Florence Blandin
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Fanny Noulet
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Guillaume Renner
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Marie-Cécile Mercier
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Laurence Choulier
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Romain Vauchelles
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Philippe Ronde
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Franck Carreiras
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, ERRMECe (EA 1391), Institut des Matériaux, Université de Cergy-Pontoise, France
| | - Nelly Etienne-Selloum
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France; Department of Pharmacy, Centre Paul Strauss, Strasbourg, France
| | - Gyorgy Vereb
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Isabelle Lelong-Rebel
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Sophie Martin
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Monique Dontenwill
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Maxime Lehmann
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France.
| |
Collapse
|
19
|
Renner G, Janouskova H, Noulet F, Koenig V, Guerin E, Bär S, Nuesch J, Rechenmacher F, Neubauer S, Kessler H, Blandin AF, Choulier L, Etienne-Selloum N, Lehmann M, Lelong-Rebel I, Martin S, Dontenwill M. Integrin α5β1 and p53 convergent pathways in the control of anti-apoptotic proteins PEA-15 and survivin in high-grade glioma. Cell Death Differ 2015; 23:640-53. [PMID: 26470725 DOI: 10.1038/cdd.2015.131] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 07/15/2015] [Accepted: 09/01/2015] [Indexed: 01/07/2023] Open
Abstract
Integrin α5β1 expression is correlated with a worse prognosis in high-grade glioma. We previously unraveled a negative crosstalk between integrin α5β1 and p53 pathway, which was proposed to be part of the resistance of glioblastoma to chemotherapies. The restoration of p53 tumor-suppressor function is under intensive investigations for cancer therapy. However, p53-dependent apoptosis is not always achieved by p53-reactivating compounds such as Nutlin-3a, although full transcriptional activity of p53 could be obtained. Here we investigated whether integrin α5β1 functional inhibition or repression could sensitize glioma cells to Nutlin-3a-induced p53-dependent apoptosis. We discovered that α5β1 integrin-specific blocking antibodies or small RGD-like antagonists in association with Nutlin-3a triggered a caspase (Casp) 8/Casp 3-dependent strong apoptosis in glioma cells expressing a functional p53. We deciphered the molecular mechanisms involved and we showed the crucial role of two anti-apoptotic proteins, phosphoprotein enriched in astrocytes 15 (PEA-15) and survivin in glioma cell apoptotic outcome. PEA-15 is under α5β1 integrin/AKT (protein kinase B) control and survivin is a p53-repressed target. Moreover, interconnections between integrin and p53 pathways were revealed. Indeed PEA-15 repression by specific small-interfering RNA (siRNA)-activated p53 pathway to repress survivin and conversely survivin repression by specific siRNA decreased α5β1 integrin expression. This pro-apoptotic loop could be generalized to several glioma cell lines, whatever their p53 status, inasmuch PEA-15 and survivin protein levels were decreased. Our findings identify a novel mechanism whereby inhibition of α5β1 integrin and activation of p53 modulates two anti-apoptotic proteins crucially involved in the apoptotic answer of glioma cells. Importantly, our results suggest that high-grade glioma expressing high level of α5β1 integrin may benefit from associated therapies including integrin antagonists and repressors of survivin expression.
Collapse
Affiliation(s)
- G Renner
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - H Janouskova
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - F Noulet
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - V Koenig
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - E Guerin
- EA3430, Université de Strasbourg, Strasbourg, France
| | - S Bär
- Tumor Virology Division (F010), Deutsches Krebsforschungszentrum/German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - J Nuesch
- Tumor Virology Division (F010), Deutsches Krebsforschungszentrum/German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - F Rechenmacher
- Department Chemie, Institute for Advanced Study and Center of Integrated Protein Studies, Technische Universität München, Garching, Germany
| | - S Neubauer
- Department Chemie, Institute for Advanced Study and Center of Integrated Protein Studies, Technische Universität München, Garching, Germany
| | - H Kessler
- Department Chemie, Institute for Advanced Study and Center of Integrated Protein Studies, Technische Universität München, Garching, Germany
| | - A-F Blandin
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - L Choulier
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - N Etienne-Selloum
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - M Lehmann
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - I Lelong-Rebel
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - S Martin
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - M Dontenwill
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| |
Collapse
|
20
|
Göçmen B, Heiss P, Petras D, Nalbantsoy A, Süssmuth RD. Mass spectrometry guided venom profiling and bioactivity screening of the Anatolian Meadow Viper, Vipera anatolica. Toxicon 2015; 107:163-74. [PMID: 26385313 DOI: 10.1016/j.toxicon.2015.09.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 08/27/2015] [Accepted: 09/10/2015] [Indexed: 11/19/2022]
Abstract
This contribution reports on the first characterization of the venom proteome and the bioactivity screening of Vipera anatolica, the Anatolian Meadow Viper. The crude venom as well as an isolated dimeric disintegrin showed remarkable cytotoxic activity against glioblastoma cells. Due to the rare occurrence and the small size of this species only little amount of venom was available, which was profiled by means of a combination of bottom-up and top-down mass spectrometry. From this analysis we identified snake venom metalloproteases, cysteine-rich secretory protein isoforms, a metalloprotease inhibitor, several type A2 phospholipases, disintegrins, a snake venom serine protease, a C-type lectin and a Kunitz-type protease inhibitor. Furthermore, we detected several isoforms of above mentioned proteins as well as previously unknown proteins, indicating an extensive complexity of the venom which would have remained undetected with conventional venomic approaches.
Collapse
Affiliation(s)
- Bayram Göçmen
- Zoology Section, Department of Biology, Faculty of Science, Ege University, 35100 Bornova, Izmir, Turkey
| | - Paul Heiss
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623 Berlin, Germany
| | - Daniel Petras
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623 Berlin, Germany
| | - Ayse Nalbantsoy
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, 35100 Izmir, Turkey.
| | - Roderich D Süssmuth
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623 Berlin, Germany.
| |
Collapse
|
21
|
Segarra M, Kirchmaier BC, Acker-Palmer A. A vascular perspective on neuronal migration. Mech Dev 2015; 138 Pt 1:17-25. [PMID: 26192337 DOI: 10.1016/j.mod.2015.07.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/09/2015] [Accepted: 07/13/2015] [Indexed: 12/21/2022]
Abstract
During CNS development and adult neurogenesis, immature neurons travel from the germinal zones towards their final destination using cellular substrates for their migration. Classically, radial glia and neuronal axons have been shown to act as physical scaffolds to support neuroblast locomotion in processes known as gliophilic and neurophilic migration, respectively (Hatten, 1999; Marin and Rubenstein, 2003; Rakic, 2003). In adulthood, long distance neuronal migration occurs in a glial-independent manner since radial glia cells differentiate into astrocytes after birth. A series of studies highlight a novel mode of neuronal migration that uses blood vessels as scaffolds, the so-called vasophilic migration. This migration mode allows neuroblast navigation in physiological and also pathological conditions, such as neuronal precursor migration after ischemic stroke or cerebral invasion of glioma tumor cells. Here we review the current knowledge about how vessels pave the path for migrating neurons and how trophic factors derived by glio-vascular structures guide neuronal migration both during physiological as well as pathological processes.
Collapse
Affiliation(s)
- Marta Segarra
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Germany; Focus Program Translational Neurosciences (FTN), University of Mainz, Germany; Max Planck Institute for Brain Research, Frankfurt, Germany.
| | - Bettina C Kirchmaier
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Germany; Focus Program Translational Neurosciences (FTN), University of Mainz, Germany; Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Amparo Acker-Palmer
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Germany; Focus Program Translational Neurosciences (FTN), University of Mainz, Germany; Max Planck Institute for Brain Research, Frankfurt, Germany.
| |
Collapse
|