1
|
Baltrukevich H, Bartos P. RNA-protein complexes and force field polarizability. Front Chem 2023; 11:1217506. [PMID: 37426330 PMCID: PMC10323139 DOI: 10.3389/fchem.2023.1217506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/14/2023] [Indexed: 07/11/2023] Open
Abstract
Molecular dynamic (MD) simulations offer a way to study biomolecular interactions and their dynamics at the atomistic level. There are only a few studies of RNA-protein complexes in MD simulations, and here we wanted to study how force fields differ when simulating RNA-protein complexes: 1) argonaute 2 with bound guide RNA and a target RNA, 2) CasPhi-2 bound to CRISPR RNA and 3) Retinoic acid-inducible gene I C268F variant in complex with double-stranded RNA. We tested three non-polarizable force fields: Amber protein force fields ff14SB and ff19SB with RNA force field OL3, and the all-atom OPLS4 force field. Due to the highly charged and polar nature of RNA, we also tested the polarizable AMOEBA force field and the ff19SB and OL3 force fields with a polarizable water model O3P. Our results show that the non-polarizable force fields lead to compact and stable complexes. The polarizability in the force field or in the water model allows significantly more movement from the complex, but in some cases, this results in the disintegration of the complex structure, especially if the protein contains longer loop regions. Thus, one should be cautious when running long-scale simulations with polarizability. As a conclusion, all the tested force fields can be used to simulate RNA-protein complexes and the choice of the optimal force field depends on the studied system and research question.
Collapse
Affiliation(s)
| | - Piia Bartos
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
2
|
Bhattacharya S, Satpati P. Insights into the Mechanism of CRISPR/Cas9-Based Genome Editing from Molecular Dynamics Simulations. ACS OMEGA 2023; 8:1817-1837. [PMID: 36687047 PMCID: PMC9850488 DOI: 10.1021/acsomega.2c05583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
The CRISPR/Cas9 system is a popular genome-editing tool with immense therapeutic potential. It is a simple two-component system (Cas9 protein and RNA) that recognizes the DNA sequence on the basis of RNA:DNA complementarity, and the Cas9 protein catalyzes the double-stranded break in the DNA. In the past decade, near-atomic resolution structures at various stages of the CRISPR/Cas9 DNA editing pathway have been reported along with numerous experimental and computational studies. Such studies have boosted knowledge of the genome-editing mechanism. Despite such advancements, the application of CRISPR/Cas9 in therapeutics is still limited, primarily due to off-target effects. Several studies aim at engineering high-fidelity Cas9 to minimize the off-target effects. Molecular Dynamics (MD) simulations have been an excellent complement to the experimental studies for investigating the mechanism of CRISPR/Cas9 editing in terms of structure, thermodynamics, and kinetics. MD-based studies have uncovered several important molecular aspects of Cas9, such as nucleotide binding, catalytic mechanism, and off-target effects. In this Review, the contribution of MD simulation to understand the CRISPR/Cas9 mechanism has been discussed, preceded by an overview of the history, mechanism, and structural aspects of the CRISPR/Cas9 system. These studies are important for the rational design of highly specific Cas9 and will also be extremely promising for achieving more accurate genome editing in the future.
Collapse
Affiliation(s)
- Shreya Bhattacharya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Priyadarshi Satpati
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
3
|
Panda G, Ray A. Decrypting the mechanistic basis of CRISPR/Cas9 protein. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 172:60-76. [PMID: 35577099 DOI: 10.1016/j.pbiomolbio.2022.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/14/2022] [Accepted: 05/10/2022] [Indexed: 12/25/2022]
Abstract
CRISPR/Cas system, a newly but extensively investigated genome-editing method, harbors practical solutions for various genetic problems. It relies on short guide RNAs (gRNAs) to recruit the Cas9 protein, a DNA cleaving enzyme, to its genomic target DNAs. The Cas9 enzyme exhibits some unique properties, like the ability to differentiate self vs. non-self - DNA strands using the base-pairing potential of crRNA, i.e., only CRISPR DNA is entirely complementary to the CRISPR repeat sequences at the crRNA whereas the presence of mismatches in the upstream region of the spacer permit CRISPR interference which is inhibited in case of CRISPR-DNA, allosteric regulation in its domains, and domain reorientation on sgRNA binding. Several groups have contributed their efforts in understanding the functioning of the CRISPR/Cas system, but even then, there is a lot more to explore in this area. The structural and sequence-based understanding of the whole CRISPR-associated bacterial ortholog family landscape is still ambiguous. A better understanding of the underlying energetics of the CRISPR/Cas9 system should reveal critical parameters to design better CRISPR/Cas9s.
Collapse
Affiliation(s)
- Gayatri Panda
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Arjun Ray
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India.
| |
Collapse
|
4
|
Levintov L, Vashisth H. Role of salt-bridging interactions in recognition of viral RNA by arginine-rich peptides. Biophys J 2021; 120:5060-5073. [PMID: 34710377 PMCID: PMC8633718 DOI: 10.1016/j.bpj.2021.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/17/2021] [Accepted: 10/06/2021] [Indexed: 12/14/2022] Open
Abstract
Interactions between RNA molecules and proteins are critical to many cellular processes and are implicated in various diseases. The RNA-peptide complexes are good model systems to probe the recognition mechanism of RNA by proteins. In this work, we report studies on the binding-unbinding process of a helical peptide from a viral RNA element using nonequilibrium molecular dynamics simulations. We explored the existence of various dissociation pathways with distinct free-energy profiles that reveal metastable states and distinct barriers to peptide dissociation. We also report the free-energy differences for each of the four pathways to be 96.47 ± 12.63, 96.1 ± 10.95, 91.83 ± 9.81, and 92 ± 11.32 kcal/mol. Based on the free-energy analysis, we further propose the preferred pathway and the mechanism of peptide dissociation. The preferred pathway is characterized by the formation of sequential hydrogen-bonding and salt-bridging interactions between several key arginine amino acids and the viral RNA nucleotides. Specifically, we identified one arginine amino acid (R8) of the peptide to play a significant role in the recognition mechanism of the peptide by the viral RNA molecule.
Collapse
Affiliation(s)
- Lev Levintov
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire
| | - Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire.
| |
Collapse
|
5
|
Kumar A, Satpati P. Divalent-Metal-Ion Selectivity of the CRISPR-Cas System-Associated Cas1 Protein: Insights from Classical Molecular Dynamics Simulations and Electronic Structure Calculations. J Phys Chem B 2021; 125:11943-11954. [PMID: 34694813 DOI: 10.1021/acs.jpcb.1c07744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CRISPR-associated protein 1 (Cas1) is a universally conserved essential metalloenzyme of the clustered regularly interspaced short palindromic repeat (CRISPR) immune system of prokaryotes (bacteria, archaea) that can cut and integrate a part of viral DNA to its host genome with the help of other proteins. The integrated DNA acts as a memory of viral infection, which can be transcribed to RNA and stop future infection by recognition (based on the RNA/DNA complementarity principle) followed by protein-mediated degradation of the viral DNA. It has been proposed that the presence of a single manganese (Mn2+) ion in a conserved divalent-metal-ion binding pocket (key residues: E190, H254, D265, D268) of Cas1 is crucial for its function. Cas1-mediated DNA degradation was proposed to be hindered by metal substitution, metal chelation, or mutation of the binding pocket residues. Cas1 is active toward dsDNA degradation with both Mn2+ and Mg2+. X-ray structures of Cas1 revealed an intricate atomic interaction network of the divalent-metal-ion binding pocket and opened up the possibility of modeling related metal ions (viz., Mg2+, Ca2+) in the binding pocket of wild-type (WT) and mutated Cas1 proteins for computational analysis, which includes (1) quantitative estimation of the energetics of the divalent-metal-ion preference and (2) exploring the structural and dynamical aspects of the protein in response to divalent-metal-ion substitution or amino acid mutation. Using the X-ray structure of the Cas1 protein from Pseudomonas aeruginosa as a template (PDB 3GOD), we performed (∼2.23 μs) classical molecular dynamics (MD) simulations to compare structural and dynamical differences between Mg2+- and Ca2+-bound binding pockets of wild-type (WT) and mutant (E190A, H254A, D265A, D268A) Cas1. Furthermore, reduced binding pocket models were generated from X-ray and molecular dynamics (MD) trajectories, and the resulting structures were subjected to quantum chemical calculations. Results suggest that Cas1 prefers Mg2+ binding relative to Ca2+ and the preference is the strongest for WT and the weakest for the D268A mutant. Quantum chemical calculations indicate that Mn2+ is the most preferred relative to both Mg2+ and Ca2+ in the wild-type and mutant Cas1. Substitution of Mg2+ by Ca2+ does not alter the interaction network between Cas1 and the divalent metal ion but increases the wetness of the binding pocket by introducing a single water molecule in the first coordination shell of the latter. The strength of metal-ion preference (Mg2+ versus Ca2+) seems to be dependent on the solvent accessibility of the divalent-metal-ion binding pocket, strongest for wild-type Cas1 (in which the metal-ion binding pocket is dry, which includes two water molecules) and the weakest for the D268A mutant (in which the metal-ion binding pocket is wet, which includes four water molecules).
Collapse
Affiliation(s)
- Abhishek Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Priyadarshi Satpati
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
6
|
Sagar A, Xue B. Recent Advances in Machine Learning Based Prediction of RNA-protein Interactions. Protein Pept Lett 2019; 26:601-619. [PMID: 31215361 DOI: 10.2174/0929866526666190619103853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 04/04/2019] [Accepted: 06/01/2019] [Indexed: 12/18/2022]
Abstract
The interactions between RNAs and proteins play critical roles in many biological processes. Therefore, characterizing these interactions becomes critical for mechanistic, biomedical, and clinical studies. Many experimental methods can be used to determine RNA-protein interactions in multiple aspects. However, due to the facts that RNA-protein interactions are tissuespecific and condition-specific, as well as these interactions are weak and frequently compete with each other, those experimental techniques can not be made full use of to discover the complete spectrum of RNA-protein interactions. To moderate these issues, continuous efforts have been devoted to developing high quality computational techniques to study the interactions between RNAs and proteins. Many important progresses have been achieved with the application of novel techniques and strategies, such as machine learning techniques. Especially, with the development and application of CLIP techniques, more and more experimental data on RNA-protein interaction under specific biological conditions are available. These CLIP data altogether provide a rich source for developing advanced machine learning predictors. In this review, recent progresses on computational predictors for RNA-protein interaction were summarized in the following aspects: dataset, prediction strategies, and input features. Possible future developments were also discussed at the end of the review.
Collapse
Affiliation(s)
- Amit Sagar
- Department of Cell Biology, Microbiology and Molecular Biology, School of Natural Sciences and Mathematics, College of Arts and Sciences, University of South Florida, Tampa, Florida 33620, United States
| | - Bin Xue
- Department of Cell Biology, Microbiology and Molecular Biology, School of Natural Sciences and Mathematics, College of Arts and Sciences, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
7
|
Hu G, Yu X, Bian Y, Cao Z, Xu S, Zhao L, Ji B, Wang W, Wang J. Atomistic Analysis of ToxN and ToxI Complex Unbinding Mechanism. Int J Mol Sci 2018; 19:E3524. [PMID: 30423909 PMCID: PMC6275071 DOI: 10.3390/ijms19113524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/14/2018] [Accepted: 11/02/2018] [Indexed: 12/14/2022] Open
Abstract
ToxIN is a triangular structure formed by three protein toxins (ToxNs) and three specific noncoding RNA antitoxins (ToxIs). To respond to stimuli, ToxI is preferentially degraded, releasing the ToxN. Thus, the dynamic character is essential in the normal function interactions between ToxN and ToxI. Here, equilibrated molecular dynamics (MD) simulations were performed to study the stability of ToxN and ToxI. The results indicate that ToxI adjusts the conformation of 3' and 5' termini to bind to ToxN. Steered molecular dynamics (SMD) simulations combined with the recently developed thermodynamic integration in 3nD (TI3nD) method were carried out to investigate ToxN unbinding from the ToxIN complex. The potentials of mean force (PMFs) and atomistic pictures suggest the unbinding mechanism as follows: (1) dissociation of the 5' terminus from ToxN, (2) missing the interactions involved in the 3' terminus of ToxI without three nucleotides (G31, A32, and A33), (3) starting to unfold for ToxI, (4) leaving the binding package of ToxN for three nucleotides of ToxI, (5) unfolding of ToxI. This work provides information on the structure-function relationship at the atomistic level, which is helpful for designing new potent antibacterial drugs in the future.
Collapse
Affiliation(s)
- Guodong Hu
- Shandong Key Laboratory of Biophysics and Institutes of Biophysics, Dezhou University, Dezhou 253023, China.
| | - Xiu Yu
- Shandong Key Laboratory of Biophysics and Institutes of Biophysics, Dezhou University, Dezhou 253023, China.
| | - Yunqiang Bian
- Shandong Key Laboratory of Biophysics and Institutes of Biophysics, Dezhou University, Dezhou 253023, China.
| | - Zanxia Cao
- Shandong Key Laboratory of Biophysics and Institutes of Biophysics, Dezhou University, Dezhou 253023, China.
| | - Shicai Xu
- Shandong Key Laboratory of Biophysics and Institutes of Biophysics, Dezhou University, Dezhou 253023, China.
| | - Liling Zhao
- Shandong Key Laboratory of Biophysics and Institutes of Biophysics, Dezhou University, Dezhou 253023, China.
| | - Baohua Ji
- Shandong Key Laboratory of Biophysics and Institutes of Biophysics, Dezhou University, Dezhou 253023, China.
| | - Wei Wang
- National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, Nanjing 210093, China.
| | - Jihua Wang
- Shandong Key Laboratory of Biophysics and Institutes of Biophysics, Dezhou University, Dezhou 253023, China.
| |
Collapse
|
8
|
Eltzner B, Huckemann S, Mardia KV. Torus principal component analysis with applications to RNA structure. Ann Appl Stat 2018. [DOI: 10.1214/17-aoas1115] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Šponer J, Bussi G, Krepl M, Banáš P, Bottaro S, Cunha RA, Gil-Ley A, Pinamonti G, Poblete S, Jurečka P, Walter NG, Otyepka M. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chem Rev 2018; 118:4177-4338. [PMID: 29297679 PMCID: PMC5920944 DOI: 10.1021/acs.chemrev.7b00427] [Citation(s) in RCA: 357] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 12/14/2022]
Abstract
With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA-ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field.
Collapse
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Sandro Bottaro
- Structural Biology and NMR Laboratory, Department of Biology , University of Copenhagen , Copenhagen 2200 , Denmark
| | - Richard A Cunha
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Alejandro Gil-Ley
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Giovanni Pinamonti
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Simón Poblete
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| |
Collapse
|
10
|
Lyagin IV, Efremenko EN. Biomolecular engineering of biocatalysts hydrolyzing neurotoxic organophosphates. Biochimie 2017; 144:115-121. [PMID: 29097283 DOI: 10.1016/j.biochi.2017.10.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/25/2017] [Indexed: 10/18/2022]
Abstract
Novel methods of molecular modeling help solving urgent problems in drug design, directed evolution of biocatalysts and biosensors, and a lot of other research fields. Implementation of such methods to organophosphorus hydrolase being perfect research object that hydrolyzes dangerous neurotoxic organophosphates could intensify development of antidote and protective preparations to treat poisoning. Structures of enzyme-polyelectrolyte complexes (EPCs) based on hexahistidine-tagged organophosphorus hydrolase (His6-OPH) with different biopolymers (various modifications of polyglutamic and polyaspartic acid, as well as hydroxyethyl starch and succinylated gelatin) were simulated at different pH using molecular docking. A number of EPCs with expected "positive" effect on maintaining the maximum level of His6-OPH activity, and some "negative" options were produced, and their catalytic performance was studied. The theoretical results were experimentally confirmed for four of the six "positive" options. EPCs obtained possessed up to 20-40% higher catalytic efficiency in hydrolysis reactions of Paraoxon and Parathion-methyl as compared with that of the native His6-OPH. The results obtained may be a good proof of concept for implementation of molecular docking to calculate model complexes of proteins with (bio)polymers of 6.4-105.5 kg/mol. Also, the approach used here could be interesting as alternative or addition to the directed modifications of enzymes to alter their catalytic characteristics.
Collapse
Affiliation(s)
- Ilya V Lyagin
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills, 1/3, Moscow, 119991, Russia
| | - Elena N Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills, 1/3, Moscow, 119991, Russia.
| |
Collapse
|
11
|
Sharma C, Mohanty D. Molecular Dynamics Simulations for Deciphering the Structural Basis of Recognition of Pre-let-7 miRNAs by LIN28. Biochemistry 2017; 56:723-735. [PMID: 28076679 DOI: 10.1021/acs.biochem.6b00837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
LIN28 protein inhibits biogenesis of miRNAs belonging to the let-7 family by binding to precursor forms of miRNAs. Overexpression of LIN28 and low levels of let-7 miRNAs are associated with several forms of cancer cells. We have performed multiple explicit solvent molecular dynamics simulations ranging from 200 to 500 ns in length on different isoforms of preE-let-7 in complex with LIN28 and also in isolation to identify structural features and key specificity-determining residues (SDRs) that are important for the inhibitory role of LIN28. Our simulations suggest that a conserved structural feature of the loop regions of preE-let-7 miRNAs is more important for LIN28 recognition than sequence conservation among members of the let-7 family or the presence of the GGAG motif in the 3' region. The loop region consisting of a minimum of five nucleotides helps pre-miRNAs to acquire a conformation ideal for binding to LIN28, but pre-let-7c-2 prefers a conformation with a three-nucleotide loop. Thus, our simulations provide a theoretical rationale for the recent experimental observation of the escape of LIN28-mediated repression by pre-let-7c-2. The essential structural and sequence features highlighted in this study might aid in designing synthetic small molecule inhibitors for modulating LIN28-let-7 interaction in malignant cells. We have also identified crucial SDRs of the LIN28-preE-let-7 complex involving 13 residues of LIN28 and 10 residues of the pre-miRNA. On the basis of the conservation profile of these 13 SDRs, we have identified 10 novel proteins that are not annotated as LIN28 like but are similar in sequence, domain, or fold level to LIN28.
Collapse
Affiliation(s)
- Chhaya Sharma
- Bioinformatics Center, National Institute of Immunology , Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Debasisa Mohanty
- Bioinformatics Center, National Institute of Immunology , Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
12
|
Protein-RNA interactions: structural biology and computational modeling techniques. Biophys Rev 2016; 8:359-367. [PMID: 28510023 DOI: 10.1007/s12551-016-0223-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/20/2016] [Indexed: 12/30/2022] Open
Abstract
RNA-binding proteins are functionally diverse within cells, being involved in RNA-metabolism, translation, DNA damage repair, and gene regulation at both the transcriptional and post-transcriptional levels. Much has been learnt about their interactions with RNAs through structure determination techniques and computational modeling. This review gives an overview of the structural data currently available for protein-RNA complexes, and discusses the technical issues facing structural biologists working to solve their structures. The review focuses on three techniques used to solve the 3-dimensional structure of protein-RNA complexes at atomic resolution, namely X-ray crystallography, solution nuclear magnetic resonance (NMR) and cryo-electron microscopy (cryo-EM). The review then focuses on the main computational modeling techniques that use these atomic resolution data: discussing the prediction of RNA-binding sites on unbound proteins, docking proteins, and RNAs, and modeling the molecular dynamics of the systems. In conclusion, the review looks at the future directions this field of research might take.
Collapse
|
13
|
Krepl M, Cléry A, Blatter M, Allain FHT, Sponer J. Synergy between NMR measurements and MD simulations of protein/RNA complexes: application to the RRMs, the most common RNA recognition motifs. Nucleic Acids Res 2016; 44:6452-70. [PMID: 27193998 PMCID: PMC5291263 DOI: 10.1093/nar/gkw438] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/30/2016] [Accepted: 05/05/2016] [Indexed: 01/28/2023] Open
Abstract
RNA recognition motif (RRM) proteins represent an abundant class of proteins playing key roles in RNA biology. We present a joint atomistic molecular dynamics (MD) and experimental study of two RRM-containing proteins bound with their single-stranded target RNAs, namely the Fox-1 and SRSF1 complexes. The simulations are used in conjunction with NMR spectroscopy to interpret and expand the available structural data. We accumulate more than 50 μs of simulations and show that the MD method is robust enough to reliably describe the structural dynamics of the RRM-RNA complexes. The simulations predict unanticipated specific participation of Arg142 at the protein-RNA interface of the SRFS1 complex, which is subsequently confirmed by NMR and ITC measurements. Several segments of the protein-RNA interface may involve competition between dynamical local substates rather than firmly formed interactions, which is indirectly consistent with the primary NMR data. We demonstrate that the simulations can be used to interpret the NMR atomistic models and can provide qualified predictions. Finally, we propose a protocol for 'MD-adapted structure ensemble' as a way to integrate the simulation predictions and expand upon the deposited NMR structures. Unbiased μs-scale atomistic MD could become a technique routinely complementing the NMR measurements of protein-RNA complexes.
Collapse
Affiliation(s)
- Miroslav Krepl
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Antoine Cléry
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Markus Blatter
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland Global Discovery Chemistry, Novartis Institute for BioMedical Research, Basel CH-4002, Switzerland
| | - Frederic H T Allain
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Jiri Sponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
14
|
Chen YJ, Yang CN. Molecular modeling of structural and functional variance in the SAGA deubiquitinating module caused by Sgf73 Y57A mutation. RSC Adv 2016. [DOI: 10.1039/c6ra12647b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Summary of the structural and dynamic impact caused by Sgf73 Y57A mutation.
Collapse
Affiliation(s)
- Ya-Jyun Chen
- Department of Life Sciences
- National University of Kaohsiung
- Kaohsiung
- Taiwan
| | - Chia-Ning Yang
- Department of Life Sciences
- National University of Kaohsiung
- Kaohsiung
- Taiwan
| |
Collapse
|
15
|
Madan B, Kasprzak JM, Tuszynska I, Magnus M, Szczepaniak K, Dawson WK, Bujnicki JM. Modeling of Protein-RNA Complex Structures Using Computational Docking Methods. Methods Mol Biol 2016; 1414:353-372. [PMID: 27094302 DOI: 10.1007/978-1-4939-3569-7_21] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A significant part of biology involves the formation of RNA-protein complexes. X-ray crystallography has added a few solved RNA-protein complexes to the repertoire; however, it remains challenging to capture these complexes and often only the unbound structures are available. This has inspired a growing interest in finding ways to predict these RNA-protein complexes. In this study, we show ways to approach this problem by computational docking methods, either with a fully automated NPDock server or with a workflow of methods for generation of many alternative structures followed by selection of the most likely solution. We show that by introducing experimental information, the structure of the bound complex is rendered far more likely to be within reach. This study is meant to help the user of docking software understand how to grapple with a typical realistic problem in RNA-protein docking, understand what to expect in the way of difficulties, and recognize the current limitations.
Collapse
Affiliation(s)
- Bharat Madan
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Joanna M Kasprzak
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109, Warsaw, Poland
- Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614, Poznan, Poland
| | - Irina Tuszynska
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109, Warsaw, Poland
- Institute of Informatics, University of Warsaw, ul. Banacha 2, 02-097, Warsaw, Poland
| | - Marcin Magnus
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Krzysztof Szczepaniak
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Wayne K Dawson
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109, Warsaw, Poland.
- Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614, Poznan, Poland.
| |
Collapse
|
16
|
Mlýnský V, Kührová P, Zgarbová M, Jurečka P, Walter NG, Otyepka M, Šponer J, Banáš P. Reactive Conformation of the Active Site in the Hairpin Ribozyme Achieved by Molecular Dynamics Simulations with ε/ζ Force Field Reparametrizations. J Phys Chem B 2015; 119:4220-9. [DOI: 10.1021/jp512069n] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Vojtěch Mlýnský
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, tr. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Petra Kührová
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, tr. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Marie Zgarbová
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, tr. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Petr Jurečka
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, tr. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Nils G. Walter
- Department
of Chemistry, Single Molecule Analysis Group, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Michal Otyepka
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, tr. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Jiří Šponer
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, tr. 17 listopadu 12, 771 46 Olomouc, Czech Republic
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska
135, 612 65 Brno, Czech Republic
- CEITEC
− Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Pavel Banáš
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, tr. 17 listopadu 12, 771 46 Olomouc, Czech Republic
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska
135, 612 65 Brno, Czech Republic
| |
Collapse
|
17
|
Krepl M, Havrila M, Stadlbauer P, Banas P, Otyepka M, Pasulka J, Stefl R, Sponer J. Can We Execute Stable Microsecond-Scale Atomistic Simulations of Protein-RNA Complexes? J Chem Theory Comput 2015; 11:1220-43. [PMID: 26579770 DOI: 10.1021/ct5008108] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We report over 30 μs of unrestrained molecular dynamics simulations of six protein-RNA complexes in explicit solvent. We utilize the AMBER ff99bsc0χ(OL3) RNA force field combined with the ff99SB protein force field and its more recent ff12SB version with reparametrized side-chain dihedrals. The simulations show variable behavior, ranging from systems that are essentially stable to systems with progressive deviations from the experimental structure, which we could not stabilize anywhere close to the starting experimental structure. For some systems, microsecond-scale simulations are necessary to achieve stabilization after initial sizable structural perturbations. The results show that simulations of protein-RNA complexes are challenging and every system should be treated individually. The simulations are affected by numerous factors, including properties of the starting structures (the initially high force field potential energy, resolution limits, conformational averaging, crystal packing, etc.), force field imbalances, and real flexibility of the studied systems. These factors, and thus the simulation behavior, differ from system to system. The structural stability of simulated systems does not correlate with the size of buried interaction surface or experimentally determined binding affinities but reflects the type of protein-RNA recognition. Protein-RNA interfaces involving shape-specific recognition of RNA are more stable than those relying on sequence-specific RNA recognition. The differences between the protein force fields are considerably smaller than the uncertainties caused by sampling and starting structures. The ff12SB improves description of the tyrosine side-chain group, which eliminates some problems associated with tyrosine dynamics.
Collapse
Affiliation(s)
- M Krepl
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic
| | - M Havrila
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic
| | - P Stadlbauer
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic
| | - P Banas
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University , Tř. 17 Listopadu 12, 771 46 Olomouc, Czech Republic
| | - M Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University , Tř. 17 Listopadu 12, 771 46 Olomouc, Czech Republic
| | | | | | - J Sponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
18
|
|