1
|
Mazzini S, Princiotto S, Musso L, Passarella D, Beretta GL, Perego P, Dallavalle S. Synthesis and Investigation of the G-Quadruplex Binding Properties of Kynurenic Acid Derivatives with a Dihydroimidazoquinoline-3,5-dione Core. Molecules 2022; 27:2791. [PMID: 35566141 PMCID: PMC9103425 DOI: 10.3390/molecules27092791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
G-quadruplexes are secondary structures originating from nucleic acid regions rich in guanines, which are well known for their involvement in gene transcription and regulation and DNA damage repair. In recent studies from our group, kynurenic acid (KYNA) derivative 1 was synthesized and found to share the structural features typical of G-quadruplex binders. Herein, structural modifications were conducted on this scaffold in order to assist the binding with a G-quadruplex, by introducing charged hydrophilic groups. The antiproliferative activity of the new analogues was evaluated on an IGROV-1 human ovarian cancer cell line, and the most active compound, compound 9, was analyzed with NMR spectrometry in order to investigate its binding mode with DNA. The results indicated that a weak, non-specific interaction was set with duplex nucleotides; on the other hand, titration in the presence of a G-quadruplex from human telomere d(TTAGGGT)4 showed a stable, although not strong, interaction at the 3'-end of the nucleotidic sequence, efficiently assisted by salt bridges between the quaternary nitrogen and the external phosphate groups. Overall, this work can be considered a platform for the development of a new class of potential G-quadruplex stabilizing molecules, confirming the crucial role of a planar system and the ability of charged nitrogen-containing groups to facilitate the binding to G-quadruplex grooves and loops.
Collapse
Affiliation(s)
- Stefania Mazzini
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy; (S.M.); (L.M.); (S.D.)
| | - Salvatore Princiotto
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy; (S.M.); (L.M.); (S.D.)
| | - Loana Musso
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy; (S.M.); (L.M.); (S.D.)
| | | | - Giovanni Luca Beretta
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale Tumori, Via Amadeo 42, 20133 Milan, Italy; (G.L.B.); (P.P.)
| | - Paola Perego
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale Tumori, Via Amadeo 42, 20133 Milan, Italy; (G.L.B.); (P.P.)
| | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy; (S.M.); (L.M.); (S.D.)
| |
Collapse
|
2
|
Das A, Dutta S. Binding Studies of Aloe-Active Compounds with G-Quadruplex Sequences. ACS OMEGA 2021; 6:18344-18351. [PMID: 34308065 PMCID: PMC8296576 DOI: 10.1021/acsomega.1c02207] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/02/2021] [Indexed: 05/04/2023]
Abstract
G-quadruplex, a unique DNA quartet motif with a pivotal role in regulation of the gene expression, has been established as a potent therapeutic target for the treatment of cancer. Small-molecule-mediated stabilization of the G-quadruplex and thus inhibition of the expression from the oncogene promoter and telomere region may be a promising anticancer strategy. Aloe vera-derived natural compounds like aloe emodin, aloe emodin-8-glucoside, and aloin have significant anticancer activity. Comparative binding studies of these three molecules with varieties of G-quadruplex sequences were carried out using different biophysical techniques like absorption spectral titration, fluorescence spectral titration, dye displacement, ferrocyanide quenching assay, and CD and DSC thermogram studies. Overall, this study revealed aloe emodin and aloe emodin-8-glucoside as potent quadruplex-binding molecules mostly in the case of c-KIT and c-MYC sequences with a binding affinity value of 105 order that is higher than their duplex DNA binding ability. This observation may be correlated to the anticancer activity of these aloe-active compounds and also be helpful in the potential therapeutic application of natural compound-based molecules.
Collapse
|
3
|
|
4
|
Rocca R, Moraca F, Costa G, Talarico C, Ortuso F, Da Ros S, Nicoletto G, Sissi C, Alcaro S, Artese A. In Silico Identification of Piperidinyl-amine Derivatives as Novel Dual Binders of Oncogene c-myc/c-Kit G-quadruplexes. ACS Med Chem Lett 2018; 9:848-853. [PMID: 30128079 DOI: 10.1021/acsmedchemlett.8b00275] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 07/10/2018] [Indexed: 12/15/2022] Open
Abstract
In the last years, it has been shown that the DNA secondary structure known as G-quadruplex is also involved in the regulation of oncogenes transcription, such as c-myc, c-Kit, KRAS, Bcl-2, VEGF, and PDGF. DNA G-quadruplexes, formed in the promoter region of these proto-oncogenes, are considered alternative anticancer targets since their stabilization causes a reduction of the related oncoprotein overexpression. In this study, a structure-based virtual screening toward the experimental DNA G-quadruplex structures of c-myc and c-Kit was performed by using Glide for the docking analysis of a commercial library of approximately 693 000 compounds. The best hits were submitted to thermodynamic and biophysical studies, highlighting the effective stabilization of both G-quadruplex oncogene promoter structures for three N-(4-piperidinylmethyl)amine derivatives, thus proposed as a new class of dual G-quadruplex binders.
Collapse
Affiliation(s)
- Roberta Rocca
- Dipartimento di Scienze della Salute, Università “Magna Graecia” di Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Federica Moraca
- Dipartimento di Scienze della Salute, Università “Magna Graecia” di Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Giosuè Costa
- Dipartimento di Scienze della Salute, Università “Magna Graecia” di Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Carmine Talarico
- Dipartimento di Scienze della Salute, Università “Magna Graecia” di Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Francesco Ortuso
- Dipartimento di Scienze della Salute, Università “Magna Graecia” di Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Silvia Da Ros
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Giulia Nicoletto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Claudia Sissi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università “Magna Graecia” di Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Anna Artese
- Dipartimento di Scienze della Salute, Università “Magna Graecia” di Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
5
|
Tripathi S, Barthwal R. NMR based structure reveals groove binding of mitoxantrone to two sites of [d-(TTAGGGT)]4 having human telomeric DNA sequence leading to thermal stabilization of G-quadruplex. Int J Biol Macromol 2018; 111:326-341. [DOI: 10.1016/j.ijbiomac.2017.12.134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 12/18/2017] [Accepted: 12/27/2017] [Indexed: 01/03/2023]
|
6
|
Padmapriya Kumar, Barthwal R. Structural and biophysical insight into dual site binding of the protoberberine alkaloid palmatine to parallel G-quadruplex DNA using NMR, fluorescence and Circular Dichroism spectroscopy. Biochimie 2018; 147:153-169. [DOI: 10.1016/j.biochi.2018.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/05/2018] [Indexed: 01/12/2023]
|
7
|
Padmapriya K, Barthwal R. WITHDRAWN: Structural and biophysical insight into dual site binding of the protoberberine alkaloid palmatine to parallel G-quadruplex DNA using NMR, fluorescence and circular dichroism spectroscopy. Biochimie 2018:S0300-9084(18)30042-7. [PMID: 29474974 DOI: 10.1016/j.biochi.2018.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/05/2018] [Accepted: 01/07/2018] [Indexed: 11/17/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, http://dx.doi.org/10.1016/j.biochi.2018.02.002. The duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Kumar Padmapriya
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Ritu Barthwal
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| |
Collapse
|
8
|
Nguyen TQN, Lim KW, Phan AT. A Dual-Specific Targeting Approach Based on the Simultaneous Recognition of Duplex and Quadruplex Motifs. Sci Rep 2017; 7:11969. [PMID: 28931822 PMCID: PMC5607247 DOI: 10.1038/s41598-017-10583-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/09/2017] [Indexed: 12/31/2022] Open
Abstract
Small-molecule ligands targeting nucleic acids have been explored as potential therapeutic agents. Duplex groove-binding ligands have been shown to recognize DNA in a sequence-specific manner. On the other hand, quadruplex-binding ligands exhibit high selectivity between quadruplex and duplex, but show limited discrimination between different quadruplex structures. Here we propose a dual-specific approach through the simultaneous application of duplex- and quadruplex-binders. We demonstrated that a quadruplex-specific ligand and a duplex-specific ligand can simultaneously interact at two separate binding sites of a quadruplex-duplex hybrid harbouring both quadruplex and duplex structural elements. Such a dual-specific targeting strategy would combine the sequence specificity of duplex-binders and the strong binding affinity of quadruplex-binders, potentially allowing the specific targeting of unique quadruplex structures. Future research can be directed towards the development of conjugated compounds targeting specific genomic quadruplex-duplex sites, for which the linker would be highly context-dependent in terms of length and flexibility, as well as the attachment points onto both ligands.
Collapse
Affiliation(s)
- Thi Quynh Ngoc Nguyen
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Kah Wai Lim
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
9
|
Padmapriya K, Barthwal R. NMR based structural studies decipher stacking of the alkaloid coralyne to terminal guanines at two different sites in parallel G-quadruplex DNA, [d(TTGGGGT)]4 and [d(TTAGGGT)]4. Biochim Biophys Acta Gen Subj 2017; 1861:37-48. [DOI: 10.1016/j.bbagen.2016.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/13/2016] [Accepted: 11/08/2016] [Indexed: 01/15/2023]
|
10
|
Bağda E, Bağda E, Yabaş E. Circular dichroism spectroscopic investigation of double-decker phthalocyanine with G-Quadruplex as promising telomerase inhibitor. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.07.093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Padmapriya K, Barthwal R. Nuclear magnetic resonance studies reveal stabilization of parallel G-quadruplex DNA [d(T 2 G 4 T)] 4 upon binding to protoberberine alkaloid coralyne. Bioorg Med Chem Lett 2016; 26:4915-4918. [DOI: 10.1016/j.bmcl.2016.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 12/17/2022]
|