1
|
Pierro M, Thébaud B. Cell-based strategies for the treatment of injury to the developing lung. THE LUNG 2025:403-426. [DOI: 10.1016/b978-0-323-91824-4.00020-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Saporito S, Panzetta V, Netti PA. Time and space modulation of substrate curvature to regulate cell mechanical identity. Acta Biomater 2024; 186:300-315. [PMID: 39127326 DOI: 10.1016/j.actbio.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/08/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Recently, a variety of microenvironmental biophysical stimuli have been proved to play a crucial role in regulating cell functions. Among them, morpho-physical cues, like curvature, are emerging as key regulators of cellular behavior. Changes in substrate curvature have been shown to impact the arrangement of Focal Adhesions (FAs), influencing the direction and intensity of cytoskeleton generated forces and resulting in an overall alteration of cell mechanical identity. In their native environment, cells encounter varying degrees of substrate curvature, and in specific organs, they are exposed to dynamic changes of curvature due to periodic tissue deformation. However, the mechanism by which cells perceive substrate curvature remains poorly understood. To this aim, a micro-pneumatic device was designed and implemented. This device enables the controlled application of substrate curvature, both statically and dynamically. Employing a combined experimental and simulative approach, human adipose-derived stem cells were exposed to controlled curvature intensity and frequency. During this exposure, measurements were taken on FAs extension and orientation, cytoskeleton organization and cellular/nuclear alignment. The data clearly indicated a significant influence of the substrate curvature on cell adhesion processes. These findings contribute to a better understanding of the mechanisms through which cells perceive and respond to substrate curvature signals. STATEMENT OF SIGNIFICANCE: This work is our contribution to the comprehension of substrate curvature's function as a crucial regulator of cell adhesion at the scale of focal adhesions and cell mechanical identity. In recent years, a large body of knowledge is continuously growing providing comprehension of the role of various microenvironmental biophysical stimuli in regulating cell functions. Nevertheless, little is known about the role of substrate curvature, in particular, when cells are exposed to this stimulus in a dynamic manner. To address the role of substrate curvature on cellular behavior, a micro-pneumatic device was designed and implemented. This device enables the controlled application of substrate curvature, both statically and dynamically. The experiment data made it abundantly evident that the substrate curvature had a major impact on the mechanisms involved in cell adhesion.
Collapse
Affiliation(s)
- Stefania Saporito
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Italy; Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano Di Tecnologia, Italy
| | - Valeria Panzetta
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Italy; Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano Di Tecnologia, Italy; Interdisciplinary research Center on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
| | - Paolo Antonio Netti
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Italy; Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano Di Tecnologia, Italy; Interdisciplinary research Center on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy.
| |
Collapse
|
3
|
Younesi FS, Hinz B. The Myofibroblast Fate of Therapeutic Mesenchymal Stromal Cells: Regeneration, Repair, or Despair? Int J Mol Sci 2024; 25:8712. [PMID: 39201399 PMCID: PMC11354465 DOI: 10.3390/ijms25168712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) can be isolated from various tissues of healthy or patient donors to be retransplanted in cell therapies. Because the number of MSCs obtained from biopsies is typically too low for direct clinical application, MSC expansion in cell culture is required. However, ex vivo amplification often reduces the desired MSC regenerative potential and enhances undesired traits, such as activation into fibrogenic myofibroblasts. Transiently activated myofibroblasts restore tissue integrity after organ injury by producing and contracting extracellular matrix into scar tissue. In contrast, persistent myofibroblasts cause excessive scarring-called fibrosis-that destroys organ function. In this review, we focus on the relevance and molecular mechanisms of myofibroblast activation upon contact with stiff cell culture plastic or recipient scar tissue, such as hypertrophic scars of large skin burns. We discuss cell mechanoperception mechanisms such as integrins and stretch-activated channels, mechanotransduction through the contractile actin cytoskeleton, and conversion of mechanical signals into transcriptional programs via mechanosensitive co-transcription factors, such as YAP, TAZ, and MRTF. We further elaborate how prolonged mechanical stress can create persistent myofibroblast memory by direct mechanotransduction to the nucleus that can evoke lasting epigenetic modifications at the DNA level, such as histone methylation and acetylation. We conclude by projecting how cell culture mechanics can be modulated to generate MSCs, which epigenetically protected against myofibroblast activation and transport desired regeneration potential to the recipient tissue environment in clinical therapies.
Collapse
Affiliation(s)
- Fereshteh Sadat Younesi
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Keenan Research Institute for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| | - Boris Hinz
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Keenan Research Institute for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
4
|
Wu D, Zhao X, Xie J, Yuan R, Li Y, Yang Q, Cheng X, Wu C, Wu J, Zhu N. Physical modulation of mesenchymal stem cell exosomes: A new perspective for regenerative medicine. Cell Prolif 2024; 57:e13630. [PMID: 38462759 PMCID: PMC11294442 DOI: 10.1111/cpr.13630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/29/2024] [Accepted: 02/26/2024] [Indexed: 03/12/2024] Open
Abstract
Mesenchymal stem cell-derived exosomes (MSC-Exo) offer promising therapeutic potential for various refractory diseases, presenting a novel therapeutic strategy. However, their clinical application encounters several obstacles, including low natural secretion, uncontrolled biological functions and inherent heterogeneity. On the one hand, physical stimuli can mimic the microenvironment dynamics where MSC-Exo reside. These factors influence not only their secretion but also, significantly, their biological efficacy. Moreover, physical factors can also serve as techniques for engineering exosomes. Therefore, the realm of physical factors assumes a crucial role in modifying MSC-Exo, ultimately facilitating their clinical translation. This review focuses on the research progress in applying physical factors to MSC-Exo, encompassing ultrasound, electrical stimulation, light irradiation, intrinsic physical properties, ionizing radiation, magnetic field, mechanical forces and temperature. We also discuss the current status and potential of physical stimuli-affected MSC-Exo in clinical applications. Furthermore, we address the limitations of recent studies in this field. Based on this, this review provides novel insights to advance the refinement of MSC-Exo as a therapeutic approach in regenerative medicine.
Collapse
Affiliation(s)
- Dan Wu
- Department of DermatologyHuashan Hospital, Fudan UniversityShanghaiChina
| | - Xiansheng Zhao
- Department of DermatologyHuashan Hospital, Fudan UniversityShanghaiChina
| | - Jiaheng Xie
- Department of Plastic SurgeryXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Ruoyue Yuan
- Department of DermatologyHuashan Hospital, Fudan UniversityShanghaiChina
| | - Yue Li
- Department of DermatologyHuashan Hospital, Fudan UniversityShanghaiChina
| | - Quyang Yang
- Department of DermatologyHuashan Hospital, Fudan UniversityShanghaiChina
| | - Xiujun Cheng
- Department of DermatologyHuashan Hospital, Fudan UniversityShanghaiChina
| | - Changyue Wu
- Department of DermatologyHuashan Hospital, Fudan UniversityShanghaiChina
| | - Jinyan Wu
- Department of DermatologyChongzhou People's HospitalChengduChina
| | - Ningwen Zhu
- Department of DermatologyHuashan Hospital, Fudan UniversityShanghaiChina
- Department of PlasticReconstructive and Burns Surgery, Huashan Hospital, Fudan UniversityShanghaiChina
| |
Collapse
|
5
|
Sun L, Rao S, Kerim K, Lu J, Li H, Zhao S, Shen P, Sun W. A chemically adjustable BMP6-IL6 axis in mesenchymal stem cells drives acute myeloid leukemia cell differentiation. Biochem Pharmacol 2024; 225:116262. [PMID: 38705535 DOI: 10.1016/j.bcp.2024.116262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Chemotherapy alone or in combination with allogeneic stem cell transplantation has been the standard of care for acute myeloid leukemia (AML) for decades. Leukemia relapse with limited treatment options remains the main cause of treatment failure. Therefore, an effective and safe approach to improve treatment outcomes is urgently needed for most AML patients. Mesenchymal stem cells (MSCs) have been reported to efficiently induce apoptosis and shape the fate of acute myeloid leukemia cells. Here, we identified LG190155 as a potent compound that enhances the antileukemia efficiency of MSCs. Pretreatment of MSCs with LG190155 significantly provoked differentiation in both AML patient-derived primary leukemia cells and AML cell lines and reduced the tumor burden in the AML mouse model. Using the quantitative proteomic technique, we discovered a pivotal mechanism that mediates AML cell differentiation, in which autocrine bone morphogenetic protein 6 (BMP6) in MSCs boosted IL-6 secretion and further acted on leukemic cells to trigger differentiation. Furthermore, the activity of the BMP6-IL6 axis was dramatically enhanced by activating vitamin D receptor (VDR) in MSCs. Our data illustrated an effective preactivated approach to reinforcing the antileukemia effect of MSCs, which could serve as an effective therapeutic strategy for AML.
Collapse
Affiliation(s)
- Luchen Sun
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Shangrui Rao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Kamran Kerim
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jianhua Lu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Hongzheng Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Shengsheng Zhao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Pingping Shen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Shenzhen Research Institute of NanJing University, Shenzhen 518000, China.
| | - Weijian Sun
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
6
|
Tan YL, Al-Masawa ME, Eng SP, Shafiee MN, Law JX, Ng MH. Therapeutic Efficacy of Interferon-Gamma and Hypoxia-Primed Mesenchymal Stromal Cells and Their Extracellular Vesicles: Underlying Mechanisms and Potentials in Clinical Translation. Biomedicines 2024; 12:1369. [PMID: 38927577 PMCID: PMC11201753 DOI: 10.3390/biomedicines12061369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) hold promises for cell therapy and tissue engineering due to their self-renewal and differentiation abilities, along with immunomodulatory properties and trophic factor secretion. Extracellular vesicles (EVs) from MSCs offer similar therapeutic effects. However, MSCs are heterogeneous and lead to variable outcomes. In vitro priming enhances MSC performance, improving immunomodulation, angiogenesis, proliferation, and tissue regeneration. Various stimuli, such as cytokines, growth factors, and oxygen tension, can prime MSCs. Two classical priming methods, interferon-gamma (IFN-γ) and hypoxia, enhance MSC immunomodulation, although standardized protocols are lacking. This review discusses priming protocols, highlighting the most commonly used concentrations and durations, along with mechanisms and in vivo therapeutics effects of primed MSCs and their EVs. The feasibility of up-scaling their production was also discussed. The review concluded that priming with IFN-γ or hypoxia (alone or in combination with other factors) boosted the immunomodulation capability of MSCs and their EVs, primarily via the JAK/STAT and PI3K/AKT and Leptin/JAK/STAT and TGF-β/Smad signalling pathways, respectively. Incorporating priming in MSC and EV production enables translation into cell-based or cell-free therapies for various disorders.
Collapse
Affiliation(s)
- Yu Ling Tan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Y.L.T.); (M.E.A.-M.); (J.X.L.)
| | - Maimonah Eissa Al-Masawa
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Y.L.T.); (M.E.A.-M.); (J.X.L.)
| | - Sue Ping Eng
- NK Biocell Sdn. Bhd, Unit 1-22A, 1st Floor Pusat Perdagangan Berpadu (United Point), No.10, Jalan Lang Emas, Kuala Lumpur 51200, Malaysia;
| | - Mohamad Nasir Shafiee
- Department of Obstetrics & Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Y.L.T.); (M.E.A.-M.); (J.X.L.)
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Y.L.T.); (M.E.A.-M.); (J.X.L.)
| |
Collapse
|
7
|
Zerillo L, Coletta CC, Madera JR, Grasso G, Tutela A, Vito P, Stilo R, Zotti T. Extremely low frequency-electromagnetic fields promote chondrogenic differentiation of adipose-derived mesenchymal stem cells through a conventional genetic program. Sci Rep 2024; 14:10182. [PMID: 38702382 PMCID: PMC11068729 DOI: 10.1038/s41598-024-60846-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024] Open
Abstract
Progressive cartilage deterioration leads to chronic inflammation and loss of joint function, causing osteoarthritis (OA) and joint disease. Although symptoms vary among individuals, the disease can cause severe pain and permanent disability, and effective therapies are urgently needed. Human Adipose-Derived Stem Cells (ADSCs) may differentiate into chondrocytes and are promising for treating OA. Moreover, recent studies indicate that electromagnetic fields (EMFs) could positively affect the chondrogenic differentiation potential of ADSCs. In this work, we investigated the impact of EMFs with frequencies of 35 Hertz and 58 Hertz, referred to as extremely low frequency-EMFs (ELF-EMFs), on the chondrogenesis of ADSCs, cultured in both monolayer and 3D cell micromasses. ADSC cultures were daily stimulated for 36 min with ELF-EMFs or left unstimulated, and the progression of the differentiation process was evaluated by morphological analysis, extracellular matrix deposition, and gene expression profiling of chondrogenic markers. In both culturing conditions, stimulation with ELF-EMFs did not compromise cell viability but accelerated chondrogenesis by enhancing the secretion and deposition of extracellular matrix components at earlier time points in comparison to unstimulated cells. This study showed that, in an appropriate chondrogenic microenvironment, ELF-EMFs enhance chondrogenic differentiation and may be an important tool for supporting and accelerating the treatment of OA through autologous adipose stem cell therapy.
Collapse
Affiliation(s)
- Lucrezia Zerillo
- Dipartimento di Scienze e Tecnologie, Università Degli Studi del Sannio, Via dei Mulini, 82100, Benevento, Italy
- Genus Biotech, Università Degli Studi del Sannio, Benevento, Italy
| | - Concetta Claudia Coletta
- Dipartimento di Scienze e Tecnologie, Università Degli Studi del Sannio, Via dei Mulini, 82100, Benevento, Italy
| | - Jessica Raffaella Madera
- Dipartimento di Scienze e Tecnologie, Università Degli Studi del Sannio, Via dei Mulini, 82100, Benevento, Italy
| | - Gabriella Grasso
- Dipartimento di Scienze e Tecnologie, Università Degli Studi del Sannio, Via dei Mulini, 82100, Benevento, Italy
| | - Angelapia Tutela
- Dipartimento di Scienze e Tecnologie, Università Degli Studi del Sannio, Via dei Mulini, 82100, Benevento, Italy
| | - Pasquale Vito
- Dipartimento di Scienze e Tecnologie, Università Degli Studi del Sannio, Via dei Mulini, 82100, Benevento, Italy
- Genus Biotech, Università Degli Studi del Sannio, Benevento, Italy
| | - Romania Stilo
- Dipartimento di Scienze e Tecnologie, Università Degli Studi del Sannio, Via dei Mulini, 82100, Benevento, Italy.
| | - Tiziana Zotti
- Dipartimento di Scienze e Tecnologie, Università Degli Studi del Sannio, Via dei Mulini, 82100, Benevento, Italy.
| |
Collapse
|
8
|
Gao M, Guo H, Dong X, Wang Z, Yang Z, Shang Q, Wang Q. Regulation of inflammation during wound healing: the function of mesenchymal stem cells and strategies for therapeutic enhancement. Front Pharmacol 2024; 15:1345779. [PMID: 38425646 PMCID: PMC10901993 DOI: 10.3389/fphar.2024.1345779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
A wound takes a long time to heal and involves several steps. Following tissue injury, inflammation is the primary cause of tissue regeneration and repair processes. As a result, the pathophysiological processes involving skin damage, healing, and remodeling depend critically on the control of inflammation. The fact that it is a feasible target for improving the prognosis of wound healing has lately become clear. Mesenchymal stem cells (MSCs) are an innovative and effective therapeutic option for wound healing due to their immunomodulatory and paracrine properties. By controlling the inflammatory milieu of wounds through immunomodulation, transplanted MSCs have been shown to speed up the healing process. In addition to other immunomodulatory mechanisms, including handling neutrophil activity and modifying macrophage polarization, there may be modifications to the activation of T cells, natural killer (NK) cells, and dendritic cells (DCs). Furthermore, several studies have shown that pretreating MSCs improves their ability to modulate immunity. In this review, we summarize the existing knowledge about how MSCs influence local inflammation in wounds by influencing immunity to facilitate the healing process. We also provide an overview of MSCs optimizing techniques when used to treat wounds.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qiying Wang
- Department of Plastic Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
9
|
Salaudeen MA, Allan S, Pinteaux E. Hypoxia and interleukin-1-primed mesenchymal stem/stromal cells as novel therapy for stroke. Hum Cell 2024; 37:154-166. [PMID: 37987924 PMCID: PMC10764391 DOI: 10.1007/s13577-023-00997-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/11/2023] [Indexed: 11/22/2023]
Abstract
Promising preclinical stroke research has not yielded meaningful and significant success in clinical trials. This lack of success has prompted the need for refinement of preclinical studies with the intent to optimize the chances of clinical success. Regenerative medicine, especially using mesenchymal stem/stromal cells (MSCs), has gained popularity in the last decade for treating many disorders, including central nervous system (CNS), such as stroke. In addition to less stringent ethical constraints, the ample availability of MSCs also makes them an attractive alternative to totipotent and other pluripotent stem cells. The ability of MSCs to differentiate into neurons and other brain parenchymal and immune cells makes them a promising therapy for stroke. However, these cells also have some drawbacks that, if not addressed, will render MSCs unfit for treating ischaemic stroke. In this review, we highlighted the molecular and cellular changes that occur following an ischaemic stroke (IS) incidence and discussed the physiological properties of MSCs suitable for tackling these changes. We also went further to discuss the major drawbacks of utilizing MSCs in IS and how adequate priming using both hypoxia and interleukin-1 can optimize the beneficial properties of MSCs while eliminating these drawbacks.
Collapse
Affiliation(s)
- Maryam Adenike Salaudeen
- Faculty of Biology, Medicine, and Health, Division of Neuroscience, University of Manchester, Manchester, UK
- Department of Pharmacology and Therapeutics, Ahmadu Bello University, Zaria, Nigeria
| | - Stuart Allan
- Faculty of Biology, Medicine, and Health, Division of Neuroscience, University of Manchester, Manchester, UK
| | - Emmanuel Pinteaux
- Faculty of Biology, Medicine, and Health, Division of Neuroscience, University of Manchester, Manchester, UK.
| |
Collapse
|
10
|
Bakhshandeh B, Sorboni SG, Ranjbar N, Deyhimfar R, Abtahi MS, Izady M, Kazemi N, Noori A, Pennisi CP. Mechanotransduction in tissue engineering: Insights into the interaction of stem cells with biomechanical cues. Exp Cell Res 2023; 431:113766. [PMID: 37678504 DOI: 10.1016/j.yexcr.2023.113766] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Stem cells in their natural microenvironment are exposed to biochemical and biophysical cues emerging from the extracellular matrix (ECM) and neighboring cells. In particular, biomechanical forces modulate stem cell behavior, biological fate, and early developmental processes by sensing, interpreting, and responding through a series of biological processes known as mechanotransduction. Local structural changes in the ECM and mechanics are driven by reciprocal activation of the cell and the ECM itself, as the initial deposition of matrix proteins sequentially affects neighboring cells. Recent studies on stem cell mechanoregulation have provided insight into the importance of biomechanical signals on proper tissue regeneration and function and have shown that precise spatiotemporal control of these signals exists in stem cell niches. Against this background, the aim of this work is to review the current understanding of the molecular basis of mechanotransduction by analyzing how biomechanical forces are converted into biological responses via cellular signaling pathways. In addition, this work provides an overview of advanced strategies using stem cells and biomaterial scaffolds that enable precise spatial and temporal control of mechanical signals and offer great potential for the fields of tissue engineering and regenerative medicine will be presented.
Collapse
Affiliation(s)
- Behnaz Bakhshandeh
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.
| | | | - Nika Ranjbar
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Roham Deyhimfar
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Sadat Abtahi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mehrnaz Izady
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Navid Kazemi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Atefeh Noori
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Cristian Pablo Pennisi
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Denmark.
| |
Collapse
|
11
|
Lu Y, Li G, Li Y, Yao Y. Cellulose nanofibril matrix drives the dynamic formation of spheroids. J Zhejiang Univ Sci B 2023; 24:922-934. [PMID: 37752093 PMCID: PMC10522563 DOI: 10.1631/jzus.b23d0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/08/2023] [Indexed: 09/28/2023]
Abstract
Multicellular spheroids, which mimic the natural organ counterparts, allow the prospect of drug screening and regenerative medicine. However, their application is hampered by low processing efficiency or limited scale. This study introduces an efficient method to drive rapid multicellular spheroid formation by a cellulose nanofibril matrix. This matrix enables the facilitated growth of spheroids (within 48 h) through multiple cell assembly into size-controllable aggregates with well-organized physiological microstructure. The efficiency, dimension, and conformation of the as-formed spheroids depend on the concentration of extracellular nanofibrils, the number of assembled cells, and the heterogeneity of cell types. The above strategy allows the robust formation mechanism of compacted tumoroids and hepatocyte spheroids.
Collapse
Affiliation(s)
- Yi Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Guo Li
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Yeqiu Li
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Yuan Yao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
12
|
Fallah Tafti M, Aghamollaei H, Moosazadeh Moghaddam M, Jadidi K, Faghihi S. An inspired microenvironment of cell replicas to induce stem cells into keratocyte-like dendritic cells for corneal regeneration. Sci Rep 2023; 13:15012. [PMID: 37696883 PMCID: PMC10495344 DOI: 10.1038/s41598-023-42359-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023] Open
Abstract
Corneal stromal disorders due to the loss of keratocytes can affect visual impairment and blindness. Corneal cell therapy is a promising therapeutic strategy for healing corneal tissue or even enhancing corneal function upon advanced disorders, however, the sources of corneal keratocytes are limited for clinical applications. Here, the capacity of cell-imprinted substrates fabricated by molding human keratocyte templates to induce differentiation of human adipose-derived stem cells (hADSCs) into keratocytes, is presented. Keratocytes are isolated from human corneal stroma and grown to transmit their ECM architecture and cell-like topographies to a PDMS substrate. The hADSCs are then seeded on cell-imprinted substrates and their differentiation to keratocytes in DMEM/F12 (with and without chemical factors) are evaluated by real-time PCR and immunocytochemistry. The mesenchymal stem cells grown on patterned substrates present gene and protein expression profiles similar to corneal keratocytes. In contrast, a negligible expression of myofibroblast marker in the hADSCs cultivated on the imprinted substrates, is observed. Microscopic analysis reveals dendritic morphology and ellipsoid nuclei similar to primary keratocytes. Overall, it is demonstrated that biomimetic imprinted substrates would be a sufficient driver to solely direct the stem cell fate toward target cells which is a significant achievement toward corneal regeneration.
Collapse
Affiliation(s)
- Mahsa Fallah Tafti
- Stem Cell and Regenerative Medicine Group, National Institute of Genetic Engineering and Biotechnology, 14965/161, Tehran, Iran
| | - Hossein Aghamollaei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehrdad Moosazadeh Moghaddam
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Khosrow Jadidi
- Vision Health Research Center, Semnan University of Medical Sciences, Semnan, 1435916471, Iran.
| | - Shahab Faghihi
- Stem Cell and Regenerative Medicine Group, National Institute of Genetic Engineering and Biotechnology, 14965/161, Tehran, Iran.
| |
Collapse
|
13
|
Tsubosaka M, Maruyama M, Lui E, Moeinzadeh S, Huang EE, Kushioka J, Hirata H, Jain C, Storaci HW, Chan C, Toya M, Gao Q, Teissier V, Shen H, Li X, Zhang N, Matsumoto T, Kuroda R, Goodman SB, Yang YP. The efficiency of genetically modified mesenchymal stromal cells combined with a functionally graded scaffold for bone regeneration in corticosteroid-induced osteonecrosis of the femoral head in rabbits. J Biomed Mater Res A 2023; 111:1120-1134. [PMID: 36606330 PMCID: PMC10277231 DOI: 10.1002/jbm.a.37495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/18/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023]
Abstract
Core decompression (CD) with mesenchymal stromal cells (MSCs) is an effective therapy for early-stage osteonecrosis of the femoral head (ONFH). Preconditioning of MSCs, using inflammatory mediators, is widely used in immunology and various cell therapies. We developed a three-dimensional printed functionally graded scaffold (FGS), made of β-TCP and PCL, for cell delivery at a specific location. The present study examined the efficacy of CD treatments with genetically modified (GM) MSCs over-expressing PDGF-BB (PDGF-MSCs) or GM MSCs co-over-expressing IL-4 and PDGF-BB and preconditioned for three days of exposure to lipopolysaccharide and tumor necrosis factor-alpha (IL-4-PDGF-pMSCs) using the FGS for treating steroid-induced ONFH in rabbits. We compared CD without cell-therapy, with IL-4-PDGF-pMSCs alone, and with FGS loaded with PDGF-MSCs or IL-4-PDGF-pMSCs. For the area inside the CD, the bone volume in the CD alone was higher than in both FGS groups. The IL-4-PDGF-pMSCs alone and FGS + PDGF-MSCs reduced the occurrence of empty lacunae and improved osteoclastogenesis. There was no significant difference in angiogenesis among the four groups. The combined effect of GM MSCs or pMSCs and the FGS was not superior to the effect of each alone. To establish an important adjunctive therapy for CD for early ONFH in the future, it is necessary and essential to develop an FGS that delivers biologics appropriately and provides structural and mechanical support.
Collapse
Affiliation(s)
- Masanori Tsubosaka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Masahiro Maruyama
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Elaine Lui
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Seyedsina Moeinzadeh
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Elijah Ejun Huang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Junichi Kushioka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Hirohito Hirata
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Charu Jain
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Hunter W. Storaci
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Calvin Chan
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Masakazu Toya
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Victoria Teissier
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Huaishuang Shen
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Xueping Li
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Ning Zhang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Tomoyuki Matsumoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, USA
| | - Yunzhi Peter Yang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Material Science and Engineering, Stanford University School of Medicine, Stanford, CA, USA
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
14
|
A Novel Technique of Amniotic Membrane Preparation Mimicking Limbal Epithelial Crypts Enhances the Number of Progenitor Cells upon Expansion. Cells 2023; 12:cells12050738. [PMID: 36899873 PMCID: PMC10001367 DOI: 10.3390/cells12050738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
We aimed to investigate whether a novel technique of human amniotic membrane (HAM) preparation that mimics the crypts in the limbus enhances the number of progenitor cells cultured ex vivo. The HAMs were sutured on polyester membrane (1) standardly, to obtain a flat HAM surface, or (2) loosely, achieving the radial folding to mimic crypts in the limbus. Immunohistochemistry was used to demonstrate a higher number of cells positive for progenitor markers p63α (37.56 ± 3.34% vs. 62.53 ± 3.32%, p = 0.01) and SOX9 (35.53 ± 0.96% vs. 43.23 ± 2.32%, p = 0.04), proliferation marker Ki-67 (8.43 ± 0.38 % vs. 22.38 ± 1.95 %, p = 0.002) in the crypt-like HAMs vs. flat HAMs, while no difference was found for the quiescence marker CEBPD (22.99 ± 2.96% vs. 30.49 ± 3.33 %, p = 0.17). Most of the cells stained negative for the corneal epithelial differentiation marker KRT3/12, and some were positive for N-cadherin in the crypt-like structures, but there was no difference in staining for E-cadherin and CX43 in crypt-like HAMs vs. flat HAMs. This novel HAM preparation method enhanced the number of progenitor cells expanded in the crypt-like HAM compared to cultures on the conventional flat HAM.
Collapse
|
15
|
Cao B, Li J, Wang X, Ran Z, Tan J, Deng L, Hao Y. Mechanosensitive miR-99b mediates the regulatory effect of matrix stiffness on bone marrow mesenchymal stem cell fate both in vitro and in vivo. APL Bioeng 2023; 7:016106. [PMID: 36685676 PMCID: PMC9851713 DOI: 10.1063/5.0131125] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
Mechanical signals from extracellular matrix stiffness are important cues that regulate the proliferation and differentiation of bone marrow mesenchymal stem cells (BMSCs). However, the incorporation of BMSCs into soft hydrogels and the dominance of soft matrices for BMSC growth and differentiation limit the directed differentiation of BMSCs incorporated into hydrogels for tissue engineering, especially osteogenesis. Here, we found that the expression of miR-99b increased with increasing hydrogel stiffness and that miR-99b regulated the proliferation and differentiation of BMSCs seeded on the surface of substrates with different stiffnesses. Furthermore, miR-99b significantly promoted the migration of BMSCs in 3D hydrogels. Mechanistically, we demonstrated that matrix stiffness-sensitive miR-99b targets the mammalian target of the rapamycin signaling pathway to regulate the adipogenic and osteogenic differentiation of BMSCs. In addition, by modulating the expression of miR-99b, the osteogenic differentiation of BMSCs in soft 3D hydrogels was promoted. Consistently, the flexible BMSC-GelMA hydrogel transfected with miR-99b significantly promoted bone regeneration in the rat calvarial defect area. These results suggest that miR-99b plays a key role in the mechanotransduction and phenotypic transformation of BMSCs and may inspire new tissue engineering applications with MSCs as key components.
Collapse
Affiliation(s)
- Bojun Cao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jiaxin Li
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaowen Wang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhaoyang Ran
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jia Tan
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | | | | |
Collapse
|
16
|
Hyväri L, Vanhatupa S, Ojansivu M, Kelloniemi M, Pakarinen TK, Hupa L, Miettinen S. Heat Shock Protein 27 Is Involved in the Bioactive Glass Induced Osteogenic Response of Human Mesenchymal Stem Cells. Cells 2023; 12:cells12020224. [PMID: 36672159 PMCID: PMC9856363 DOI: 10.3390/cells12020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/15/2022] [Accepted: 12/26/2022] [Indexed: 01/06/2023] Open
Abstract
Bioactive glass (BaG) materials are increasingly used in clinics, but their regulatory mechanisms on osteogenic differentiation remain understudied. In this study, we elucidated the currently unknown role of the p38 MAPK downstream target heat shock protein 27 (HSP27), in the osteogenic commitment of human mesenchymal stem cells (hMSCs), derived from adipose tissue (hASCs) and bone marrow (hBMSCs). Osteogenesis was induced with ionic extract of an experimental BaG in osteogenic medium (OM). Our results showed that BaG OM induced fast osteogenesis of hASCs and hBMSCs, demonstrated by enhanced alkaline phosphatase (ALP) activity, production of extracellular matrix protein collagen type I, and matrix mineralization. BaG OM stimulated early and transient activation of p38/HSP27 signaling by phosphorylation in hMSCs. Inhibition of HSP27 phosphorylation with SB202190 reduced the ALP activity, mineralization, and collagen type I production induced by BaG OM. Furthermore, the reduced pHSP27 protein by SB202190 corresponded to a reduced F-actin intensity of hMSCs. The phosphorylation of HSP27 allowed its co-localization with the cytoskeleton. In terminally differentiated cells, however, pHSP27 was found diffusely in the cytoplasm. This study provides the first evidence that HSP27 is involved in hMSC osteogenesis induced with the ionic dissolution products of BaG. Our results indicate that HSP27 phosphorylation plays a role in the osteogenic commitment of hMSCs, possibly through the interaction with the cytoskeleton.
Collapse
Affiliation(s)
- Laura Hyväri
- Adult Stem Cell Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Elämänaukio, Kuntokatu 2, 33520 Tampere, Finland
| | - Sari Vanhatupa
- Adult Stem Cell Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Elämänaukio, Kuntokatu 2, 33520 Tampere, Finland
| | - Miina Ojansivu
- Adult Stem Cell Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Elämänaukio, Kuntokatu 2, 33520 Tampere, Finland
| | - Minna Kelloniemi
- Department of Plastic and Reconstructive Surgery, Tampere University Hospital, Elämänaukio, Kuntokatu 2, 33520 Tampere, Finland
| | - Toni-Karri Pakarinen
- Regea Cell and Tissue Center, Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland
| | - Leena Hupa
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Henrikinkatu 2, 20500 Turku, Finland
| | - Susanna Miettinen
- Adult Stem Cell Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Elämänaukio, Kuntokatu 2, 33520 Tampere, Finland
- Correspondence: ; Tel.: +358-40-1901789
| |
Collapse
|
17
|
Darshna, Kumar R, Srivastava P, Chandra P. Bioengineering of bone tissues using bioreactors for modulation of mechano-sensitivity in bone. Biotechnol Genet Eng Rev 2023:1-41. [PMID: 36596226 DOI: 10.1080/02648725.2022.2162249] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023]
Abstract
Since the last decade, significant developments have been made in the area of bone tissue engineering associated with the emergence of novel biomaterials as well as techniques of scaffold fabrication. Despite all these developments, the translation from research findings to clinical applications is still very limited. Manufacturing the designed tissue constructs in a scalable manner remains the most challenging aspect. This bottleneck could be overcome by using bioreactors for the manufacture of these tissue constructs. In this review, a current scenario of bone injuries/defects and the cause of the translational gap between laboratory research and clinical use has been emphasized. Furthermore, various bioreactors being used in the area of bone tissue regeneration in recent studies have been highlighted along with their advantages and limitations. A vivid literature survey on the ideal attributes of bioreactors has been accounted, viz. dynamic, versatile, automated, reproducible and commercialization aspects. Additionally, the illustration of computational approaches that should be combined with bone tissue engineering experiments using bioreactors to simulate and optimize cellular growth in bone tissue constructs has also been done extensively.
Collapse
Affiliation(s)
- Darshna
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Rahul Kumar
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Pradeep Srivastava
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| |
Collapse
|
18
|
Tassinari R, Olivi E, Cavallini C, Taglioli V, Zannini C, Marcuzzi M, Fedchenko O, Ventura C. Mechanobiology: A landscape for reinterpreting stem cell heterogeneity and regenerative potential in diseased tissues. iScience 2022; 26:105875. [PMID: 36647385 PMCID: PMC9839966 DOI: 10.1016/j.isci.2022.105875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mechanical forces play a fundamental role in cellular dynamics from the molecular level to the establishment of complex heterogeneity in somatic and stem cells. Here, we highlight the role of cytoskeletal mechanics and extracellular matrix in generating mechanical forces merging into oscillatory synchronized patterns. We discuss how cellular mechanosensing/-transduction can be modulated by mechanical forces to control tissue metabolism and set the basis for nonpharmacologic tissue rescue. Control of bone anabolic activity and repair, as well as obesity prevention, through a fine-tuning of the stem cell morphodynamics are highlighted. We also discuss the use of mechanical forces in the treatment of cardiovascular diseases and heart failure through the fine modulation of stem cell metabolic activity and regenerative potential. We finally focus on the new landscape of delivering specific mechanical stimuli to reprogram tissue-resident stem cells and enhance our self-healing potential, without the need for stem cell or tissue transplantation.
Collapse
Affiliation(s)
| | - Elena Olivi
- ELDOR LAB, via Corticella 183, 40129 Bologna, Italy
| | | | | | | | - Martina Marcuzzi
- NIBB, National Institute of Biostructures and Biosystems, National Laboratory of Molecular Biology and Stem Cell Engineering, via Corticella 183, 40129 Bologna, Italy
| | - Oleksandra Fedchenko
- NIBB, National Institute of Biostructures and Biosystems, National Laboratory of Molecular Biology and Stem Cell Engineering, via Corticella 183, 40129 Bologna, Italy
| | - Carlo Ventura
- ELDOR LAB, via Corticella 183, 40129 Bologna, Italy,NIBB, National Institute of Biostructures and Biosystems, National Laboratory of Molecular Biology and Stem Cell Engineering, via Corticella 183, 40129 Bologna, Italy,Corresponding author
| |
Collapse
|
19
|
Bio-Pulsed Stimulation Effectively Improves the Production of Avian Mesenchymal Stem Cell-Derived Extracellular Vesicles That Enhance the Bioactivity of Skin Fibroblasts and Hair Follicle Cells. Int J Mol Sci 2022; 23:ijms232315010. [PMID: 36499339 PMCID: PMC9740660 DOI: 10.3390/ijms232315010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Mesenchymal stem cell (MSC)-derived extracellular vesicles (exosomes) possess regeneration, cell proliferation, wound healing, and anti-senescence capabilities. The functions of exosomes can be modified by preconditioning MSCs through treatment with bio-pulsed reagents (Polygonum multiflorum Thunb extract). However, the beneficial effects of bio-pulsed small extracellular vesicles (sEVs) on the skin or hair remain unknown. This study investigated the in vitro mechanistic basis through which bio-pulsed sEVs enhance the bioactivity of the skin fibroblasts and hair follicle cells. Avian-derived MSCs (AMSCs) were isolated, characterized, and bio-pulsed to produce AMSC-sEVs, which were isolated, lyophilized, characterized, and analyzed. The effects of bio-pulsed AMSC-sEVs on cell proliferation, wound healing, and gene expression associated with skin and hair bioactivity were examined using human skin fibroblasts (HSFs) and follicle dermal papilla cells (HFDPCs). Bio-pulsed treatment significantly enhanced sEVs production by possibly upregulating RAB27A expression in AMSCs. Bio-pulsed AMSC-sEVs contained more exosomal proteins and RNAs than the control. Bio-pulsed AMSC-sEVs significantly augmented cell proliferation, wound healing, and gene expression in HSFs and HFDPCs. The present study investigated the role of bio-pulsed AMSC-sEVs in the bioactivity of the skin fibroblasts and hair follicle cells as mediators to offer potential health benefits for skin and hair.
Collapse
|
20
|
Kuppa SS, Kim HK, Kang JY, Lee SC, Seon JK. Role of Mesenchymal Stem Cells and Their Paracrine Mediators in Macrophage Polarization: An Approach to Reduce Inflammation in Osteoarthritis. Int J Mol Sci 2022; 23:13016. [PMID: 36361805 PMCID: PMC9658630 DOI: 10.3390/ijms232113016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/28/2022] Open
Abstract
Osteoarthritis (OA) is a low-grade inflammatory disorder of the joints that causes deterioration of the cartilage, bone remodeling, formation of osteophytes, meniscal damage, and synovial inflammation (synovitis). The synovium is the primary site of inflammation in OA and is frequently characterized by hyperplasia of the synovial lining and infiltration of inflammatory cells, primarily macrophages. Macrophages play a crucial role in the early inflammatory response through the production of several inflammatory cytokines, chemokines, growth factors, and proteinases. These pro-inflammatory mediators are activators of numerous signaling pathways that trigger other cytokines to further recruit more macrophages to the joint, ultimately leading to pain and disease progression. Very few therapeutic alternatives are available for treating inflammation in OA due to the condition's low self-healing capacity and the lack of clear diagnostic biomarkers. In this review, we opted to explore the immunomodulatory properties of mesenchymal stem cells (MSCs) and their paracrine mediators-dependent as a therapeutic intervention for OA, with a primary focus on the practicality of polarizing macrophages as suppression of M1 macrophages and enhancement of M2 macrophages can significantly reduce OA symptoms.
Collapse
Affiliation(s)
- Sree Samanvitha Kuppa
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Korea
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| | - Hyung Keun Kim
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| | - Ju Yeon Kang
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| | - Seok Cheol Lee
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| | - Jong Keun Seon
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Korea
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| |
Collapse
|
21
|
Bouzid T, Esfahani AM, Safa BT, Kim E, Saraswathi V, Kim JK, Yang R, Lim JY. Rho/ROCK mechanosensor in adipocyte stiffness and traction force generation. Biochem Biophys Res Commun 2022; 606:42-48. [PMID: 35339750 PMCID: PMC9035097 DOI: 10.1016/j.bbrc.2022.03.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 11/21/2022]
Abstract
It is increasingly recognized that interaction of adipose cells with extracellular mechanophysical milieus may play a role in regulating adipogenesis and differentiated adipocyte function and such interaction can be mediated by the mechanics of adipose cells. We measured the stiffness and traction force of adipose cells and examined the role of Rho/ROCK, the upstream effector of actin cytoskeletal contractility, in affecting these mechanical properties. Cellular Young's modulus obtained from atomic force microscopy (AFM) was significantly reduced by ROCK inhibitor (Y-27632) but elevated by Rho activator (CN01), for both preadipocytes and differentiated adipocytes. Immunofluorescent imaging suggested this could be attributed to the changes in Rho/ROCK-induced stressed actin filament formation. AFM also confirmed that differentiated adipocytes had higher stiffness than preadipocytes. On the other hand, traction force microscopy (TFM) revealed differentiated adipocytes exerted lower traction forces than preadipocytes. Traction forces of both preadipocytes and adipocytes were decreased by ROCK inhibition, but not significantly altered by Rho activation. Notably, an increasing trend of traction force with respect to cell spreading area was detected, and this trend was substantially amplified by Rho activation. Such traction force-cell area correlation was an order-of-magnitude smaller for differentiated adipocytes relative to preadipocytes, potentially due to disrupted force transmission through cytoskeleton-focal adhesion linkage by lipid droplets. Our work provides new data evidencing the Rho/ROCK control in adipose cell mechanics, laying the groundwork for adipocyte mechanotransduction studies on adipogenesis and adipose tissue remodeling.
Collapse
Affiliation(s)
- Tasneem Bouzid
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Amir Monemian Esfahani
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Bahareh Tajvidi Safa
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Eunju Kim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Viswanathan Saraswathi
- Department of Internal Medicine, University of Nebraska Medical Center and VA Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
| | - Jason K Kim
- Program in Molecular Medicine and Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| | - Jung Yul Lim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| |
Collapse
|
22
|
Zha K, Tian Y, Panayi AC, Mi B, Liu G. Recent Advances in Enhancement Strategies for Osteogenic Differentiation of Mesenchymal Stem Cells in Bone Tissue Engineering. Front Cell Dev Biol 2022; 10:824812. [PMID: 35281084 PMCID: PMC8904963 DOI: 10.3389/fcell.2022.824812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Although bone is an organ that displays potential for self-healing after damage, bone regeneration does not occur properly in some cases, and it is still a challenge to treat large bone defects. The development of bone tissue engineering provides a new approach to the treatment of bone defects. Among various cell types, mesenchymal stem cells (MSCs) represent one of the most promising seed cells in bone tissue engineering due to their functions of osteogenic differentiation, immunomodulation, and secretion of cytokines. Regulation of osteogenic differentiation of MSCs has become an area of extensive research over the past few years. This review provides an overview of recent research progress on enhancement strategies for MSC osteogenesis, including improvement in methods of cell origin selection, culture conditions, biophysical stimulation, crosstalk with macrophages and endothelial cells, and scaffolds. This is favorable for further understanding MSC osteogenesis and the development of MSC-based bone tissue engineering.
Collapse
Affiliation(s)
- Kangkang Zha
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yue Tian
- Department of Military Patient Management, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Institute of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | - Adriana C. Panayi
- Division of Plastic Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- *Correspondence: Bobin Mi, ; Guohui Liu,
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- *Correspondence: Bobin Mi, ; Guohui Liu,
| |
Collapse
|
23
|
Ebert R, Weissenberger M, Braun C, Wagenbrenner M, Herrmann M, Müller-Deubert S, Krug M, Jakob F, Rudert M. Impaired regenerative capacity and senescence-associated secretory phenotype in mesenchymal stromal cells from samples of patients with aseptic joint arthroplasty loosening. J Orthop Res 2022; 40:513-523. [PMID: 33749912 DOI: 10.1002/jor.25041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 02/04/2023]
Abstract
Aseptic loosening of total hip and knee joint replacements is the most common indication for revision surgery after primary hip and knee arthroplasty. Research suggests that exposure and uptake of wear by mesenchymal stromal cells (MSC) and macrophages results in the secretion of proinflammatory cytokines and local osteolysis, but also impaired cell viability and regenerative capacity of MSC. Therefore, this in vitro study compared the regenerative and differentiation capacity of MSC derived from patients undergoing primary total hip arthroplasty (MSCprim) to MSC derived from patients undergoing revision surgery after aseptic loosening of total hip and knee joint implants (MSCrev). Regenerative capacity was examined by measuring the cumulative population doubling (CPD) in addition to the number of passages until cells stopped proliferating. Osteogenesis and adipogenesis in monolayer cultures were assessed using histological stainings. Furthermore, RT-PCR was performed to evaluate the relative expression of osteogenic and adipogenic marker genes as well as the expression of markers for a senescence-associated secretory phenotype (SASP). MSCrev possessed a limited regenerative capacity in comparison to MSCprim. Interestingly, MSCrev also showed an impaired osteogenic and adipogenic differentiation capacity compared to MSCprim and displayed a SASP early after isolation. Whether this is the cause or the consequence of the aseptic loosening of total joint implants remains unclear. Future research should focus on the identification of specific cell markers on MSCprim, which may influence complication rates such as aseptic loosening of total joint arthroplasty to further individualize and optimize total joint arthroplasty.
Collapse
Affiliation(s)
- Regina Ebert
- Bernhard Heine Center for Locomotion Research, Department of Orthopedic, University of Würzburg, Würzburg, Germany
| | - Manuel Weissenberger
- Department of Orthopaedic Surgery, König-Ludwig-Haus, University of Würzburg, Würzburg, Germany
| | - Clemens Braun
- Bernhard Heine Center for Locomotion Research, Department of Orthopedic, University of Würzburg, Würzburg, Germany
| | - Mike Wagenbrenner
- Department of Orthopaedic Surgery, König-Ludwig-Haus, University of Würzburg, Würzburg, Germany
| | - Marietta Herrmann
- Bernhard Heine Center for Locomotion Research, Department of Orthopedic, University of Würzburg, Würzburg, Germany.,IZKF Research Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Würzburg, Würzburg, Germany
| | - Sigrid Müller-Deubert
- Bernhard Heine Center for Locomotion Research, Department of Orthopedic, University of Würzburg, Würzburg, Germany
| | - Melanie Krug
- Bernhard Heine Center for Locomotion Research, Department of Orthopedic, University of Würzburg, Würzburg, Germany
| | - Franz Jakob
- Bernhard Heine Center for Locomotion Research, Department of Orthopedic, University of Würzburg, Würzburg, Germany
| | - Maximilian Rudert
- Bernhard Heine Center for Locomotion Research, Department of Orthopedic, University of Würzburg, Würzburg, Germany.,Department of Orthopaedic Surgery, König-Ludwig-Haus, University of Würzburg, Würzburg, Germany
| |
Collapse
|
24
|
Nosoudi N, Hart C, McKnight I, Esmaeilpour M, Ghomian T, Zadeh A, Raines R, Ramirez Vick JE. Differentiation of adipose-derived stem cells to chondrocytes using electrospraying. Sci Rep 2021; 11:24301. [PMID: 34934143 PMCID: PMC8692477 DOI: 10.1038/s41598-021-03824-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/08/2021] [Indexed: 01/02/2023] Open
Abstract
An important challenge in the fabrication of tissue engineered constructs for regenerative medical applications is the development of processes capable of delivering cells and biomaterials to specific locations in a consistent manner. Electrospraying live cells has been introduced in recent years as a cell seeding method, but its effect on phenotype nor genotype has not been explored. A promising candidate for the cellular component of these constructs are human adipose-derived stem cells (hASCs), which are multipotent stem cells that can be differentiated into fat, bone, and cartilage cells. They can be easily and safely obtained from adipose tissue, regardless of the age and sex of the donor. Moreover, these cells can be maintained and expanded in culture for long periods of time without losing their differentiation capacity. In this study, hASCs directly incorporated into a polymer solution were electrosprayed, inducing differentiation into chondrocytes, without the addition of any exogenous factors. Multiple studies have demonstrated the effects of exposing hASCs to biomolecules—such as soluble growth factors, chemokines, and morphogens—to induce chondrogenesis. Transforming growth factors (e.g., TGF-β) and bone morphogenetic proteins are particularly known to play essential roles in the induction of chondrogenesis. Although growth factors have great therapeutic potential for cell-based cartilage regeneration, these growth factor-based therapies have presented several clinical complications, including high dose requirements, low half-life, protein instability, higher costs, and adverse effects in vivo. The present data suggests that electrospraying has great potential as hASCs-based therapy for cartilage regeneration.
Collapse
Affiliation(s)
- Nasim Nosoudi
- Biomedical Engineering Department, College of Engineering and Computer Science, Marshall University, Huntington, WV, USA.
| | - Christoph Hart
- Biomedical Engineering Department, College of Engineering and Computer Science, Marshall University, Huntington, WV, USA
| | - Ian McKnight
- Biomedical Engineering Department, College of Engineering and Computer Science, Marshall University, Huntington, WV, USA
| | - Mehdi Esmaeilpour
- Mechanical Engineering Department, College of Engineering and Computer Science, Marshall University, Huntington, WV, USA
| | - Taher Ghomian
- Computer Sciences and Electrical Engineering Department, College of Engineering and Computer Science, Marshall University, Huntington, WV, USA
| | - Amir Zadeh
- Information Systems Department, College of Business, Wright State University, Dayton, OH, USA
| | - Regan Raines
- Biomedical Engineering Department, College of Engineering and Computer Science, Marshall University, Huntington, WV, USA
| | - Jaime E Ramirez Vick
- Biomedical, Industrial and Human Factors Engineering Department, College of Engineering, Wright State University, Dayton, OH, USA
| |
Collapse
|
25
|
Milan G, Conci S, Sanna M, Favaretto F, Bettini S, Vettor R. ASCs and their role in obesity and metabolic diseases. Trends Endocrinol Metab 2021; 32:994-1006. [PMID: 34625375 DOI: 10.1016/j.tem.2021.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/23/2021] [Accepted: 09/03/2021] [Indexed: 01/04/2023]
Abstract
We describe adipose stromal/stem cells (ASCs) in the structural/functional context of the adipose tissue (AT) stem niche (adiponiche), including cell-cell interactions and the microenvironment, and emphasize findings obtained in humans and in lineage-tracing models. ASCs have distinctive markers, 'colors', and anatomical 'locations' which influence their functions. Each adiponiche component can become impaired, thereby contributing to the pathological AT alterations seen in obesity and metabolic diseases. We discuss adiposopathy with a focus on adiponiche dysfunction, and underline the mechanisms that control AT expansion and energy balance. Better understanding of adiponiche regulation and ASC features could help to identify therapeutic targets that favor weight loss and counteract weight regain, and also contribute to innovative strategies for regenerative medicine.
Collapse
Affiliation(s)
- Gabriella Milan
- Department of Medicine, University of Padua, Internal Medicine 3, 35128 Padua, Italy; Center for the Study and the Integrated Treatment of Obesity, Padua Hospital, 35128 Padua, Italy.
| | - Scilla Conci
- Department of Medicine, University of Padua, Internal Medicine 3, 35128 Padua, Italy; Center for the Study and the Integrated Treatment of Obesity, Padua Hospital, 35128 Padua, Italy
| | - Marta Sanna
- Department of Medicine, University of Padua, Internal Medicine 3, 35128 Padua, Italy; Center for the Study and the Integrated Treatment of Obesity, Padua Hospital, 35128 Padua, Italy
| | - Francesca Favaretto
- Department of Medicine, University of Padua, Internal Medicine 3, 35128 Padua, Italy; Center for the Study and the Integrated Treatment of Obesity, Padua Hospital, 35128 Padua, Italy
| | - Silvia Bettini
- Department of Medicine, University of Padua, Internal Medicine 3, 35128 Padua, Italy; Center for the Study and the Integrated Treatment of Obesity, Padua Hospital, 35128 Padua, Italy
| | - Roberto Vettor
- Department of Medicine, University of Padua, Internal Medicine 3, 35128 Padua, Italy; Center for the Study and the Integrated Treatment of Obesity, Padua Hospital, 35128 Padua, Italy
| |
Collapse
|
26
|
Tsubosaka M, Maruyama M, Huang EE, Zhang N, Utsunomiya T, Gao Q, Shen H, Li X, Kushioka J, Hirata H, Yao Z, Yang YP, Goodman SB. Effect on Osteogenic Differentiation of Genetically Modified IL4 or PDGF-BB Over-Expressing and IL4-PDGF-BB Co-Over-Expressing Bone Marrow-Derived Mesenchymal Stromal Cells In Vitro. Bioengineering (Basel) 2021; 8:bioengineering8110165. [PMID: 34821731 PMCID: PMC8614682 DOI: 10.3390/bioengineering8110165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 11/25/2022] Open
Abstract
The use of genetically modified (GM) mesenchymal stromal cells (MSCs) and preconditioned MSCs (pMSCs) may provide further opportunities to improve the outcome of core decompression (CD) for the treatment of early-stage osteonecrosis of the femoral head (ONFH). GM interleukin-4 (IL4) over-expressing MSCs (IL4-MSCs), platelet-derived growth factor (PDGF)-BB over-expressing MSCs (PDGF-BB-MSCs), and IL4-PDGF-BB co-over-expressing MSCs (IL4-PDGF-BB-MSCs) and their respective pMSCs were used in this in vitro study and compared with respect to cell proliferation and osteogenic differentiation. IL4-MSCs, PDGF-BB-MSCs, IL4-PDGF-BB-MSCs, and each pMSC treatment significantly increased cell proliferation compared to the MSC group alone. The percentage of Alizarin red-stained area in the IL4-MSC and IL4-pMSC groups was significantly lower than in the MSC group. However, the percentage of Alizarin red-stained area in the PDGF-BB-MSC group was significantly higher than in the MSC and PDGF-BB-pMSC groups. The percentage of Alizarin red-stained area in the IL4-PDGF-BB-pMSC was significantly higher than in the IL4-PDGF-BB-MSC group. There were no significant differences in the percentage of Alizarin red-stained area between the MSC and IL4-PDGF-BB-pMSC groups. The use of PDGF-BB-MSCs or IL4-PDGF-BB-pMSCs increased cell proliferation. Furthermore, PDGF-BB-MSCs promoted osteogenic differentiation. The addition of GM MSCs may provide a useful supplementary cell-based therapy to CD for treatment of ONFH.
Collapse
Affiliation(s)
- Masanori Tsubosaka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA; (M.T.); (M.M.); (E.E.H.); (N.Z.); (T.U.); (Q.G.); (H.S.); (X.L.); (J.K.); (H.H.); (Z.Y.); (Y.P.Y.)
| | - Masahiro Maruyama
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA; (M.T.); (M.M.); (E.E.H.); (N.Z.); (T.U.); (Q.G.); (H.S.); (X.L.); (J.K.); (H.H.); (Z.Y.); (Y.P.Y.)
| | - Elijah Ejun Huang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA; (M.T.); (M.M.); (E.E.H.); (N.Z.); (T.U.); (Q.G.); (H.S.); (X.L.); (J.K.); (H.H.); (Z.Y.); (Y.P.Y.)
| | - Ning Zhang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA; (M.T.); (M.M.); (E.E.H.); (N.Z.); (T.U.); (Q.G.); (H.S.); (X.L.); (J.K.); (H.H.); (Z.Y.); (Y.P.Y.)
| | - Takeshi Utsunomiya
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA; (M.T.); (M.M.); (E.E.H.); (N.Z.); (T.U.); (Q.G.); (H.S.); (X.L.); (J.K.); (H.H.); (Z.Y.); (Y.P.Y.)
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA; (M.T.); (M.M.); (E.E.H.); (N.Z.); (T.U.); (Q.G.); (H.S.); (X.L.); (J.K.); (H.H.); (Z.Y.); (Y.P.Y.)
| | - Huaishuang Shen
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA; (M.T.); (M.M.); (E.E.H.); (N.Z.); (T.U.); (Q.G.); (H.S.); (X.L.); (J.K.); (H.H.); (Z.Y.); (Y.P.Y.)
| | - Xueping Li
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA; (M.T.); (M.M.); (E.E.H.); (N.Z.); (T.U.); (Q.G.); (H.S.); (X.L.); (J.K.); (H.H.); (Z.Y.); (Y.P.Y.)
| | - Junichi Kushioka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA; (M.T.); (M.M.); (E.E.H.); (N.Z.); (T.U.); (Q.G.); (H.S.); (X.L.); (J.K.); (H.H.); (Z.Y.); (Y.P.Y.)
| | - Hirohito Hirata
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA; (M.T.); (M.M.); (E.E.H.); (N.Z.); (T.U.); (Q.G.); (H.S.); (X.L.); (J.K.); (H.H.); (Z.Y.); (Y.P.Y.)
| | - Zhenyu Yao
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA; (M.T.); (M.M.); (E.E.H.); (N.Z.); (T.U.); (Q.G.); (H.S.); (X.L.); (J.K.); (H.H.); (Z.Y.); (Y.P.Y.)
| | - Yunzhi Peter Yang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA; (M.T.); (M.M.); (E.E.H.); (N.Z.); (T.U.); (Q.G.); (H.S.); (X.L.); (J.K.); (H.H.); (Z.Y.); (Y.P.Y.)
- Department of Material Science and Engineering, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA; (M.T.); (M.M.); (E.E.H.); (N.Z.); (T.U.); (Q.G.); (H.S.); (X.L.); (J.K.); (H.H.); (Z.Y.); (Y.P.Y.)
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA
- Correspondence: ; Tel.: +1-650-498-4343
| |
Collapse
|
27
|
Mrahleh MA, Matar S, Jafar H, Wehaibi S, Aslam N, Awidi A. Human Wharton's Jelly-Derived Mesenchymal Stromal Cells Primed by Tumor Necrosis Factor-α and Interferon-γ Modulate the Innate and Adaptive Immune Cells of Type 1 Diabetic Patients. Front Immunol 2021; 12:732549. [PMID: 34650558 PMCID: PMC8506215 DOI: 10.3389/fimmu.2021.732549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
The unique immunomodulation and immunosuppressive potential of Wharton’s jelly-derived mesenchymal stromal cells (WJ-MSCs) make them a promising therapeutic approach for autoimmune diseases including type 1 diabetes (T1D). The immunomodulatory effect of MSCs is exerted either by cell-cell contact or by secretome secretion. Cell-cell contact is a critical mechanism by which MSCs regulate immune-responses and generate immune regulatory cells such as tolerogenic dendritic cells (tolDCs) and regulatory T cell (Tregs). In this study, we primed WJ-MSCs with TNF-α and IFN-γ and investigated the immunomodulatory properties of primed WJ-MSCs on mature dendritic cells (mDCs) and activated T cells differentiated from mononuclear cells (MNCs) of T1D patient’s. Our findings revealed that primed WJ-MSCs impaired the antigen-mediated immunity, upregulated immune-tolerance genes and downregulated immune-response genes. We also found an increase in the production of anti-inflammatory cytokines and suppression of the production of pro-inflammatory cytokines. Significant upregulation of FOXP3, IL10 and TGFB1 augmented an immunosuppressive effect on adaptive T cell immunity which represented a strong evidence in support of the formation of Tregs. Furthermore, upregulation of many critical genes involved in the immune-tolerance mechanism (IDO1 and PTGES2/PTGS) was detected. Interestingly, upregulation of ENTPD1/NT5E genes express a strong evidence to switch immunostimulatory response toward immunoregulatory response. We conclude that WJ-MSCs primed by TNF-α and IFN-γ may represent a promising tool to treat the autoimmune disorders and can provide a new evidence to consider MSCs- based therapeutic approach for the treatment of TID.
Collapse
Affiliation(s)
| | - Suzan Matar
- Department of Clinical Laboratory Science, The University of Jordan, School of Science, Amman, Jordan
| | - Hanan Jafar
- Cell Therapy Center, The University of Jordan, Amman, Jordan.,Department of Anatomy & Histology, The University of Jordan, School of Medicine, Amman, Jordan
| | - Suha Wehaibi
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Nazneen Aslam
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Abdalla Awidi
- Cell Therapy Center, The University of Jordan, Amman, Jordan.,Department of Hematology & Oncology, The University of Jordan, School of Medicine, Amman, Jordan
| |
Collapse
|
28
|
Combination of optimized tissue engineering bone implantation with heel-strike like mechanical loading to repair segmental bone defect in New Zealand rabbits. Cell Tissue Res 2021; 385:639-658. [PMID: 33966092 DOI: 10.1007/s00441-021-03458-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
In this study, effects of combining optimized tissue engineering bone (TEB) implantation with heel-strike like mechanical loading to repair segmental bone defect in New Zealand rabbits were investigated. Physiological characteristics of bone marrow mesenchymal stem cells (BMMSCs), compact bone cells (CBCs), and bone marrow and compact bone coculture cells (BMMSC-CBCs) were compared to select the optimal seed cells for optimized TEB construction. Rabbits with segmental bone defects were treated in different ways (cancellous bone scaffold for group A, cancellous bone scaffold and mechanical loading for group B, optimized TEB for group C, optimized TEB and mechanical loading for group D, n = 4), and the bone repair were compared. BMMSC-CBCs showed better proliferation capacity than CBCs (p < 0.01) and stronger osteogenic differentiation ability than BMMSCs (p < 0.05). Heel-strike like mechanical loading improved proliferation and osteogenic differentiation ability and expression levels of TGFβ1 as well as BMP2 of seed cells in vitro (p < 0.05). At week 12 post-operation, group D showed the best bone repair, followed by groups B and C, while group A finished last (p < 0.05). During week 4 to 12 post-operation, group D peaked in terms of expression levels of TGFβ1, BMP2, and OCN, followed by groups B and C, while group A finished last (p < 0.05). Thus, BMMSC-CBCs showed good proliferation and osteogenic differentiation ability, and they were thought to be better as seed cells than BMMSCs and CBCs. The optimized TEB implantation combined with heel-strike like mechanical loading had a synergistic effect on bone defect healing, and enhanced expression of TGFβ1 and BMP2 played an important role in this process.
Collapse
|
29
|
Muoio F, Panella S, Jossen V, Lindner M, Harder Y, Müller M, Eibl R, Tallone T. Human Adipose Stem Cells (hASCs) Grown on Biodegradable Microcarriers in Serum- and Xeno-Free Medium Preserve Their Undifferentiated Status. J Funct Biomater 2021; 12:jfb12020025. [PMID: 33923488 PMCID: PMC8167760 DOI: 10.3390/jfb12020025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/25/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
Human adipose stem cells (hASCs) are promising candidates for cell-based therapies, but they need to be efficiently expanded in vitro as they cannot be harvested in sufficient quantities. Recently, dynamic bioreactor systems operated with microcarriers achieved considerable high cell densities. Thus, they are a viable alternative to static planar cultivation systems to obtain high numbers of clinical-grade hASCs. Nevertheless, the production of considerable biomass in a short time must not be achieved to the detriment of the cells' quality. To facilitate the scalable expansion of hASC, we have developed a new serum- and xeno-free medium (UrSuppe) and a biodegradable microcarrier (BR44). In this study, we investigated whether the culture of hASCs in defined serum-free conditions on microcarriers (3D) or on planar (2D) cell culture vessels may influence the expression of some marker genes linked with the immature degree or the differentiated status of the cells. Furthermore, we investigated whether the biomaterials, which form our biodegradable MCs, may affect cell behavior and differentiation. The results confirmed that the quality and the undifferentiated status of the hASCs are very well preserved when they grow on BR44 MCs in defined serum-free conditions. Indeed, the ASCs showed a gene expression profile more compatible with an undifferentiated status than the same cells grown under standard planar conditions.
Collapse
Affiliation(s)
- Francesco Muoio
- Foundation for Cardiological Research and Education (FCRE), Cardiocentro Ticino Foundation, 6807 Taverne, Switzerland; (F.M.); (S.P.)
| | - Stefano Panella
- Foundation for Cardiological Research and Education (FCRE), Cardiocentro Ticino Foundation, 6807 Taverne, Switzerland; (F.M.); (S.P.)
| | - Valentin Jossen
- Institute of Chemistry & Biotechnology, Competence Center of Biochemical Engineering & Cell Cultivation Technique Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland; (V.J.); (R.E.)
| | | | - Yves Harder
- Department of Plastic, Reconstructive and Aesthetic Surgery, EOC, 6900 Lugano, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | | | - Regine Eibl
- Institute of Chemistry & Biotechnology, Competence Center of Biochemical Engineering & Cell Cultivation Technique Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland; (V.J.); (R.E.)
| | - Tiziano Tallone
- Foundation for Cardiological Research and Education (FCRE), Cardiocentro Ticino Foundation, 6807 Taverne, Switzerland; (F.M.); (S.P.)
- Correspondence: ; Tel.: +41-91-805-38-85
| |
Collapse
|
30
|
Raza SS, Seth P, Khan MA. 'Primed' Mesenchymal Stem Cells: a Potential Novel Therapeutic for COVID19 Patients. Stem Cell Rev Rep 2021; 17:153-162. [PMID: 32592163 PMCID: PMC7317273 DOI: 10.1007/s12015-020-09999-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The COVID19 pandemic, designated as a public health crisis by the World Health Organization (WHO), is rapidly spreading around the world impacting the health and economy of almost all the countries. The data of hospitalized COVID19 patients, especially those with serious illness, indicate the involvement of immunopathological complications. As no effective treatment is currently available, we propose ‘Primed’ Mesenchymal Stem Cells (MSCs) as a therapeutic alternative to tackle devastating epidemic. The individual response to MSCs treatment is heterogeneous. During the treatment of infectious pathology, the effectiveness of the treatment may vary based on the disease scenario. Interestingly, when transplanted in vivo, MSCs are governed by the locally regulated microenvironment, suggesting that the restorative variability could be tailored by choosing a priming regimen to specifically correct a given pathology. Therefore, in our opinion, the priming of MSCs could be a novel approach to improve the responses of COVID19 patients.
Collapse
Affiliation(s)
- Syed Shadab Raza
- Department of Stem Cell Biology and Regenerative Medicine, Era's Lucknow Medical College Hospital, Era University, Sarfarazganj, Lucknow, 226003, India.
| | - Pankaj Seth
- Molecular and Cellular Neuroscience, Neurovirology Section, National Brain Research Centre, Manesar, Haryana, 122052, India
| | - Mohsin Ali Khan
- Era's Lucknow Medical College Hospital, Sarfarazganj, Lucknow, 226003, India
| |
Collapse
|
31
|
Jeske R, Lewis S, Tsai AC, Sanders K, Liu C, Yuan X, Li Y. Agitation in a Microcarrier-based Spinner Flask Bioreactor Modulates Homeostasis of Human Mesenchymal Stem Cells. Biochem Eng J 2021; 168. [PMID: 33967591 DOI: 10.1016/j.bej.2021.107947] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Human mesenchymal stem cells (hMSCs) are well known in cell therapy due to their secretion of trophic factors, multipotent differentiation potential, and ability for self-renewal. As a result, the number of clinical trials has been steadily increasing over the last decade highlighting the need for in vitro systems capable of producing large quantities of cells to meet growing demands. However, hMSCs are highly sensitive to microenvironment conditions, including shear stress caused by dynamic bioreactor systems, and can lead to alteration of cellular homeostasis. In this study, hMSCs were expanded on microcarriers within a 125 mL spinner flask bioreactor system. Our results demonstrate a three-fold expansion over seven days. Furthermore, our results show that culturing hMSCs in the microcarrier-based suspension bioreactor (compared to static planar culture) results in smaller cell size and higher levels of reactive oxidative species (ROS) and ROS regulator Sirtuin-3, which have implications on the nicotinamide adenine dinucleotide metabolic pathway and metabolic homeostasis. In addition, hMSCs in the bioreactor showed the increased Prostaglandin E2 secretion as well as reduced the Indoleamine-pyrrole 2,3-dioxygenase secretion upon stimulus with interferon gamma. The results of this study provide understanding of potential hMSC physiology alterations impacted by bioreactor microenvironment during scalable production of hMSCs for biomanufacturing and clinical trials.
Collapse
Affiliation(s)
- Richard Jeske
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, United States
| | - Shaquille Lewis
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, United States
| | - Ang-Chen Tsai
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, United States
| | - Kevin Sanders
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, United States
| | - Chang Liu
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, United States
| | - Xuegang Yuan
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, United States.,The National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, United States
| |
Collapse
|
32
|
Lu Y, Dai W, Huang J, Chen X, Yao Y. A Biomimetic Glue Protein Modulates Hepatic Gene Expression. Macromol Biosci 2021; 21:e2000303. [PMID: 33393184 DOI: 10.1002/mabi.202000303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/22/2020] [Indexed: 01/08/2023]
Abstract
Glue protein as secretion from fruit fly larva plays a significant role in metamorphosis as cementing material for pupation sites. However, the biochemical composition of this macromolecule remains obscure. This study takes the advantage of high-resolution proteomic analysis to unveil the protein compositions. A glue protein group is identified as chitin-binding motifs by bioinformatic analysis. Computational modeling analysis of representative proteins illustrates the binding site between protein and chitin. A biosynthetic approach is used to fabricate a glue protein by a modified Escherichia coli recombinant system. The as-biosynthesized biomimetic glue protein is applied as an extracellular matrix to investigate its biocompatibility and functionality. It is found that the purified recombinant protein shows enhanced performance to cellular viability. This finding provides a potential biomacromolecule candidate as an extracellular matrix for cell culture.
Collapse
Affiliation(s)
- Yi Lu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| | - Wentao Dai
- Shanghai Industrial Technology Institute, 1278 Keyuan Road, Shanghai, 201203, China
| | - Jianhua Huang
- Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Xuexin Chen
- Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Yuan Yao
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| |
Collapse
|
33
|
Beldi G, Bahiraii S, Lezin C, Nouri Barkestani M, Abdelgawad ME, Uzan G, Naserian S. TNFR2 Is a Crucial Hub Controlling Mesenchymal Stem Cell Biological and Functional Properties. Front Cell Dev Biol 2020; 8:596831. [PMID: 33344453 PMCID: PMC7746825 DOI: 10.3389/fcell.2020.596831] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have drawn lots of attention as gold standard stem cells in fundamental and clinical researches during the last 20 years. Due to their tissue and vascular repair capacities, MSCs have been used to treat a variety of degenerative disorders. Moreover, MSCs are able to modulate immune cells’ functions, particularly T cells while inducing regulatory T cells (iTregs). MSCs are very sensitive to inflammatory signals. Their biological functions could remarkably vary after exposure to different pro-inflammatory cytokines, notably TNFα. In this article, we have explored the importance of TNFR2 expression in a series of MSCs’ biological and functional properties. Thus, MSCs from wild-type (WT) and TNFR2 knockout (TNFR2 KO) mice were isolated and underwent several ex vivo experiments to investigate the biological significance of TNFR2 molecule in MSC main functions. Hampering in TNFR2 signaling resulted in reduced MSC colony-forming units and proliferation rate and diminished the expression of all MSC characteristic markers such as stem cell antigen-1 (Sca1), CD90, CD105, CD44, and CD73. TNFR2 KO-MSCs produced more pro-inflammatory cytokines like TNFα, IFNγ, and IL-6 and less anti-inflammatory mediators such as IL-10, TGFβ, and NO and induced Tregs with less suppressive effect. Furthermore, the TNFR2 blockade remarkably decreased MSC regenerative functions such as wound healing, complex tube formation, and endothelial pro-angiogenic support. Therefore, our results reveal the TNFα–TNFR2 axis as a crucial regulator of MSC immunological and regenerative functions.
Collapse
Affiliation(s)
- Ghada Beldi
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
| | - Sheyda Bahiraii
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France.,Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Chloé Lezin
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France.,Paris-Saclay University, Villejuif, France
| | | | - Mohamed Essameldin Abdelgawad
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France.,Paris-Saclay University, Villejuif, France.,Biochemistry Division, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Georges Uzan
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France.,Paris-Saclay University, Villejuif, France
| | - Sina Naserian
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France.,Paris-Saclay University, Villejuif, France.,CellMedEx, Saint Maur Des Fossés, France
| |
Collapse
|
34
|
Simitzi C, Hendow E, Li Z, Day RM. Promotion of Proangiogenic Secretome from Mesenchymal Stromal Cells via Hierarchically Structured Biodegradable Microcarriers. ADVANCED BIOSYSTEMS 2020; 4:e2000062. [PMID: 32511898 PMCID: PMC8425330 DOI: 10.1002/adbi.202000062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/13/2020] [Indexed: 02/07/2023]
Abstract
Adipose-derived mesenchymal stromal cells (AdMSC) release numerous soluble factors capable of stimulating angiogenesis. Improved methods for delivering these cells to maximize their potency are now sought that ideally they retain viable cells in the target tissue while promoting the secretion of angiogenic factors. Substrate surface topography is a parameter that can be used to manipulate the behavior of AdMSC but challenges exist with translating this parameter into materials compatible with minimally invasive delivery into tissues for in situ delivery of the angiogenic secretome. The current study investigates three compositions of hierarchically structured, porous biodegradable microcarriers for the culture of AdMSC and the influence of their surface topographies on the angiogenic secretome. All three compositions perform well as cell microcarriers in xeno-free conditions. The attached AdMSC retain their capacity for subsequent trilineage differentiation. The secretome of AdMSC attached to the microcarriers consists of multiple proangiogenic factors, including significantly elevated levels of vascular endothelial growth factor, which stimulates angiogenesis in vitro. The unique properties of hierarchically structured, porous biodegradable microcarriers investigated in this study offer a radically transformative approach for achieving targeted in vivo delivery of AdMSC and enhancing the potency of their proangiogenic activity to induce neovascularization in ischemic tissue.
Collapse
Affiliation(s)
- Chara Simitzi
- Applied Biomedical Engineering Group Centre for Precision HealthcareUCL Division of MedicineUniversity College LondonLondonWC1E 6JFUK
| | - Eseelle Hendow
- Applied Biomedical Engineering Group Centre for Precision HealthcareUCL Division of MedicineUniversity College LondonLondonWC1E 6JFUK
| | - Zhuangnan Li
- Department of ChemistryUniversity College LondonLondonWC1H 0AJUK
| | - Richard M. Day
- Applied Biomedical Engineering Group Centre for Precision HealthcareUCL Division of MedicineUniversity College LondonLondonWC1E 6JFUK
| |
Collapse
|
35
|
Yin L, Yang Z, Wu Y, Denslin V, Yu CC, Tee CA, Lim CT, Han J, Lee EH. Label-free separation of mesenchymal stem cell subpopulations with distinct differentiation potencies and paracrine effects. Biomaterials 2020; 240:119881. [PMID: 32092592 DOI: 10.1016/j.biomaterials.2020.119881] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/23/2020] [Accepted: 02/11/2020] [Indexed: 12/23/2022]
Abstract
Mesenchymal stem cells (MSCs) have the capability to differentiate into multiple cell lineages, and produce trophic factors to facilitate tissue repair and regeneration, and disease regression. However, the heterogeneity of MSCs, whether inherent or developed during culture expansion, has a significant impact on their therapeutic efficacy. Therefore, the ability to identify and select an efficacious subpopulation of MSCs targeting specific tissue damage or disease holds great clinical significance. In this study, we separated three subpopulations from culture expanded human bone marrow derived MSCs according to cell size, using a high-throughput label-free microfluidic cell sorting technology. The size-sorted MSC subpopulations varied in tri-lineage differentiation potencies. The large MSCs showed the strongest osteogenesis, medium-size MSCs were advantageous in chondrogenesis and adipogenesis, and the small MSCs showed the weakest tri-lineage differentiation. The size-sorted MSC subpopulations also exhibited different secretome profiles. The large MSC secretome possessed highest levels of osteogenic promotor proteins and senescence-associated factors, but lower levels of osteogenic inhibitor proteins compared to the medium-size MSC secretome. The medium-size MSC secretome had high levels of chondrogenic promotor proteins, and contained lower levels of chondrogenic inhibitor proteins compared to the large MSC secretome. The secretome of size-sorted MSC subpopulations showed differences in paracrine effects. We found that the secretome of large MSCs enhanced osteogenic and adipogenic potencies during MSC culture expansion, but also induced cell senescence; and the secretome of medium-size MSCs promoted chondrogenesis. This study demonstrates size-dependent differentiation potency and secretome profile of MSC subpopulations, and provides an effective and practical technology to isolate the respective subpopulations, which may be used for more targeted tissue repair and regeneration.
Collapse
Affiliation(s)
- Lu Yin
- Critical Analytics for Manufacturing of Personalised Medicine Interdisciplinary Research Group, Singapore-MIT Alliance in Research and Technology, 1 Create Way, #04-13/14, Singapore, 138602, Singapore
| | - Zheng Yang
- Critical Analytics for Manufacturing of Personalised Medicine Interdisciplinary Research Group, Singapore-MIT Alliance in Research and Technology, 1 Create Way, #04-13/14, Singapore, 138602, Singapore; NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore 27 Medical Drive1, DSO (Kent Bridge) Building, Level 4, Singapore, 11751, Singapore; Department of Orthopaedic Surgery, National University of Singapore, 1E Kent Ridge Road, NUHS Tower block 11, Singapore, 119288, Singapore
| | - Yingnan Wu
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore 27 Medical Drive1, DSO (Kent Bridge) Building, Level 4, Singapore, 11751, Singapore; Department of Orthopaedic Surgery, National University of Singapore, 1E Kent Ridge Road, NUHS Tower block 11, Singapore, 119288, Singapore
| | - Vinitha Denslin
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore 27 Medical Drive1, DSO (Kent Bridge) Building, Level 4, Singapore, 11751, Singapore; Department of Orthopaedic Surgery, National University of Singapore, 1E Kent Ridge Road, NUHS Tower block 11, Singapore, 119288, Singapore
| | - Chia Chen Yu
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Ching Ann Tee
- Critical Analytics for Manufacturing of Personalised Medicine Interdisciplinary Research Group, Singapore-MIT Alliance in Research and Technology, 1 Create Way, #04-13/14, Singapore, 138602, Singapore; Department of Orthopaedic Surgery, National University of Singapore, 1E Kent Ridge Road, NUHS Tower block 11, Singapore, 119288, Singapore
| | - Chwee Teck Lim
- Critical Analytics for Manufacturing of Personalised Medicine Interdisciplinary Research Group, Singapore-MIT Alliance in Research and Technology, 1 Create Way, #04-13/14, Singapore, 138602, Singapore; Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, T-Lab, #10-01, Singapore, 117411, Singapore; Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Engineering Block 4, #04-08, Singapore, 117583, Singapore; Institute for Health Innovation and Technology, National University of Singapore, MD6, 14 Medical Drive, #14-01, Singapore, 117599, Singapore
| | - Jongyoon Han
- Critical Analytics for Manufacturing of Personalised Medicine Interdisciplinary Research Group, Singapore-MIT Alliance in Research and Technology, 1 Create Way, #04-13/14, Singapore, 138602, Singapore; Department of Electrical Engineering and Computer Science, Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | - Eng Hin Lee
- Critical Analytics for Manufacturing of Personalised Medicine Interdisciplinary Research Group, Singapore-MIT Alliance in Research and Technology, 1 Create Way, #04-13/14, Singapore, 138602, Singapore; NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore 27 Medical Drive1, DSO (Kent Bridge) Building, Level 4, Singapore, 11751, Singapore; Department of Orthopaedic Surgery, National University of Singapore, 1E Kent Ridge Road, NUHS Tower block 11, Singapore, 119288, Singapore.
| |
Collapse
|
36
|
Abstract
Stem cells can be conceptualized as computational processors capable of sensing, processing, and converting environmental information (input) to yield a specific differentiation pathway (output). In this study, we employ a temperature-controlled polymer sheet actuator to interpret and transfer information, controlled by the material’s programming, to mesenchymal stem cells. The cell’s interpretation of mechanical, thermal, and biochemical signaling is shown to be dependent on the actuator’s activity, utilized to accelerate differentiation toward bone cells, further elucidating the role of microenvironmental parameters on mammalian cells. Our method provides a unique approach to processing two discrete stimuli into one biochemical signal, calcium ions, providing a basis for the logical control of the flow of biological signals and the design of cellular functions. Stem cells are capable of sensing and processing environmental inputs, converting this information to output a specific cell lineage through signaling cascades. Despite the combinatorial nature of mechanical, thermal, and biochemical signals, these stimuli have typically been decoupled and applied independently, requiring continuous regulation by controlling units. We employ a programmable polymer actuator sheet to autonomously synchronize thermal and mechanical signals applied to mesenchymal stem cells (MSCs). Using a grid on its underside, the shape change of polymer sheet, as well as cell morphology, calcium (Ca2+) influx, and focal adhesion assembly, could be visualized and quantified. This paper gives compelling evidence that the temperature sensing and mechanosensing of MSCs are interconnected via intracellular Ca2+. Up-regulated Ca2+ levels lead to a remarkable alteration of histone H3K9 acetylation and activation of osteogenic related genes. The interplay of physical, thermal, and biochemical signaling was utilized to accelerate the cell differentiation toward osteogenic lineage. The approach of programmable bioinstructivity provides a fundamental principle for functional biomaterials exhibiting multifaceted stimuli on differentiation programs. Technological impact is expected in the tissue engineering of periosteum for treating bone defects.
Collapse
|
37
|
Sahu N, Budhiraja G, Subramanian A. Preconditioning of mesenchymal stromal cells with low-intensity ultrasound: influence on chondrogenesis and directed SOX9 signaling pathways. Stem Cell Res Ther 2020; 11:6. [PMID: 31900222 PMCID: PMC6942392 DOI: 10.1186/s13287-019-1532-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/26/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Background Continuous low-intensity ultrasound (cLIUS) facilitates the chondrogenic differentiation of human mesenchymal stromal cells (MSCs) in the absence of exogenously added transforming growth factor-beta (TGFβ) by upregulating the expression of transcription factor SOX9, a master regulator of chondrogenesis. The present study evaluated the molecular events associated with the signaling pathways impacting SOX9 gene and protein expression under cLIUS. Methods Human bone marrow-derived MSCs were exposed to cLIUS stimulation at 14 kPa (5 MHz, 2.5 Vpp) for 5 min. The gene and protein expression of SOX9 was evaluated. The specificity of SOX9 upregulation under cLIUS was determined by treating the MSCs with small molecule inhibitors of select signaling molecules, followed by cLIUS treatment. Signaling events regulating SOX9 expression under cLIUS were analyzed by gene expression, immunofluorescence staining, and western blotting. Results cLIUS upregulated the gene expression of SOX9 and enhanced the nuclear localization of SOX9 protein when compared to non-cLIUS-stimulated control. cLIUS was noted to enhance the phosphorylation of the signaling molecule ERK1/2. Inhibition of MEK/ERK1/2 by PD98059 resulted in the effective abrogation of cLIUS-induced SOX9 expression, indicating that cLIUS-induced SOX9 upregulation was dependent on the phosphorylation of ERK1/2. Inhibition of integrin and TRPV4, the upstream cell-surface effectors of ERK1/2, did not inhibit the phosphorylation of ERK1/2 and therefore did not abrogate cLIUS-induced SOX9 expression, thereby suggesting the involvement of other mechanoreceptors. Consequently, the effect of cLIUS on the actin cytoskeleton, a mechanosensitive receptor regulating SOX9, was evaluated. Diffused and disrupted actin fibers observed in MSCs under cLIUS closely resembled actin disruption by treatment with cytoskeletal drug Y27632, which is known to increase the gene expression of SOX9. The upregulation of SOX9 under cLIUS was, therefore, related to cLIUS-induced actin reorganization. SOX9 upregulation induced by actin reorganization was also found to be dependent on the phosphorylation of ERK1/2. Conclusions Collectively, preconditioning of MSCs by cLIUS resulted in the nuclear localization of SOX9, phosphorylation of ERK1/2 and disruption of actin filaments, and the expression of SOX9 was dependent on the phosphorylation of ERK1/2 under cLIUS. Electronic supplementary material The online version of this article (10.1186/s13287-019-1532-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Neety Sahu
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588-0643, USA.,Present Address: Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, 94304, USA
| | - Gaurav Budhiraja
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588-0643, USA
| | - Anuradha Subramanian
- Department of Chemical and Materials Engineering, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA.
| |
Collapse
|
38
|
Gungordu HI, Bao M, van Helvert S, Jansen JA, Leeuwenburgh SCG, Walboomers XF. Effect of mechanical loading and substrate elasticity on the osteogenic and adipogenic differentiation of mesenchymal stem cells. J Tissue Eng Regen Med 2019; 13:2279-2290. [PMID: 31483956 DOI: 10.1002/term.2956] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 06/11/2019] [Accepted: 06/19/2019] [Indexed: 11/10/2022]
Abstract
Mesenchymal stem cells (MSCs) are highly sensitive to biomechanics of their extracellular environment. Generally, a higher elasticity of culture substrates can drive cells into the osteogenic lineage, whereas low substrate elasticity results in adipogenesis. Applied mechanical loading by cyclic strain is another major variable influencing cell fate. Yet, little is known about the simultaneous effect of both cues. Therefore, the present study investigated the relative importance of both cues on differentiation. MSCs were cultured in an osteogenic and also an adipogenic environment on soft polyacrylamide (PAAm; E = 23 ± 0.3 kPa), stiff PAAm (111 ± 2 kPa), and polydimethylsiloxane (PDMS; E = 1,5 ± 0.07 MPa) either unstrained or with 8% cyclic strain at 1 Hz. Without strain, the relative expression of the early osteogenic marker alkaline phosphatase (ALP) was significantly higher (78%) on PDMS than on both PAAm. With 8% cyclic strain, ALP expression increased for all groups in comparison with unstrained controls. The highest increase was observed for the soft PAAm by 36%. Moreover, relative oil red O (ORO) expression-indicating adipogenesis-was the highest for unstrained soft PAAm. On the other hand, the percentage of ORO positive cells significantly decreased by 57% and 69% for soft and stiff PAAm when strained. In conclusion, biomaterial elasticity and mechanical loading can act simultaneously on cell differentiation. Substrate elasticity is an important factor, regulating the differentiation, but cyclic strain can drive MSCs towards the osteogenesis even on the softest substrate. As such, the osteogenic effect of mechanical loading can overrule the adipogenic effect of soft substrates, thereby acting as an inhibitor.
Collapse
Affiliation(s)
- Hatice Imran Gungordu
- Department of Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Min Bao
- Department of Physical Organic Chemistry, Radboud University, Nijmegen, The Netherlands
| | - Sjoerd van Helvert
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - John A Jansen
- Department of Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - X Frank Walboomers
- Department of Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
39
|
Zhu C, Sha M, Jiang H, Lin J, Lin W, Li W, Chen X, Huang G, Ding Z. Co-culture of the bone and bone marrow: a novel way to obtain mesenchymal stem cells with enhanced osteogenic ability for fracture healing in SD rats. J Orthop Surg Res 2019; 14:293. [PMID: 31481070 PMCID: PMC6724266 DOI: 10.1186/s13018-019-1346-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 08/23/2019] [Indexed: 01/07/2023] Open
Abstract
Background Mesenchymal stem cells (MSCs) have great potential for the repair and regeneration of bone fracture, but their optimal origins remain controversial. Methods Bone marrow-MSCs (BM-MSCs) and bone-bone marrow-MSCs (B-BM-MSCs) were isolated from 12 SD rats, and the morphology, MSC-associated markers, and proliferative capacity of these cells were compared using an inverted microscope, flow cytometry, and CCK-8 assays, respectively. After 14 days of osteoblastic induction, osteoblast phenotypes were detected by ALP and calcium nodule staining, and the expression of BMP-2 and TGF-β1 was observed by western blotting. Then, the rat tibia fracture model was established with 3 groups (n = 6 per group), the control, BM-MSC, and B-BM-MSC groups. Computed tomography (CT) imaging was performed to evaluate fracture healing at weeks 2, 4, and 6. Finally, the fractured bones were removed at weeks 4 and 6, and HE staining was performed to evaluate fracture healing. Results Although the 2 types of MSCs shared the same cellular morphology and MSC-associated markers, B-BM-MSCs had a higher proliferative rate than BM-MSCs from day 9 to day 12 (p < 0.05), and the expression levels of ALP and calcium were obviously higher in B-BM-MSCs than in BM-MSCs after osteogenic induction (p < 0.01 and p < 0.001, respectively). Western blot results showed that the expression levels of BMP-2 and TGF-β1 in B-BM-MSCs were higher than in BM-MSCs before and after osteogenic induction (p < 0.01). In the animal experiments, CT imaging and gross observation showed that B-BM-MSCs had a greater capacity than BM-MSCs to promote fracture healing, as the Lane-Sandhu scores of B-BM-MSCs at weeks 4 and 6 after operation (3.00 ± 0.81 and 9.67 ± 0.94, respectively) were higher than those of BM-MSCs (1.33 ± 0.47 and 6.67 ± 1.25, respectively; both p < 0.05). The HE staining results further supported this conclusion. Conclusions Taken together, our study results proved that MSCs obtained by co-culturing the bone and bone marrow from SD rats had better proliferative, osteogenic differentiation, and fracture healing capacities than BM-MSCs, perhaps suggesting a novel way to obtain MSCs for bone tissue repair.
Collapse
Affiliation(s)
- Cong Zhu
- Center for Orthopedics, Affiliated Southeast Hospital of Xiamen University/909th Hospital of People's Liberation Army, 269 Zhanghua Middle Road, Zhangzhou, 363000, Fujian Province, China
| | - Mo Sha
- Center for Orthopedics, Affiliated Southeast Hospital of Xiamen University/909th Hospital of People's Liberation Army, 269 Zhanghua Middle Road, Zhangzhou, 363000, Fujian Province, China
| | - Huixiang Jiang
- Xiamen University Medical College, Xiang'an South Road, Xiang'an District, Xiamen, 361102, Fujian Province, China
| | - Jianbiao Lin
- Center for Orthopedics, Affiliated Southeast Hospital of Xiamen University/909th Hospital of People's Liberation Army, 269 Zhanghua Middle Road, Zhangzhou, 363000, Fujian Province, China
| | - Weibin Lin
- Center for Orthopedics, Affiliated Southeast Hospital of Xiamen University/909th Hospital of People's Liberation Army, 269 Zhanghua Middle Road, Zhangzhou, 363000, Fujian Province, China
| | - Wenchang Li
- Xiamen University Medical College, Xiang'an South Road, Xiang'an District, Xiamen, 361102, Fujian Province, China
| | - Xiaoshan Chen
- Center for Orthopedics, Affiliated Southeast Hospital of Xiamen University/909th Hospital of People's Liberation Army, 269 Zhanghua Middle Road, Zhangzhou, 363000, Fujian Province, China
| | - Guofeng Huang
- Center for Orthopedics, Affiliated Southeast Hospital of Xiamen University/909th Hospital of People's Liberation Army, 269 Zhanghua Middle Road, Zhangzhou, 363000, Fujian Province, China.
| | - Zhenqi Ding
- Center for Orthopedics, Affiliated Southeast Hospital of Xiamen University/909th Hospital of People's Liberation Army, 269 Zhanghua Middle Road, Zhangzhou, 363000, Fujian Province, China.
| |
Collapse
|
40
|
Atypical Mesenchymal Stromal Cell Responses to Topographic Modifications of Titanium Biomaterials Indicate Cytoskeletal- and Genetic Plasticity-Based Heterogeneity of Cells. Stem Cells Int 2019; 2019:5214501. [PMID: 31354840 PMCID: PMC6636474 DOI: 10.1155/2019/5214501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 05/03/2019] [Accepted: 05/20/2019] [Indexed: 01/03/2023] Open
Abstract
Titanium (Ti) is widely used as a biomaterial for endosseous implants due to its relatively inert surface oxide layer that enables implanted devices the ability of assembling tissue reparative components that culminate in osseointegration. Topographic modifications in the form of micro- and nanoscaled structures significantly promote osseointegration and enhance the osteogenic differentiation of adult mesenchymal stromal cells (MSCs). While the biological mechanisms central to the differential responses of tissues and cells to Ti surface modifications remain unknown, adhesion and morphological adaptation are amongst the earliest events at the cell-biomaterial interface that are highly influenced by surface topography and profoundly impact the regulation of stem cell fate determination. This study correlated the effects of Ti topographic modifications on adhesion and morphological adaptation of human MSCs with phenotypic change. The results showed that modified Ti topographies precluded the adhesion of a subset of MSCs while incurring distinct morphological constraints on adherent cells. These effects anomalously corresponded with a differential expression of stem cell pluripotency and Wnt signalling-associated markers on both modified surfaces while additionally differing between hydrophobic and hydrophilic surface modifications—though extent of osteogenic differentiation induced by both modified topographies yielded similarly significant higher levels of cellular mineralisation in contrast to polished Ti. These results suggest that in the absence of deposited proteins and soluble factors, both modified topographies incur the selective adhesion of a subpopulation of progenitors with relatively higher cytoskeletal plasticity. While the presence of deposited proteins and soluble factors does not significantly affect adherence of cells, nanotopographic modifications enhance expression of pluripotency markers in proliferative conditions, which are conversely overridden by both modified topographies in osteogenic inductive conditions. Further deciphering the mechanisms underlying cellular selectivity and Ti topographic responsiveness will improve our understanding of stem cell heterogeneity and advance the potential of MSCs in regenerative medicine.
Collapse
|
41
|
Noronha NDC, Mizukami A, Caliári-Oliveira C, Cominal JG, Rocha JLM, Covas DT, Swiech K, Malmegrim KCR. Priming approaches to improve the efficacy of mesenchymal stromal cell-based therapies. Stem Cell Res Ther 2019; 10:131. [PMID: 31046833 PMCID: PMC6498654 DOI: 10.1186/s13287-019-1224-y] [Citation(s) in RCA: 350] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multipotent mesenchymal stromal cells (MSC) have been widely explored for cell-based therapy of immune-mediated, inflammatory, and degenerative diseases, due to their immunosuppressive, immunomodulatory, and regenerative potentials. Preclinical studies and clinical trials have demonstrated promising therapeutic results although these have been somewhat limited. Aspects such as low in vivo MSC survival in inhospitable disease microenvironments, requirements for ex vivo cell overexpansion prior to infusions, intrinsic differences between MSC and different sources and donors, variability of culturing protocols, and potency assays to evaluate MSC products have been described as limitations in the field. In recent years, priming approaches to empower MSC have been investigated, thereby generating cellular products with improved potential for different clinical applications. Herein, we review the current priming approaches that aim to increase MSC therapeutic efficacy. Priming with cytokines and growth factors, hypoxia, pharmacological drugs, biomaterials, and different culture conditions, as well as other diverse molecules, are revised from current and future perspectives.
Collapse
Affiliation(s)
- Nádia de Cássia Noronha
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Graduate Program on Bioscience and Biotechnology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Amanda Mizukami
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Juçara Gastaldi Cominal
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Graduate Program on Bioscience and Biotechnology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - José Lucas M Rocha
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Graduate Program on Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Dimas Tadeu Covas
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Kamilla Swiech
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Kelen C R Malmegrim
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil. .,Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n°, Ribeirão Preto, SP, 14010-903, Brazil.
| |
Collapse
|
42
|
Moghaddam MM, Bonakdar S, Shariatpanahi MR, Shokrgozar MA, Faghihi S. The Effect of Physical Cues on the Stem Cell Differentiation. Curr Stem Cell Res Ther 2019; 14:268-277. [DOI: 10.2174/1574888x14666181227120706] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/05/2018] [Accepted: 12/13/2018] [Indexed: 12/21/2022]
Abstract
Development of multicellular organisms is a very complex and organized process during which cells respond to various factors and features in extracellular environments. It has been demonstrated that during embryonic evolvement, under certain physiological or experimental conditions, unspecialized cells or stem cells can be induced to become tissue or organ-specific cells with special functions. Considering the importance of physical cues in stem cell fate, the present study reviews the role of physical factors in stem cells differentiation and discusses the molecular mechanisms associated with these factors.
Collapse
Affiliation(s)
- Mehrdad M. Moghaddam
- Stem Cell and Regenerative Medicine Group, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, 14965/161, Iran
| | - Shahin Bonakdar
- National Cell Bank, Pasteur Institute of Iran, Tehran 3159915111, Iran
| | | | | | - Shahab Faghihi
- Stem Cell and Regenerative Medicine Group, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, 14965/161, Iran
| |
Collapse
|
43
|
Goonoo N, Fahmi A, Jonas U, Gimié F, Arsa IA, Bénard S, Schönherr H, Bhaw-Luximon A. Improved Multicellular Response, Biomimetic Mineralization, Angiogenesis, and Reduced Foreign Body Response of Modified Polydioxanone Scaffolds for Skeletal Tissue Regeneration. ACS APPLIED MATERIALS & INTERFACES 2019; 11:5834-5850. [PMID: 30640432 DOI: 10.1021/acsami.8b19929] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The potential of electrospun polydioxanone (PDX) mats as scaffolds for skeletal tissue regeneration was significantly enhanced through improvement of the cell-mediated biomimetic mineralization and multicellular response. This was achieved by blending PDX ( i) with poly(hydroxybutyrate- co-valerate) (PHBV) in the presence of hydroxyapatite (HA) and ( ii) with aloe vera (AV) extract containing a mixture of acemannan/glucomannan. In an exhaustive study, the behavior of the most relevant cell lines involved in the skeletal tissue healing cascade, i.e. fibroblasts, macrophages, endothelial cells and preosteoblasts, on the scaffolds was investigated. The scaffolds were shown to be nontoxic, to exhibit insignificant inflammatory responses in macrophages, and to be degradable by macrophage-secreted enzymes. As a result of different phase separation in PDX/PHBV/HA and PDX/AV blend mats, cells interacted differentially. Presumably due to varying tension states of cell-matrix interactions, thinner microtubules and significantly more cell adhesion sites and filopodia were formed on PDX/AV compared to PDX/PHBV/HA. While PDX/PHBV/HA supported micrometer-sized spherical particles, nanosized rod-like HA was observed to nucleate and grow on PDX/AV fibers, allowing the mineralized PDX/AV scaffold to retain its porosity over a longer time for cellular infiltration. Finally, PDX/AV exhibited better in vivo biocompatibility compared to PDX/PHBV/HA, as indicated by the reduced fibrous capsule thickness and enhanced blood vessel formation. Overall, PDX/AV blend mats showed a significantly enhanced potential for skeletal tissue regeneration compared to the already promising PDX/PHBV/HA blends.
Collapse
Affiliation(s)
- Nowsheen Goonoo
- Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ) , University of Siegen , 57076 Siegen , Germany
- Biomaterials, Drug Delivery and Nanotechnology Unit, Centre for Biomedical and Biomaterials Research (CBBR) , MSIRI Building, University of Mauritius , 80837 Réduit , Mauritius
| | - Amir Fahmi
- Faculty of Technology and Bionics , Rhine-Waal University of Applied Sciences , Hochschule Rhein-Waal, Marie-Curie-Straße 1 , 47533 Kleve , Germany
| | - Ulrich Jonas
- Macromolecular Chemistry, Department of Chemistry and Biology , University of Siegen , 57076 Siegen , Germany
| | - Fanny Gimié
- Animalerie , Plateforme de recherche CYROI , 2 rue Maxime Rivière , 97490 Sainte Clotilde , Ile de La Réunion , France
| | - Imade Ait Arsa
- Animalerie , Plateforme de recherche CYROI , 2 rue Maxime Rivière , 97490 Sainte Clotilde , Ile de La Réunion , France
| | - Sébastien Bénard
- RIPA , Plateforme de recherche CYROI , 2 rue Maxime Rivière , 97490 Sainte Clotilde , Ile de La Réunion , France
| | - Holger Schönherr
- Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ) , University of Siegen , 57076 Siegen , Germany
| | - Archana Bhaw-Luximon
- Biomaterials, Drug Delivery and Nanotechnology Unit, Centre for Biomedical and Biomaterials Research (CBBR) , MSIRI Building, University of Mauritius , 80837 Réduit , Mauritius
| |
Collapse
|
44
|
Huang J, Chen Y, Tang C, Fei Y, Wu H, Ruan D, Paul ME, Chen X, Yin Z, Heng BC, Chen W, Shen W. The relationship between substrate topography and stem cell differentiation in the musculoskeletal system. Cell Mol Life Sci 2019; 76:505-521. [PMID: 30390116 PMCID: PMC11105278 DOI: 10.1007/s00018-018-2945-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/15/2018] [Accepted: 10/12/2018] [Indexed: 12/11/2022]
Abstract
It is well known that biomaterial topography can exert a profound influence on various cellular functions such as migration, polarization, and adhesion. With the development and refinement of manufacturing technology, much research has recently been focused on substrate topography-induced cell differentiation, particularly in the field of tissue engineering. Even without biological and chemical stimuli, the differentiation of stem cells can also be initiated by various biomaterials with different topographic features. However, the underlying mechanisms of this biological phenomenon remain elusive. During the past few decades, many researchers have demonstrated that cells can sense the topography of materials through the assembly and polymerization of membrane proteins. Following the activation of RHO, TGF-b or FAK signaling pathways, cells can be induced into various differentiation states. But these signaling pathways often coincide with canonical mechanical transduction pathways, and no firm conclusion has been reached among researchers in this field on topography-specific signaling pathways. On the other hand, some substrate topographies are reported to have the ability to inhibit differentiation and maintain the 'stemness' of stem cells. In this review, we will summarize the role of topography in musculoskeletal system regeneration and explore possible topography-related signaling pathways involved in cell differentiation.
Collapse
Affiliation(s)
- Jiayun Huang
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang, 310000, China
- Orthopaedics Research Institute of Zhejiang University, Zhejiang, China
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang, 310000, China
- China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Yangwu Chen
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang, 310000, China
- Orthopaedics Research Institute of Zhejiang University, Zhejiang, China
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang, 310000, China
- China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Chenqi Tang
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang, 310000, China
- Orthopaedics Research Institute of Zhejiang University, Zhejiang, China
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang, 310000, China
- China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Yang Fei
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, China
- Orthopaedics Research Institute of Zhejiang University, Zhejiang, China
- China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Haoyu Wu
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang, 310000, China
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang, 310000, China
| | - Dengfeng Ruan
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, China
- Orthopaedics Research Institute of Zhejiang University, Zhejiang, China
- China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Maswikiti Ewetse Paul
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang, 310000, China
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang, 310000, China
| | - Xiao Chen
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang, 310000, China
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang, 310000, China
- China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Zi Yin
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang, 310000, China
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang, 310000, China
| | - Boon Chin Heng
- Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Weishan Chen
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, China
| | - Weiliang Shen
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, China.
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang, 310000, China.
- Orthopaedics Research Institute of Zhejiang University, Zhejiang, China.
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang, 310000, China.
- China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China.
| |
Collapse
|
45
|
The Mechanobiology of the Actin Cytoskeleton in Stem Cells during Differentiation and Interaction with Biomaterials. Stem Cells Int 2018; 2018:2891957. [PMID: 30402108 PMCID: PMC6196919 DOI: 10.1155/2018/2891957] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/03/2018] [Accepted: 08/16/2018] [Indexed: 12/27/2022] Open
Abstract
An understanding of the cytoskeleton's importance in stem cells is essential for their manipulation and further clinical application. The cytoskeleton is crucial in stem cell biology and depends on physical and chemicals signals to define its structure. Additionally, cell culture conditions will be important in the proper maintenance of stemness, lineage commitment, and differentiation. This review focuses on the following areas: the role of the actin cytoskeleton of stem cells during differentiation, the significance of cellular morphology, signaling pathways involved in cytoskeletal rearrangement in stem cells, and the mechanobiology and mechanotransduction processes implicated in the interactions of stem cells with different surfaces of biomaterials, such as nanotopography, which is a physical cue influencing the differentiation of stem cells. Also, cancer stem cells are included since it is necessary to understand the role of their mechanical properties to develop new strategies to treat cancer. In this context, to study the stem cells requires integrated disciplines, including molecular and cellular biology, chemistry, physics, and immunology, as well as mechanobiology. Finally, since one of the purposes of studying stem cells is for their application in regenerative medicine, the deepest understanding is necessary in order to establish safety protocols and effective cell-based therapies.
Collapse
|
46
|
He J, Zhang N, Zhang J, Jiang B, Wu F. Migration critically meditates osteoblastic differentiation of bone mesenchymal stem cells through activating canonical Wnt signal pathway. Colloids Surf B Biointerfaces 2018; 171:205-213. [PMID: 30032013 DOI: 10.1016/j.colsurfb.2018.07.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/29/2018] [Accepted: 07/09/2018] [Indexed: 01/08/2023]
Abstract
Basic cellular events, such as focal adhesion and cytoskeleton organization, have been reported to be actively involved in fate decision process of stem cells, besides chemical and physical cues. Stem cell migration is critical in regulating various stem cell functions, but its influence on MSC differentiation into specific lineages has been rarely exploited. In this study, we used RGD-modified substrates to regulate cell motility though different RGD concentrations and systematically analyzed the correlation between osteoblastic differentiation and cell migration, as well as the role of Wnt signaling pathway. High motility correlated well with the significantly enhanced potential of the MSCs to differentiate into the osteoblastic lineage, as suggested by the significant up-regulations of Runx2, ALP, OCN expressions. The results also suggested that enhanced MSC migration efficiently activated the canonical Wnt-β-catenin pathway and stimulated transcription activities leading to osteoblastic differentiation, likely through internal forces generated dynamically during migration. Blockage of the Wnt-β-catenin pathway through artificial down-regulation of LRP5/6 expression significantly suppressed the osteoblastic differentiation for samples with high MSC motilities, further corroborating the critical involvement of Wnt/β-catenin pathway in the cell migration induced mechanotransduction and MSC differentiation into osteoblastic lineage. Our findings provide important insight for understanding the complicate mechanisms involved in MSC fate selection process and bone regeneration, and would have significant implications in the optimal design of bone tissue engineering materials through regulating cell motility.
Collapse
Affiliation(s)
- Jing He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China
| | - Nihui Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China
| | - Junwei Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China
| | - Bo Jiang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China
| | - Fang Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|
47
|
Duruksu G, Aciksari A. Guiding the Differentiation Direction of Pancreatic Islet-Derived Stem Cells by Glycated Collagen. Stem Cells Int 2018; 2018:6143081. [PMID: 30057625 PMCID: PMC6051021 DOI: 10.1155/2018/6143081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 11/17/2022] Open
Abstract
The microenvironment is an important factor of stem cells regulating their maintenance, survival, and differentiation. The glycation of proteins with reducing sugars through nonenzymatic reactions induces the collagen cross-linking, which causes tissue stiffening, which is enhanced during aging and diabetes. In this study, we aimed to analyze the effect of glycated collagen on the stem cell culture and differentiation. The collagen type 1 was modified by glycation with mannose, rhamnose, arabinose, and glucose. After the culture of mesenchymal stem cells on the coated surfaces with glycated collagen, the differences in cell adhesion, proliferation, and differentiation were compared. The results showed that the modifications did not induce apoptosis or cause cell death. However, the culture of cells on modified collagens improved the proliferation. It was found that the mannose-modified collagen stimulated the adipogenic differentiation of stem cells, and rhamnose-modified collagen supports the differentiation into both osteogenic and insulin-producing cells. The low concentration of monosaccharides during glycation process improved the characteristics of the matrix protein in favor of stem cell differentiation. Modification of the collagen by glycation might be used as a tool to improve natural polymers for material-induced stem cell differentiation in the future.
Collapse
Affiliation(s)
- Gokhan Duruksu
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, 41380 Izmit, Kocaeli, Turkey
- Institute of Health Sciences, Stem Cell Department, Kocaeli University, 41380 Izmit, Kocaeli, Turkey
| | - Aysegul Aciksari
- Institute of Health Sciences, Stem Cell Department, Kocaeli University, 41380 Izmit, Kocaeli, Turkey
| |
Collapse
|
48
|
Three-Dimensional Graphene-RGD Peptide Nanoisland Composites That Enhance the Osteogenesis of Human Adipose-Derived Mesenchymal Stem Cells. Int J Mol Sci 2018; 19:ijms19030669. [PMID: 29495519 PMCID: PMC5877530 DOI: 10.3390/ijms19030669] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/03/2018] [Accepted: 02/22/2018] [Indexed: 12/13/2022] Open
Abstract
Graphene derivatives have immense potential in stem cell research. Here, we report a three-dimensional graphene/arginine-glycine-aspartic acid (RGD) peptide nanoisland composite effective in guiding the osteogenesis of human adipose-derived mesenchymal stem cells (ADSCs). Amine-modified silica nanoparticles (SiNPs) were uniformly coated onto an indium tin oxide electrode (ITO), followed by graphene oxide (GO) encapsulation and electrochemical deposition of gold nanoparticles. A RGD–MAP–C peptide, with a triple-branched repeating RGD sequence and a terminal cysteine, was self-assembled onto the gold nanoparticles, generating the final three-dimensional graphene–RGD peptide nanoisland composite. We generated substrates with various gold nanoparticle–RGD peptide cluster densities, and found that the platform with the maximal number of clusters was most suitable for ADSC adhesion and spreading. Remarkably, the same platform was also highly efficient at guiding ADSC osteogenesis compared with other substrates, based on gene expression (alkaline phosphatase (ALP), runt-related transcription factor 2), enzyme activity (ALP), and calcium deposition. ADSCs induced to differentiate into osteoblasts showed higher calcium accumulations after 14–21 days than when grown on typical GO-SiNP complexes, suggesting that the platform can accelerate ADSC osteoblastic differentiation. The results demonstrate that a three-dimensional graphene–RGD peptide nanoisland composite can efficiently derive osteoblasts from mesenchymal stem cells.
Collapse
|
49
|
Confalonieri D, Schwab A, Walles H, Ehlicke F. Advanced Therapy Medicinal Products: A Guide for Bone Marrow-derived MSC Application in Bone and Cartilage Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2017; 24:155-169. [PMID: 28990462 DOI: 10.1089/ten.teb.2017.0305] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Millions of people worldwide suffer from trauma- or age-related orthopedic diseases such as osteoarthritis, osteoporosis, or cancer. Tissue Engineering (TE) and Regenerative Medicine are multidisciplinary fields focusing on the development of artificial organs, biomimetic engineered tissues, and cells to restore or maintain tissue and organ function. While allogenic and future autologous transplantations are nowadays the gold standards for both cartilage and bone defect repair, they are both subject to important limitations such as availability of healthy tissue, donor site morbidity, and graft rejection. Tissue engineered bone and cartilage products represent a promising and alternative approach with the potential to overcome these limitations. Since the development of Advanced Therapy Medicinal Products (ATMPs) such as TE products requires the knowledge of diverse regulation and an extensive communication with the national/international authorities, the aim of this review is therefore to summarize the state of the art on the clinical applications of human bone marrow-derived stromal cells for cartilage and bone TE. In addition, this review provides an overview of the European legislation to facilitate the development and commercialization of new ATMPs.
Collapse
Affiliation(s)
- Davide Confalonieri
- 1 Department Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg , Wuerzburg, Germany
| | - Andrea Schwab
- 1 Department Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg , Wuerzburg, Germany
| | - Heike Walles
- 1 Department Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg , Wuerzburg, Germany .,2 Translational Center Wuerzburg "Regenerative Therapies in Oncology and Musculoskeletal Disease," Wuerzburg, Germany
| | - Franziska Ehlicke
- 1 Department Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg , Wuerzburg, Germany
| |
Collapse
|
50
|
Kasoju N, Wang H, Zhang B, George J, Gao S, Triffitt JT, Cui Z, Ye H. Transcriptomics of human multipotent mesenchymal stromal cells: Retrospective analysis and future prospects. Biotechnol Adv 2017; 35:407-418. [DOI: 10.1016/j.biotechadv.2017.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 12/28/2022]
|