1
|
Solovieva M, Shatalin Y, Odinokova I, Krestinina O, Baburina Y, Lomovskaya Y, Pankratov A, Pankratova N, Buneeva O, Kopylov A, Medvedev A, Akatov V. Disulfiram Oxy-Derivatives Suppress Protein Retrotranslocation across the ER Membrane to the Cytosol and Initiate Paraptosis-like Cell Death. MEMBRANES 2022; 12:845. [PMID: 36135864 PMCID: PMC9506514 DOI: 10.3390/membranes12090845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 06/16/2023]
Abstract
Disulfiram (DSF) and its derivatives were here investigated as antineoplastic agents, and their important feature is the ability to influence the UPS. We have recently shown that hydroxocobalamin catalyzes the aerobic oxidation of diethyldithiocarbamate to form disulfiram and its oxy-derivatives (DSFoxy; i.e., sulfones and sulfoxides), which induce cytoplasm vacuolization and paraptosis-like cancer cell death. We used LC-MS/MS and bioinformatics analysis to determine the key points in these processes. DSFoxy was found to induce an increase in the number of ubiquitinated proteins, including oxidized ones, and a decrease in the monomeric ubiquitin. Enhanced ubiquitination was revealed for proteins involved in the response to exogenous stress, regulation of apoptosis, autophagy, DNA damage/repair, transcription and translation, folding and ubiquitination, retrograde transport, the MAPK cascade, and some other functions. The results obtained indicate that DSF oxy-derivatives enhance the oxidation and ubiquitination of many proteins regulating proteostasis (including E3 ligases and deubiquitinases), which leads to inhibition of protein retrotranslocation across the ER membrane into the cytosol and accumulation of misfolded proteins in the ER followed by ER swelling and initiates paraptosis-like cell death. Our results provide new insight into the role of protein ubiquitination/deubiquitination in regulating protein retrotranslocation across the ER membrane into the cytosol and paraptosis-like cell death.
Collapse
Affiliation(s)
- Marina Solovieva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Yuri Shatalin
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Irina Odinokova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Olga Krestinina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Yulia Baburina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Yana Lomovskaya
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Anton Pankratov
- Institute of Mathematical Problems of Biology RAS—The Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Natalia Pankratova
- Institute of Mathematical Problems of Biology RAS—The Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Olga Buneeva
- Department of Proteomic Research and Mass Spectrometry, Institute of Biomedical Chemistry, 10 Pogodinskaya Street, 119121 Moscow, Russia
| | - Arthur Kopylov
- Department of Proteomic Research and Mass Spectrometry, Institute of Biomedical Chemistry, 10 Pogodinskaya Street, 119121 Moscow, Russia
| | - Alexei Medvedev
- Department of Proteomic Research and Mass Spectrometry, Institute of Biomedical Chemistry, 10 Pogodinskaya Street, 119121 Moscow, Russia
| | - Vladimir Akatov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| |
Collapse
|
2
|
Ra D, Sa B, Sl B, Js M, Sj M, DA D, Ew S, O K, Eb B, Ad C, Vx T, Gg G, Pa C, Dc M, Wg B. Is Exposure to BMAA a Risk Factor for Neurodegenerative Diseases? A Response to a Critical Review of the BMAA Hypothesis. Neurotox Res 2021; 39:81-106. [PMID: 33547590 PMCID: PMC7904546 DOI: 10.1007/s12640-020-00302-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022]
Abstract
In a literature survey, Chernoff et al. (2017) dismissed the hypothesis that chronic exposure to β-N-methylamino-L-alanine (BMAA) may be a risk factor for progressive neurodegenerative disease. They question the growing scientific literature that suggests the following: (1) BMAA exposure causes ALS/PDC among the indigenous Chamorro people of Guam; (2) Guamanian ALS/PDC shares clinical and neuropathological features with Alzheimer's disease, Parkinson's disease, and ALS; (3) one possible mechanism for protein misfolds is misincorporation of BMAA into proteins as a substitute for L-serine; and (4) chronic exposure to BMAA through diet or environmental exposures to cyanobacterial blooms can cause neurodegenerative disease. We here identify multiple errors in their critique including the following: (1) their review selectively cites the published literature; (2) the authors reported favorably on HILIC methods of BMAA detection while the literature shows significant matrix effects and peak coelution in HILIC that may prevent detection and quantification of BMAA in cyanobacteria; (3) the authors build alternative arguments to the BMAA hypothesis, rather than explain the published literature which, to date, has been unable to refute the BMAA hypothesis; and (4) the authors erroneously attribute methods to incorrect studies, indicative of a failure to carefully consider all relevant publications. The lack of attention to BMAA research begins with the review's title which incorrectly refers to BMAA as a "non-essential" amino acid. Research regarding chronic exposure to BMAA as a cause of human neurodegenerative diseases is emerging and requires additional resources, validation, and research. Here, we propose strategies for improvement in the execution and reporting of analytical methods and the need for additional and well-executed inter-lab comparisons for BMAA quantitation. We emphasize the need for optimization and validation of analytical methods to ensure that they are fit-for-purpose. Although there remain gaps in the literature, an increasingly large body of data from multiple independent labs using orthogonal methods provides increasing evidence that chronic exposure to BMAA may be a risk factor for neurological illness.
Collapse
Affiliation(s)
- Dunlop Ra
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY, USA.
| | - Banack Sa
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY, USA
| | - Bishop Sl
- Lewis Research Group, Faculty of Science, University of Calgary, Alberta, Canada
| | - Metcalf Js
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY, USA
| | - Murch Sj
- Department of Chemistry, University of British Columbia, Kelowna, BC, Canada
| | - Davis DA
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Stommel Ew
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Karlsson O
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Brittebo Eb
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | | | - Tan Vx
- Department of Biological Sciences, Macquarie University Centre for Motor Neuron Disease Research, Macquarie University, Ryde, Australia
| | - Guillemin Gg
- Department of Biological Sciences, Macquarie University Centre for Motor Neuron Disease Research, Macquarie University, Ryde, Australia
| | - Cox Pa
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY, USA
| | - Mash Dc
- Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Bradley Wg
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
3
|
Saitou M, Lizardo DY, Taskent RO, Millner A, Gokcumen O, Atilla-Gokcumen GE. An evolutionary transcriptomics approach links CD36 to membrane remodeling in replicative senescence. Mol Omics 2018; 14:237-246. [DOI: 10.1039/c8mo00099a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CD36 was identified as a core replicative senescence gene and a potential mediator of this process through membrane remodeling.
Collapse
Affiliation(s)
- Marie Saitou
- Department of Biological Sciences
- University at Buffalo
- The State University of New York
- Buffalo
- USA
| | - Darleny Y. Lizardo
- Department of Chemistry
- University at Buffalo
- The State University of New York
- Buffalo
- USA
| | - Recep Ozgur Taskent
- Department of Biological Sciences
- University at Buffalo
- The State University of New York
- Buffalo
- USA
| | - Alec Millner
- Department of Chemistry
- University at Buffalo
- The State University of New York
- Buffalo
- USA
| | - Omer Gokcumen
- Department of Biological Sciences
- University at Buffalo
- The State University of New York
- Buffalo
- USA
| | | |
Collapse
|
4
|
Santos AL, Lindner AB. Protein Posttranslational Modifications: Roles in Aging and Age-Related Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5716409. [PMID: 28894508 PMCID: PMC5574318 DOI: 10.1155/2017/5716409] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/28/2017] [Indexed: 02/07/2023]
Abstract
Aging is characterized by the progressive decline of biochemical and physiological function in an individual. Consequently, aging is a major risk factor for diseases like cancer, obesity, and type 2 diabetes. The cellular and molecular mechanisms of aging are not well understood, nor is the relationship between aging and the onset of diseases. One of the hallmarks of aging is a decrease in cellular proteome homeostasis, allowing abnormal proteins to accumulate. This phenomenon is observed in both eukaryotes and prokaryotes, suggesting that the underlying molecular processes are evolutionarily conserved. Similar protein aggregation occurs in the pathogenesis of diseases like Alzheimer's and Parkinson's. Further, protein posttranslational modifications (PTMs), either spontaneous or physiological/pathological, are emerging as important markers of aging and aging-related diseases, though clear causality has not yet been firmly established. This review presents an overview of the interplay of PTMs in aging-associated molecular processes in eukaryotic aging models. Understanding PTM roles in aging could facilitate targeted therapies or interventions for age-related diseases. In addition, the study of PTMs in prokaryotes is highlighted, revealing the potential of simple prokaryotic models to uncover complex aging-associated molecular processes in the emerging field of microbiogerontology.
Collapse
Affiliation(s)
- Ana L. Santos
- Institut National de la Santé et de la Recherche Médicale, U1001, Université Paris Descartes and Sorbonne Paris Cité, Paris, France
| | - Ariel B. Lindner
- Institut National de la Santé et de la Recherche Médicale, U1001, Université Paris Descartes and Sorbonne Paris Cité, Paris, France
| |
Collapse
|
5
|
Eberhardt K, Beleites C, Marthandan S, Matthäus C, Diekmann S, Popp J. Raman and Infrared Spectroscopy Distinguishing Replicative Senescent from Proliferating Primary Human Fibroblast Cells by Detecting Spectral Differences Mainly Due to Biomolecular Alterations. Anal Chem 2017; 89:2937-2947. [DOI: 10.1021/acs.analchem.6b04264] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Katharina Eberhardt
- Leibniz Institute of Photonic Technology e. V., Albert-Einstein-Str. 9, 07745 Jena, Germany
- Institute
for Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Claudia Beleites
- Leibniz Institute of Photonic Technology e. V., Albert-Einstein-Str. 9, 07745 Jena, Germany
- Chemometric Consulting and Chemometrix GmbH, Södeler Weg 19, 61200 Wölfersheim, Germany
| | - Shiva Marthandan
- Department
of Molecular Biology, Leibniz Institute on Aging − Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
| | - Christian Matthäus
- Leibniz Institute of Photonic Technology e. V., Albert-Einstein-Str. 9, 07745 Jena, Germany
- Institute
for Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Stephan Diekmann
- Department
of Molecular Biology, Leibniz Institute on Aging − Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology e. V., Albert-Einstein-Str. 9, 07745 Jena, Germany
- Institute
for Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| |
Collapse
|
6
|
Struck AW, Bennett MR, Shepherd SA, Law BJC, Zhuo Y, Wong LS, Micklefield J. An Enzyme Cascade for Selective Modification of Tyrosine Residues in Structurally Diverse Peptides and Proteins. J Am Chem Soc 2016; 138:3038-45. [DOI: 10.1021/jacs.5b10928] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Anna-Winona Struck
- School of Chemistry and Manchester
Institute of Biotechnology, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| | - Matthew R. Bennett
- School of Chemistry and Manchester
Institute of Biotechnology, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| | - Sarah A. Shepherd
- School of Chemistry and Manchester
Institute of Biotechnology, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| | - Brian J. C. Law
- School of Chemistry and Manchester
Institute of Biotechnology, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| | - Ying Zhuo
- School of Chemistry and Manchester
Institute of Biotechnology, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| | - Lu Shin Wong
- School of Chemistry and Manchester
Institute of Biotechnology, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| | - Jason Micklefield
- School of Chemistry and Manchester
Institute of Biotechnology, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|