1
|
Akune-Taylor Y, Kon A, Aoki-Kinoshita KF. In silico simulation of glycosylation and related pathways. Anal Bioanal Chem 2024; 416:3687-3696. [PMID: 38748247 PMCID: PMC11180631 DOI: 10.1007/s00216-024-05331-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 06/18/2024]
Abstract
Glycans participate in a vast number of recognition systems in diverse organisms in health and in disease. However, glycans cannot be sequenced because there is no sequencer technology that can fully characterize them. There is no "template" for replicating glycans as there are for amino acids and nucleic acids. Instead, glycans are synthesized by a complicated orchestration of multitudes of glycosyltransferases and glycosidases. Thus glycans can vary greatly in structure, but they are not genetically reproducible and are usually isolated in minute amounts. To characterize (sequence) the glycome (defined as the glycans in a particular organism, tissue, cell, or protein), glycosylation pathway prediction using in silico methods based on glycogene expression data, and glycosylation simulations have been attempted. Since many of the mammalian glycogenes have been identified and cloned, it has become possible to predict the glycan biosynthesis pathway in these systems. By then incorporating systems biology and bioprocessing technologies to these pathway models, given the right enzymatic parameters including enzyme and substrate concentrations and kinetic reaction parameters, it is possible to predict the potentially synthesized glycans in the pathway. This review presents information on the data resources that are currently available to enable in silico simulations of glycosylation and related pathways. Then some of the software tools that have been developed in the past to simulate and analyze glycosylation pathways will be described, followed by a summary and vision for the future developments and research directions in this area.
Collapse
Affiliation(s)
- Yukie Akune-Taylor
- Glycan and Life Systems Integration Center, Soka University, Tokyo, Japan
| | - Akane Kon
- Graduate School of Science and Engineering, Soka University, Tokyo, Japan
| | - Kiyoko F Aoki-Kinoshita
- Glycan and Life Systems Integration Center, Soka University, Tokyo, Japan.
- Graduate School of Science and Engineering, Soka University, Tokyo, Japan.
- iGCORE, Nagoya University, Nagoya, Japan.
| |
Collapse
|
2
|
Toukach PV, Shirkovskaya AI. Carbohydrate Structure Database and Other Glycan Databases as an Important Element of Glycoinformatics. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022030190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Pujić I, Perreault H. Recent advancements in glycoproteomic studies: Glycopeptide enrichment and derivatization, characterization of glycosylation in SARS CoV2, and interacting glycoproteins. MASS SPECTROMETRY REVIEWS 2022; 41:488-507. [PMID: 33393161 DOI: 10.1002/mas.21679] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Proteomics studies allow for the determination of the identity, amount, and interactions of proteins under specific conditions that allow the biological state of an organism to ultimately change. These conditions can be either beneficial or detrimental. Diseases are due to detrimental changes caused by either protein overexpression or underexpression caused by as a result of a mutation or posttranslational modifications (PTM), among other factors. Identification of disease biomarkers through proteomics can be potentially used as clinical information for diagnostics. Common biomarkers to look for include PTM. For example, aberrant glycosylation of proteins is a common marker and will be a focus of interest in this review. A common way to analyze glycoproteins is by glycoproteomics involving mass spectrometry. Due to factors such as micro- and macroheterogeneity which result in a lower abundance of each version of a glycoprotein, it is difficult to obtain meaningful results unless rigorous sample preparation procedures are in place. Microheterogeneity represents the diversity of glycans at a single site, whereas macroheterogeneity depicts glycosylation levels at each site of a protein. Enrichment and derivatization of glycopeptides help to overcome these limitations. Over the time range of 2016 to 2020, several methods have been proposed in the literature and have contributed to drastically improve the outcome of glycosylation analysis, as presented in the sampling surveyed in this review. As a current topic in 2020, glycoproteins carried by pathogens can also cause disease and this is seen with SARS CoV2, causing the COVID-19 pandemic. This review will discuss glycoproteomic studies of the spike glycoprotein and interacting proteins such as the ACE2 receptor.
Collapse
Affiliation(s)
- Ivona Pujić
- Chemistry Department, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hélène Perreault
- Chemistry Department, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
4
|
SugarDrawer: A Web-Based Database Search Tool with Editing Glycan Structures. Molecules 2021; 26:molecules26237149. [PMID: 34885724 PMCID: PMC8659005 DOI: 10.3390/molecules26237149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022] Open
Abstract
In life science fields, database integration is progressing and contributing to collaboration between different research fields, including the glycosciences. The integration of glycan databases has greatly progressed collaboration worldwide with the development of the international glycan structure repository, GlyTouCan. This trend has increased the need for a tool by which researchers in various fields can easily search glycan structures from integrated databases. We have developed a web-based glycan structure search tool, SugarDrawer, which supports the depiction of glycans including ambiguity, such as glycan fragments which contain underdetermined linkages, and a database search for glycans drawn on the canvas. This tool provides an easy editing feature for various glycan structures in just a few steps using template structures and pop-up windows which allow users to select specific information for each structure element. This tool has a unique feature for selecting possible attachment sites, which is defined in the Symbol Nomenclature for Glycans (SNFG). In addition, this tool can input and output glycans in WURCS and GlycoCT formats, which are the most commonly-used text formats for glycan structures.
Collapse
|
5
|
Gong Y, Qin S, Dai L, Tian Z. The glycosylation in SARS-CoV-2 and its receptor ACE2. Signal Transduct Target Ther 2021; 6:396. [PMID: 34782609 PMCID: PMC8591162 DOI: 10.1038/s41392-021-00809-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/10/2021] [Accepted: 10/24/2021] [Indexed: 02/05/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), a highly infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected more than 235 million individuals and led to more than 4.8 million deaths worldwide as of October 5 2021. Cryo-electron microscopy and topology show that the SARS-CoV-2 genome encodes lots of highly glycosylated proteins, such as spike (S), envelope (E), membrane (M), and ORF3a proteins, which are responsible for host recognition, penetration, binding, recycling and pathogenesis. Here we reviewed the detections, substrates, biological functions of the glycosylation in SARS-CoV-2 proteins as well as the human receptor ACE2, and also summarized the approved and undergoing SARS-CoV-2 therapeutics associated with glycosylation. This review may not only broad the understanding of viral glycobiology, but also provide key clues for the development of new preventive and therapeutic methodologies against SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Yanqiu Gong
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, 610041, Chengdu, China
| | - Suideng Qin
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, 610041, Chengdu, China.
| | - Zhixin Tian
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China.
| |
Collapse
|
6
|
Donohoo KB, Wang J, Goli M, Yu A, Peng W, Hakim MA, Mechref Y. Advances in mass spectrometry-based glycomics-An update covering the period 2017-2021. Electrophoresis 2021; 43:119-142. [PMID: 34505713 DOI: 10.1002/elps.202100199] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 12/21/2022]
Abstract
The wide variety of chemical properties and biological functions found in proteins is attained via post-translational modifications like glycosylation. Covalently bonded to proteins, glycans play a critical role in cell activity. Complex structures with microheterogeneity, the glycan structures that are associated with proteins are difficult to analyze comprehensively. Recent advances in sample preparation methods, separation techniques, and MS have facilitated the quantitation and structural elucidation of glycans. This review focuses on highlighting advances in MS-based techniques for glycomic analysis that occurred over the last 5 years (2017-2021) as an update to the previous review on the subject. The topics of discussion will include progress in glycomic workflow such as glycan release, purification, derivatization, and separation as well as the topics of ionization, tandem MS, and separation techniques that can be coupled with MS. Additionally, bioinformatics tools used for the analysis of glycans will be described.
Collapse
Affiliation(s)
- Kaitlyn B Donohoo
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Junyao Wang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Mona Goli
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Md Abdul Hakim
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| |
Collapse
|
7
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
8
|
Helali Y, Sharma S, Vandeput M, Welba D, Van Antwerpen P, Marchant A, Delporte C. Fc Glycosylation Characterization of Human Immunoglobulins G Using Immunocapture and LC-MS. Methods Mol Biol 2021; 2271:57-71. [PMID: 33907999 DOI: 10.1007/978-1-0716-1241-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Immunoglobulins G (IgG) are proteins produced by the immune system of higher life forms that play a central role in the defense against microbial pathogens. IgG bind pathogens with the hypervariable Fab component and mediate a diversity of effector functions by binding to immune effector cells via their crystallizable (Fc) component. All IgG Fc carry a polymorphic N-glycan that regulates its binding properties and thereby its effector functions. The glycosylation profile of IgG Fc is modulated by physiological and pathological conditions, including infectious diseases and inflammatory disorders. Characterization of IgG Fc glycosylation profiles is a promising approach to understand the pathogenesis of diseases involving the immune system and to develop novel biomarkers of disease activity. Measuring the proportion of the different IgG Fc glycoforms remains an analytical challenge, that requires a sensitive and reproducible analytical approach.This chapter describes an optimized approach for the preparation and the analysis of Fc N-glycans from total serum or plasma IgG using magnetic beads, RapiFluor MS label©, and LC-MS.
Collapse
Affiliation(s)
- Yosra Helali
- Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform, RD3 Department, Faculty of Pharmacy, Université libre de Bruxelles, Brussels, Belgium.
| | - Shilpee Sharma
- Institute for Medical Immunology, Faculty of Medicine, Université libre de Bruxelles, Brussels, Belgium
| | - Marie Vandeput
- Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform, RD3 Department, Faculty of Pharmacy, Université libre de Bruxelles, Brussels, Belgium
| | - Dansala Welba
- Institute for Medical Immunology, Faculty of Medicine, Université libre de Bruxelles, Brussels, Belgium
| | - Pierre Van Antwerpen
- Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform, RD3 Department, Faculty of Pharmacy, Université libre de Bruxelles, Brussels, Belgium
| | - Arnaud Marchant
- Institute for Medical Immunology, Faculty of Medicine, Université libre de Bruxelles, Brussels, Belgium
| | - Cédric Delporte
- Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform, RD3 Department, Faculty of Pharmacy, Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
9
|
Mass Spectrometry-Based Glycoproteomics and Prostate Cancer. Int J Mol Sci 2021; 22:ijms22105222. [PMID: 34069262 PMCID: PMC8156230 DOI: 10.3390/ijms22105222] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
Aberrant glycosylation has long been known to be associated with cancer, since it is involved in key mechanisms such as tumour onset, development and progression. This review will focus on protein glycosylation studies in cells, tissue, urine and serum in the context of prostate cancer. A dedicated section will cover the glycoforms of prostate specific antigen, the molecule that, despite some important limitations, is routinely tested for helping prostate cancer diagnosis. Our aim is to provide readers with an overview of mass spectrometry-based glycoproteomics of prostate cancer. From this perspective, the first part of this review will illustrate the main strategies for glycopeptide enrichment and mass spectrometric analysis. The molecular information obtained by glycoproteomic analysis performed by mass spectrometry has led to new insights into the mechanism linking aberrant glycosylation to cancer cell proliferation, migration and immunoescape.
Collapse
|
10
|
Yamada I, Campbell MP, Edwards N, Castro LJ, Lisacek F, Mariethoz J, Ono T, Ranzinger R, Shinmachi D, Aoki-Kinoshita KF. The glycoconjugate ontology (GlycoCoO) for standardizing the annotation of glycoconjugate data and its application. Glycobiology 2021; 31:741-750. [PMID: 33677548 PMCID: PMC8351504 DOI: 10.1093/glycob/cwab013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 01/19/2023] Open
Abstract
Recent years have seen great advances in the development of glycoproteomics protocols and methods resulting in a sustainable increase in the reporting proteins, their attached glycans and glycosylation sites. However, only very few of these reports find their way into databases or data repositories. One of the major reasons is the absence of digital standard to represent glycoproteins and the challenging annotations with glycans. Depending on the experimental method, such a standard must be able to represent glycans as complete structures or as compositions, store not just single glycans but also represent glycoforms on a specific glycosylation side, deal with partially missing site information if no site mapping was performed, and store abundances or ratios of glycans within a glycoform of a specific site. To support the above, we have developed the GlycoConjugate Ontology (GlycoCoO) as a standard semantic framework to describe and represent glycoproteomics data. GlycoCoO can be used to represent glycoproteomics data in triplestores and can serve as a basis for data exchange formats. The ontology, database providers and supporting documentation are available online (https://github.com/glycoinfo/GlycoCoO).
Collapse
Affiliation(s)
- Issaku Yamada
- Research Department, The Noguchi Institute, 1-9-7 Kaga, Itabashi, Tokyo 173-0003, Japan
| | - Matthew P Campbell
- Institute for Glycomics, Griffith University at Gold Coast, Southport, QLD 4215, Australia
| | - Nathan Edwards
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, D.C. 20007, USA
| | - Leyla Jael Castro
- ZB MED Information Centre for Life Sciences, Gleueler Str. 60, 50931 Cologne, Germany
| | - Frederique Lisacek
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, Computer Science Department, University of Geneva, route de Drize 7, CH - 1227 Geneva Switzerland, and also Section of Biology, University of Geneva, Geneva, Switzerland
| | - Julien Mariethoz
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, 7 Route de Drize, 1227 Geneva, Switzerland
| | - Tamiko Ono
- Faculty of Science and Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Rene Ranzinger
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Rd, Athens, Georgia 30602, USA
| | - Daisuke Shinmachi
- R&D Department, SparqLite LLC., 1615-22 Ishikawamachi, Hachioji, Tokyo 192-0032, Japan
| | - Kiyoko F Aoki-Kinoshita
- Glycan & Life Science Integration Center (GaLSIC), Faculty of Science and Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| |
Collapse
|
11
|
Promiscuity and specificity of eukaryotic glycosyltransferases. Biochem Soc Trans 2021; 48:891-900. [PMID: 32539082 PMCID: PMC7329348 DOI: 10.1042/bst20190651] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023]
Abstract
Glycosyltransferases are a large family of enzymes responsible for covalently linking sugar monosaccharides to a variety of organic substrates. These enzymes drive the synthesis of complex oligosaccharides known as glycans, which play key roles in inter-cellular interactions across all the kingdoms of life; they also catalyze sugar attachment during the synthesis of small-molecule metabolites such as plant flavonoids. A given glycosyltransferase enzyme is typically responsible for attaching a specific donor monosaccharide, via a specific glycosidic linkage, to a specific moiety on the acceptor substrate. However these enzymes are often promiscuous, able catalyze linkages between a variety of donors and acceptors. In this review we discuss distinct classes of glycosyltransferase promiscuity, each illustrated by enzymatic examples from small-molecule or glycan synthesis. We highlight the physical causes of promiscuity, and its biochemical consequences. Structural studies of glycosyltransferases involved in glycan synthesis show that they make specific contacts with ‘recognition motifs’ that are much smaller than the full oligosaccharide substrate. There is a wide range in the sizes of glycosyltransferase recognition motifs: highly promiscuous enzymes recognize monosaccharide or disaccharide motifs across multiple oligosaccharides, while highly specific enzymes recognize large, complex motifs found on few oligosaccharides. In eukaryotes, the localization of glycosyltransferases within compartments of the Golgi apparatus may play a role in mitigating the glycan variability caused by enzyme promiscuity.
Collapse
|
12
|
Databases and Bioinformatic Tools for Glycobiology and Glycoproteomics. Int J Mol Sci 2020; 21:ijms21186727. [PMID: 32937895 PMCID: PMC7556027 DOI: 10.3390/ijms21186727] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/03/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
Glycosylation plays critical roles in various biological processes and is closely related to diseases. Deciphering the glycocode in diverse cells and tissues offers opportunities to develop new disease biomarkers and more effective recombinant therapeutics. In the past few decades, with the development of glycobiology, glycomics, and glycoproteomics technologies, a large amount of glycoscience data has been generated. Subsequently, a number of glycobiology databases covering glycan structure, the glycosylation sites, the protein scaffolds, and related glycogenes have been developed to store, analyze, and integrate these data. However, these databases and tools are not well known or widely used by the public, including clinicians and other researchers who are not in the field of glycobiology, but are interested in glycoproteins. In this study, the representative databases of glycan structure, glycoprotein, glycan-protein interactions, glycogenes, and the newly developed bioinformatic tools and integrated portal for glycoproteomics are reviewed. We hope this overview could assist readers in searching for information on glycoproteins of interest, and promote further clinical application of glycobiology.
Collapse
|
13
|
Cao WQ, Liu MQ, Kong SY, Wu MX, Huang ZZ, Yang PY. Novel methods in glycomics: a 2019 update. Expert Rev Proteomics 2020; 17:11-25. [PMID: 31914820 DOI: 10.1080/14789450.2020.1708199] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Introduction: Glycomics, which aims to define the glycome of a biological system to better assess the biological attributes of the glycans, has attracted increasing interest. However, the complexity and diversity of glycans present challenging barriers to glycome definition. Technological advances are major drivers in glycomics.Areas covered: This review summarizes the main methods and emphasizes the most recent advances in mass spectrometry-based methods regarding glycomics following the general workflow in glycomic analysis.Expert opinion: Recent mass spectrometry-based technological advances have significantly lowered the barriers in glycomics. The field of glycomics is moving toward both generic and precise analysis.
Collapse
Affiliation(s)
- Wei-Qian Cao
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, China
| | - Ming-Qi Liu
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Si-Yuan Kong
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Meng-Xi Wu
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Department of Chemistry, Fudan University, Shanghai, China
| | - Zheng-Ze Huang
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Peng-Yuan Yang
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, China.,Department of Chemistry, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Sharma S, Shekhar S, Sharma B, Jain P. Decoding glycans: deciphering the sugary secrets to be coherent on the implication. RSC Adv 2020; 10:34099-34113. [PMID: 35519023 PMCID: PMC9056758 DOI: 10.1039/d0ra04471g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/23/2020] [Indexed: 12/28/2022] Open
Abstract
Neoteric techniques, skills, and methodological advances in glycobiology and glycochemistry have been instrumental in pertinent discoveries to pave way for a new era in biomedical sciences. Glycans are sugar-based polymers that coat cells and decorate majority of proteins, forming glycoproteins. They are also found deposited in extracellular spaces between cells, attached to soluble signaling molecules, and are key players in several biological processes including regulation of immune responses and cell–cell interactions. Laboratory manipulations of protein, DNA and other macromolecules celebrate the accelerated research in respective fields, but the same seems unlikely for the complex sugar polymers. The structural complex polymers are neither synthesized using a known template nor are dynamically stable with respect to a cell's metabolic rate. What is more, sugar isomers—structurally distinct molecules with the same chemical formula—can be employed to construct varied glycans, but are almost impossible to tell apart based on molecular weight alone. The apparent lack of a glycan alphabet further reflects on an enduring question: how little do we know about the sugars? Evidently, glycan-based therapeutic potentials and glycomimetics are propitious advances for the future that have not been well exploited, and with a few conspicuous anomalies. Here, we contour the most notable contributions to enhance our ability to utilize the complex glycans as therapeutics. Diagnostic strategies concerning recurrent diseases and headways to address the challenges are also discussed. A glycan toolbox for pathogenic and cancerous interventions. The review article sheds light on the sweet secrets of this complex structure.![]()
Collapse
Affiliation(s)
- Shreya Sharma
- Department of Chemistry
- Netaji Subhas University of Technology
- India
| | - Shashank Shekhar
- Department of Chemistry
- Netaji Subhas University of Technology
- India
| | - Bhasha Sharma
- Department of Chemistry
- Netaji Subhas University of Technology
- India
| | - Purnima Jain
- Department of Chemistry
- Netaji Subhas University of Technology
- India
| |
Collapse
|
15
|
Pascovici D, Wu JX, McKay MJ, Joseph C, Noor Z, Kamath K, Wu Y, Ranganathan S, Gupta V, Mirzaei M. Clinically Relevant Post-Translational Modification Analyses-Maturing Workflows and Bioinformatics Tools. Int J Mol Sci 2018; 20:E16. [PMID: 30577541 PMCID: PMC6337699 DOI: 10.3390/ijms20010016] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/09/2018] [Accepted: 12/17/2018] [Indexed: 01/04/2023] Open
Abstract
Post-translational modifications (PTMs) can occur soon after translation or at any stage in the lifecycle of a given protein, and they may help regulate protein folding, stability, cellular localisation, activity, or the interactions proteins have with other proteins or biomolecular species. PTMs are crucial to our functional understanding of biology, and new quantitative mass spectrometry (MS) and bioinformatics workflows are maturing both in labelled multiplexed and label-free techniques, offering increasing coverage and new opportunities to study human health and disease. Techniques such as Data Independent Acquisition (DIA) are emerging as promising approaches due to their re-mining capability. Many bioinformatics tools have been developed to support the analysis of PTMs by mass spectrometry, from prediction and identifying PTM site assignment, open searches enabling better mining of unassigned mass spectra-many of which likely harbour PTMs-through to understanding PTM associations and interactions. The remaining challenge lies in extracting functional information from clinically relevant PTM studies. This review focuses on canvassing the options and progress of PTM analysis for large quantitative studies, from choosing the platform, through to data analysis, with an emphasis on clinically relevant samples such as plasma and other body fluids, and well-established tools and options for data interpretation.
Collapse
Affiliation(s)
- Dana Pascovici
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109, Australia.
| | - Jemma X Wu
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109, Australia.
| | - Matthew J McKay
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109, Australia.
| | - Chitra Joseph
- Department of Clinical Medicine, Macquarie University, Sydney, NSW 2109, Australia.
| | - Zainab Noor
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Karthik Kamath
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109, Australia.
| | - Yunqi Wu
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109, Australia.
| | - Shoba Ranganathan
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Vivek Gupta
- Department of Clinical Medicine, Macquarie University, Sydney, NSW 2109, Australia.
| | - Mehdi Mirzaei
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109, Australia.
- Department of Clinical Medicine, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
16
|
Bello SM, Shimoyama M, Mitraka E, Laulederkind SJF, Smith CL, Eppig JT, Schriml LM. Disease Ontology: improving and unifying disease annotations across species. Dis Model Mech 2018; 11:dmm.032839. [PMID: 29590633 PMCID: PMC5897730 DOI: 10.1242/dmm.032839] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/08/2018] [Indexed: 11/20/2022] Open
Abstract
Model organisms are vital to uncovering the mechanisms of human disease and developing new therapeutic tools. Researchers collecting and integrating relevant model organism and/or human data often apply disparate terminologies (vocabularies and ontologies), making comparisons and inferences difficult. A unified disease ontology is required that connects data annotated using diverse disease terminologies, and in which the terminology relationships are continuously maintained. The Mouse Genome Database (MGD, http://www.informatics.jax.org), Rat Genome Database (RGD, http://rgd.mcw.edu) and Disease Ontology (DO, http://www.disease-ontology.org) projects are collaborating to augment DO, aligning and incorporating disease terms used by MGD and RGD, and improving DO as a tool for unifying disease annotations across species. Coordinated assessment of MGD's and RGD's disease term annotations identified new terms that enhance DO's representation of human diseases. Expansion of DO term content and cross-references to clinical vocabularies (e.g. OMIM, ORDO, MeSH) has enriched the DO's domain coverage and utility for annotating many types of data generated from experimental and clinical investigations. The extension of anatomy-based DO classification structure of disease improves accessibility of terms and facilitates application of DO for computational research. A consistent representation of disease associations across data types from cellular to whole organism, generated from clinical and model organism studies, will promote the integration, mining and comparative analysis of these data. The coordinated enrichment of the DO and adoption of DO by MGD and RGD demonstrates DO's usability across human data, MGD, RGD and the rest of the model organism database community. Summary: Analyzing diverse disease data requires a comprehensive, robust disease ontology to integrate annotations and retrieve accurate, interpretable results. MGD, RGD and DO are working in collaboration to achieve this goal.
Collapse
Affiliation(s)
| | - Mary Shimoyama
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Elvira Mitraka
- Department of Epidemiology and Public Health, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | - Lynn M Schriml
- Department of Epidemiology and Public Health, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
17
|
Reichardt NC, Martín-Lomas M, Penadés S. Opportunities for glyconanomaterials in personalized medicine. Chem Commun (Camb) 2018; 52:13430-13439. [PMID: 27709147 DOI: 10.1039/c6cc04445j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this feature article we discuss the particular relevance of glycans as components or targets of functionalized nanoparticles (NPs) for potential applications in personalized medicine but we will not enter into descriptions for their preparation. For a more general view covering the preparation and applications of glyconanomaterials the reader is referred to a number of recent reviews. The combination of glyco- and nanotechnology is already providing promising new tools for more personalized solutions to diagnostics and therapy. Current applications relevant to personalized medicine include drug targeting, localized radiation therapy, imaging of glycan expression of cancer cells, point of care diagnostics, cancer vaccines, photodynamic therapy, biosensors, and glycoproteomics.
Collapse
Affiliation(s)
- Niels-Christian Reichardt
- CIC biomaGUNE, Glycotechnology Laboratory, Paseo Miramón 182, 20009 San Sebastian, Spain. and CIBER BBN, Paseo Miramón 182, 20009 San Sebastian, Spain
| | - Manuel Martín-Lomas
- CIC biomaGUNE, Glycotechnology Laboratory, Paseo Miramón 182, 20009 San Sebastian, Spain.
| | - Soledad Penadés
- CIC biomaGUNE, Glycotechnology Laboratory, Paseo Miramón 182, 20009 San Sebastian, Spain.
| |
Collapse
|
18
|
Tiemeyer M, Aoki K, Paulson J, Cummings RD, York WS, Karlsson NG, Lisacek F, Packer NH, Campbell MP, Aoki NP, Fujita A, Matsubara M, Shinmachi D, Tsuchiya S, Yamada I, Pierce M, Ranzinger R, Narimatsu H, Aoki-Kinoshita KF. GlyTouCan: an accessible glycan structure repository. Glycobiology 2017; 27:915-919. [PMID: 28922742 PMCID: PMC5881658 DOI: 10.1093/glycob/cwx066] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 11/12/2022] Open
Abstract
Rapid and continued growth in the generation of glycomic data has revealed the need for enhanced development of basic infrastructure for presenting and interpreting these datasets in a manner that engages the broader biomedical research community. Early in their growth, the genomic and proteomic fields implemented mechanisms for assigning unique gene and protein identifiers that were essential for organizing data presentation and for enhancing bioinformatic approaches to extracting knowledge. Similar unique identifiers are currently absent from glycomic data. In order to facilitate continued growth and expanded accessibility of glycomic data, the authors strongly encourage the glycomics community to coordinate the submission of their glycan structures to the GlyTouCan Repository and to make use of GlyTouCan identifiers in their communications and publications. The authors also deeply encourage journals to recommend a submission workflow in which submitted publications utilize GlyTouCan identifiers as a standard reference for explicitly describing glycan structures cited in manuscripts.
Collapse
Affiliation(s)
- Michael Tiemeyer
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Rd, Athens, Georgia 30602, USA
| | - Kazuhiro Aoki
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Rd, Athens, Georgia 30602, USA
| | - James Paulson
- The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Richard D Cummings
- Harvard Medical School, 330 Brookline Ave, Room SL-0408, Boston, MA 02115, USA
| | - William S York
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Rd, Athens, Georgia 30602, USA
| | | | - Frederique Lisacek
- Swiss Institute of Bioinformatics, CUI - 7, route de Drize, CH-1211 Geneva, Switzerland
| | - Nicolle H Packer
- Institute for Glycomics, Gold Coast Campus, Griffith University, Parklands Drive, Gold Coast, QLD 4222, Australia
- Macquarie University, Balaclava Road, North Ryde, NSW 2109, Australia
| | - Matthew P Campbell
- Institute for Glycomics, Gold Coast Campus, Griffith University, Parklands Drive, Gold Coast, QLD 4222, Australia
| | - Nobuyuki P Aoki
- Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Akihiro Fujita
- Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Masaaki Matsubara
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Rd, Athens, Georgia 30602, USA
| | | | | | - Issaku Yamada
- The Noguchi Institute, 1-9-7, Kaga, Itabashi-ku, Tokyo 173-0003, Japan
| | - Michael Pierce
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Rd, Athens, Georgia 30602, USA
| | - René Ranzinger
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Rd, Athens, Georgia 30602, USA
| | - Hisashi Narimatsu
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-0046, Japan
| | | |
Collapse
|
19
|
Abrahams JL, Campbell MP, Packer NH. Building a PGC-LC-MS N-glycan retention library and elution mapping resource. Glycoconj J 2017; 35:15-29. [PMID: 28905148 DOI: 10.1007/s10719-017-9793-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/10/2017] [Accepted: 08/18/2017] [Indexed: 11/27/2022]
Abstract
Porous graphitised carbon-liquid chromatography (PGC-LC) has been proven to be a powerful technique for the analysis and characterisation of complex mixtures of isomeric and isobaric glycan structures. Here we evaluate the elution behaviour of N-glycans on PGC-LC and thereby provide the potential of using chromatographic separation properties, together with mass spectrometry (MS) fragmentation, to determine glycan structure assignments more easily. We used previously reported N-glycan structures released from the purified glycoproteins Immunoglobulin G (IgG), Immunoglobulin A (IgA), lactoferrin, α1-acid glycoprotein, Ribonuclease B (RNase B), fetuin and ovalbumin to profile their behaviour on capillary PGC-LC-MS. Over 100 glycan structures were determined by MS/MS, and together with targeted exoglycosidase digestions, created a N-glycan PGC retention library covering a full spectrum of biologically significant N-glycans from pauci mannose to sialylated tetra-antennary classes. The resultant PGC retention library ( http://www.glycostore.org/showPgc ) incorporates retention times and supporting fragmentation spectra including exoglycosidase digestion products, and provides detailed knowledge on the elution properties of N-glycans by PGC-LC. Consequently, this platform should serve as a valuable resource for facilitating the detailed analysis of the glycosylation of both purified recombinant, and complex mixtures of, glycoproteins using established workflows.
Collapse
Affiliation(s)
- Jodie L Abrahams
- Department of Chemistry and Biomolecular Sciences, Faculty of Science & Engineering, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
- Institute for Glycomics, Griffith University, QLD, Gold Coast, 4222, Australia
| | - Matthew P Campbell
- Department of Chemistry and Biomolecular Sciences, Faculty of Science & Engineering, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
- Institute for Glycomics, Griffith University, QLD, Gold Coast, 4222, Australia
| | - Nicolle H Packer
- Department of Chemistry and Biomolecular Sciences, Faculty of Science & Engineering, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia.
- Institute for Glycomics, Griffith University, QLD, Gold Coast, 4222, Australia.
| |
Collapse
|
20
|
Campbell MP. A Review of Software Applications and Databases for the Interpretation of Glycopeptide Data. TRENDS GLYCOSCI GLYC 2017. [DOI: 10.4052/tigg.1601.1e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Campbell MP, Peterson RA, Gasteiger E, Mariethoz J, Lisacek F, Packer NH. Navigating the Glycome Space and Connecting the Glycoproteome. Methods Mol Biol 2017; 1558:139-158. [PMID: 28150237 DOI: 10.1007/978-1-4939-6783-4_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
UniCarbKB ( http://unicarbkb.org ) is a comprehensive resource for mammalian glycoprotein and annotation data. In particular, the database provides information on the oligosaccharides characterized from a glycoprotein at either the global or site-specific level. This evidence is accumulated from a peer-reviewed and manually curated collection of information on oligosaccharides derived from membrane and secreted glycoproteins purified from biological fluids and/or tissues. This information is further supplemented with experimental method descriptions that summarize important sample preparation and analytical strategies. A new release of UniCarbKB is published every three months, each includes a collection of curated data and improvements to database functionality. In this Chapter, we outline the objectives of UniCarbKB, and describe a selection of step-by-step workflows for navigating the information available. We also provide a short description of web services available and future plans for improving data access. The information presented in this Chapter supplements content available in our knowledgebase including regular updates on interface improvements, new features, and revisions to the database content ( http://confluence.unicarbkb.org ).
Collapse
Affiliation(s)
- Matthew P Campbell
- Department of Chemistry and Biomolecular Sciences, Research Drive, Building E8C, Macquarie University, North Ryde, Sydney, 2109, NSW, Australia
| | - Robyn A Peterson
- Department of Chemistry and Biomolecular Sciences, Research Drive, Building E8C, Macquarie University, North Ryde, Sydney, 2109, NSW, Australia
| | - Elisabeth Gasteiger
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, Battelle - Building A7, Route de Drize, 1227 Carouge, Switzerland
| | - Julien Mariethoz
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, Battelle - Building A7, Route de Drize, 1227 Carouge, Switzerland
| | - Frederique Lisacek
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, Battelle - Building A7, Route de Drize, 1227 Carouge, Switzerland
- Computer Science Department, University of Geneva, Battelle - Building A7, Route de Drize, 1227 Carouge, Switzerland
| | - Nicolle H Packer
- Department of Chemistry and Biomolecular Sciences, Research Drive, Building E8C, Macquarie University, North Ryde, Sydney, 2109, NSW, Australia.
| |
Collapse
|
22
|
Abstract
Chemical tools have accelerated progress in glycoscience, reducing experimental barriers to studying protein glycosylation, the most widespread and complex form of posttranslational modification. For example, chemical glycoproteomics technologies have enabled the identification of specific glycosylation sites and glycan structures that modulate protein function in a number of biological processes. This field is now entering a stage of logarithmic growth, during which chemical innovations combined with mass spectrometry advances could make it possible to fully characterize the human glycoproteome. In this review, we describe the important role that chemical glycoproteomics methods are playing in such efforts. We summarize developments in four key areas: enrichment of glycoproteins and glycopeptides from complex mixtures, emphasizing methods that exploit unique chemical properties of glycans or introduce unnatural functional groups through metabolic labeling and chemoenzymatic tagging; identification of sites of protein glycosylation; targeted glycoproteomics; and functional glycoproteomics, with a focus on probing interactions between glycoproteins and glycan-binding proteins. Our goal with this survey is to provide a foundation on which continued technological advancements can be made to promote further explorations of protein glycosylation.
Collapse
Affiliation(s)
- Krishnan K. Palaniappan
- Verily Life Sciences, 269 East Grand Ave., South San Francisco, California 94080, United States
| | - Carolyn R. Bertozzi
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
23
|
Hashiguchi A, Komatsu S. Posttranslational Modifications and Plant-Environment Interaction. Methods Enzymol 2016; 586:97-113. [PMID: 28137579 DOI: 10.1016/bs.mie.2016.09.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Posttranslational modifications (PTMs) of proteins such as phosphorylation and ubiquitination are crucial for controlling protein stability, localization, and conformation. Genetic information encoded in DNA is transcribed, translated, and increases its complexity by multiple PTMs. Conformational change introduced by PTMs affects interacting partners of each proteins and their downstream signaling; therefore, PTMs are the major level of modulations of total outcome of living cells. Plants are living in harsh environment that requires unremitting physiological modulation to survive, and the plant response to various environment stresses is regulated by PTMs of proteins. This review deals with the novel knowledge of PTM-focused proteomic studies on various life conditions. PTMs are focused that mediate plant-environment interaction such as stress perception, protein homeostasis, control of energy shift, and defense by immune system. Integration of diverse signals on a protein via multiple PTMs is discussed as well, considering current situation where signal integration became an emerging area approached by systems biology into account.
Collapse
Affiliation(s)
- A Hashiguchi
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - S Komatsu
- National Institute of Crop Science, NARO, Tsukuba, Japan.
| |
Collapse
|
24
|
Use of a glycosylation site database to improve glycopeptide identification from complex mixtures. Anal Bioanal Chem 2016; 409:571-577. [PMID: 27722944 DOI: 10.1007/s00216-016-9981-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/16/2016] [Accepted: 09/26/2016] [Indexed: 10/20/2022]
Abstract
New mass spectrometry instrumentation, particularly those with electron transfer dissociation fragmentation, has made the analysis of complex glycopeptide mixtures accessible. However, software tools need to be optimized for interpretation of this type of data. Glycopeptide identification is challenging due to the number of different peptide and sugar moieties that can be combined, leading to a large number of potential compositions to consider. In this manuscript, different strategies for reducing the number of peptides and glycopeptides considered in database searching are compared. Adaptation of the software Protein Prospector to support the use of a reference modification site database doubled the number of glycopeptide IDs. The potential of this as an improved analysis strategy is discussed. Graphical abstract This manuscript compares the use of a restricted protein database based on a list of accession numbers of identified proteins to the use of a modification site database for intact glycopeptide analysis. It was found that the modification database is more effective for glycopeptide identification, particularly for larger glycopeptides.
Collapse
|
25
|
Walsh I, Zhao S, Campbell M, Taron CH, Rudd PM. Quantitative profiling of glycans and glycopeptides: an informatics' perspective. Curr Opin Struct Biol 2016; 40:70-80. [PMID: 27522273 DOI: 10.1016/j.sbi.2016.07.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/25/2016] [Accepted: 07/30/2016] [Indexed: 12/16/2022]
Abstract
Experimental techniques to identify and quantify glycan structures in a given sample are continuously improving. However, as they advance data analysis and annotation seems to become more complex. To address this issue, much progress has been made in developing software for interpretation of quantitative glycan profiles. Here, we focus on these informatics tools for high/ultra performance liquid chromatography (H/UPLC), mass spectrometry (MS), tandem mass spectrometry (MSn) and combinations thereof. Software for biomarker discovery, pathway, genomic and disease analysis and a final note on some future prospects for glycoinformatics are also mentioned.
Collapse
Affiliation(s)
- Ian Walsh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore; New England Biolabs, Ipswich, MA, United States
| | - Sophie Zhao
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Matthew Campbell
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | | | - Pauline M Rudd
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore; National Institute for Bioprocessing Research & Training, Dublin, Ireland.
| |
Collapse
|
26
|
Planinc A, Bones J, Dejaegher B, Van Antwerpen P, Delporte C. Glycan characterization of biopharmaceuticals: Updates and perspectives. Anal Chim Acta 2016; 921:13-27. [PMID: 27126786 DOI: 10.1016/j.aca.2016.03.049] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/21/2016] [Accepted: 03/29/2016] [Indexed: 02/01/2023]
Abstract
Therapeutic proteins are rapidly becoming the most promising class of pharmaceuticals on the market due to their successful treatment of a vast array of serious diseases, such as cancers and immune disorders. Therapeutic proteins are produced using recombinant DNA technology. More than 60% of therapeutic proteins are posttranslationally modified following biosynthesis by the addition of N- or O-linked glycans. Glycosylation is the most common posttranslational modifications of proteins. However, it is also the most demanding and complex posttranslational modification from the analytical point of view. Moreover, research has shown that glycosylation significantly impacts stability, half-life, mechanism of action and safety of a therapeutic protein. Considering the exponential growth of biotherapeutics, this present review of the literature (2009-2015) focuses on the characterization of protein glycosylation, which has witnessed an improvement in methodology. Furthermore, it discusses current issues in the fields of production and characterization of therapeutic proteins. This review also highlights the problem of non-standard requirements for the approval of biosimilars with regard to their glycosylation and discusses recent developments and perspectives for improved glycan characterization.
Collapse
Affiliation(s)
- Ana Planinc
- Analytical Platform of the Faculty of Pharmacy and Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, Universite Libre de Bruxelles (ULB), Brussels, Belgium
| | - Jonathan Bones
- Characterisation and Comparability Laboratory, NIBRT - The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland
| | - Bieke Dejaegher
- Laboratory of Instrumental Analysis and Bioelectrochemistry, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, B-1050 Brussels, Belgium; Department of Analytical Chemistry and Pharmaceutical Technology (FABI), Center for Pharmaceutical Research (CePhaR), Faculty of Medicines and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Pierre Van Antwerpen
- Analytical Platform of the Faculty of Pharmacy and Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, Universite Libre de Bruxelles (ULB), Brussels, Belgium
| | - Cédric Delporte
- Analytical Platform of the Faculty of Pharmacy and Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, Universite Libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|