1
|
Mendes EP, Ianzer D, Peruchetti DB, Santos RAS, Vieira MAR. Interaction of Angiotensin-(1-7) with kinins in the kidney circulation: Role of B 1 receptors. Peptides 2024; 179:171246. [PMID: 38821119 DOI: 10.1016/j.peptides.2024.171246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/19/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024]
Abstract
Changes in renal hemodynamics impact renal function during physiological and pathological conditions. In this context, renal vascular resistance (RVR) is regulated by components of the Renin-Angiotensin System (RAS) and the Kallikrein-Kinin System (KKS). However, the interaction between these vasoactive peptides on RVR is still poorly understood. Here, we studied the crosstalk between angiotensin-(1-7) and kinins on RVR. The right kidneys of Wistar rats were isolated and perfused in a closed-circuit system. The perfusion pressure and renal perfusate flow were continuously monitored. Ang-(1-7) (1.0-25.0 nM) caused a sustained, dose-dependent reduction of relative RVR (rRVR). This phenomenon was sensitive to 10 nM A-779, a specific Mas receptor (MasR) antagonist. Bradykinin (BK) promoted a sustained and transient reduction in rRVR at 1.25 nM and 125 nM, respectively. The transient effect was abolished by 4 μM des-Arg9-Leu8-bradykinin (DALBK), a specific kinin B1 receptor (B1R) antagonist. Accordingly, des-Arg9-bradykinin (DABK) 1 μM (a B1R agonist) increased rRVR. Interestingly, pre-perfusion of Ang-(1-7) changed the sustained reduction of rRVR triggered by 1.25 nM BK into a transient effect. On the other hand, pre-perfusion of Ang-(1-7) primed and potentiated the DABK response, this mechanism being sensitive to A-779 and DALBK. Binding studies performed with CHO cells stably transfected with MasR, B1R, and kinin B2 receptor (B2R) showed no direct interaction between Ang-(1-7) with B1R or B2R. In conclusion, our findings suggest that Ang-(1-7) differentially modulates kinin's effect on RVR in isolated rat kidneys. These results help to expand the current knowledge regarding the crosstalk between the RAS and KKS complex network in RVR.
Collapse
Affiliation(s)
| | - Danielle Ianzer
- Department of Physiological Sciences, ICB, UFG, Goiania, GO, Brazil; National Institute of Science and Technology in Nanobiopharmaceutics, INCT-Nanobiofar, Belo Horizonte, MG, Brazil
| | - Diogo Barros Peruchetti
- Department of Physiology and Biophysics, ICB, UFMG, Belo Horizonte, MG, Brazil; National Institute of Science and Technology in Nanobiopharmaceutics, INCT-Nanobiofar, Belo Horizonte, MG, Brazil
| | - Robson Augusto Souza Santos
- Department of Physiology and Biophysics, ICB, UFMG, Belo Horizonte, MG, Brazil; National Institute of Science and Technology in Nanobiopharmaceutics, INCT-Nanobiofar, Belo Horizonte, MG, Brazil
| | | |
Collapse
|
2
|
Pinheiro ADS, Kazura JW, Pinheiro AA, Schmaier AH. Is there a role for bradykinin in cerebral malaria pathogenesis? Front Cell Infect Microbiol 2023; 13:1184896. [PMID: 37637466 PMCID: PMC10448822 DOI: 10.3389/fcimb.2023.1184896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Malaria is a parasitic disease of global health significance and a leading cause of death in children living in endemic regions. Although various Plasmodium species are responsible for the disease, Plasmodium falciparum infection accounts for most severe cases of the disease in humans. The mechanisms of cerebral malaria pathogenesis have been studied extensively in humans and animal malaria models; however, it is far from being fully understood. Recent discoveries indicate a potential role of bradykinin and the kallikrein kinin system in the pathogenesis of cerebral malaria. The aim of this review is to highlight how bradykinin is formed in cerebral malaria and how it may impact cerebral blood-brain barrier function. Areas of interest in this context include Plasmodium parasite enzymes that directly generate bradykinin from plasma protein precursors, cytoadhesion of P. falciparum infected red blood cells to brain endothelial cells, and endothelial cell blood-brain barrier disruption.
Collapse
Affiliation(s)
- Alessandro de Sa Pinheiro
- Department of Medicine, Hematology and Oncology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - James W. Kazura
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Ana Acacia Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Alvin H. Schmaier
- Department of Medicine, Hematology and Oncology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
3
|
dos Santos EC, Silva LS, Pinheiro AS, Teixeira DE, Peruchetti DB, Silva-Aguiar RP, Wendt CHC, Miranda KR, Coelho-de-Souza AN, Leal-Cardoso JH, Caruso-Neves C, Pinheiro AAS. The monoterpene 1,8-cineole prevents cerebral edema in a murine model of severe malaria. PLoS One 2022; 17:e0268347. [PMID: 35550638 PMCID: PMC9098050 DOI: 10.1371/journal.pone.0268347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 04/27/2022] [Indexed: 11/18/2022] Open
Abstract
1,8-Cineole is a naturally occurring compound found in essential oils of different plants and has well-known anti-inflammatory and antimicrobial activities. In the present work, we aimed to investigate its potential antimalarial effect, using the following experimental models: (1) the erythrocytic cycle of Plasmodium falciparum; (2) an adhesion assay using brain microvascular endothelial cells; and (3) an experimental cerebral malaria animal model induced by Plasmodium berghei ANKA infection in susceptible mice. Using the erythrocytic cycle of Plasmodium falciparum, we characterized the schizonticidal effect of 1,8-cineole. This compound decreased parasitemia in a dose-dependent manner with a half maximal inhibitory concentration of 1045.53 ± 63.30 μM. The inhibitory effect of 972 μM 1,8-cineole was irreversible and independent of parasitemia. Moreover, 1,8-cineole reduced the progression of intracellular development of the parasite over 2 cycles, inducing important morphological changes. Ultrastructure analysis revealed a massive loss of integrity of endomembranes and hemozoin crystals in infected erythrocytes treated with 1,8-cineole. The monoterpene reduced the adhesion index of infected erythrocytes to brain microvascular endothelial cells by 60%. Using the experimental cerebral malaria model, treatment of infected mice for 6 consecutive days with 100 mg/kg/day 1,8-cineole reduced cerebral edema with a 50% reduction in parasitemia. Our data suggest a potential antimalarial effect of 1,8-cineole with an impact on the parasite erythrocytic cycle and severe disease.
Collapse
Affiliation(s)
- Edgleyson C. dos Santos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, Brazil
| | - Leandro S. Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandro S. Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Douglas E. Teixeira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diogo B. Peruchetti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo P. Silva-Aguiar
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Camila H. C. Wendt
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kildare R. Miranda
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Conselho Nacional de Desenvolvimento Científico e Tecnológico, Rio de Janeiro, Brazil
| | | | | | - Celso Caruso-Neves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Conselho Nacional de Desenvolvimento Científico e Tecnológico, Rio de Janeiro, Brazil
- Rio de Janeiro Innovation Network in Nanosystems for Health, Rio de Janeiro, Brazil
| | - Ana Acacia S. Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Rio de Janeiro Innovation Network in Nanosystems for Health, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
4
|
De A, Tiwari A, Pande V, Sinha A. Evolutionary trilogy of malaria, angiotensin II and hypertension: deeper insights and the way forward. J Hum Hypertens 2022; 36:344-351. [PMID: 34480100 DOI: 10.1038/s41371-021-00599-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 08/06/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
Despite clinical and pathological distinctions between malaria and hypertension, accumulated epidemiological and evolutionary evidence indicate the need of deeper understanding how severe malaria contributes to elevated hypertension risk. Malaria is said to exert strong selection pressure on the host genome, thus selecting certain genetic polymorphisms. Few candidate polymorphisms have also been reported in the RAS (ACE I/D and ACE2 rs2106809) that are shown to increase angiotensin II (ang II) levels in a combinatorial manner. The raised ang II has some antiplasmodial actions in addition to protecting against severe/cerebral malaria. It is hypothesized that RAS polymorphisms may have been naturally selected over time in the malaria-endemic areas in such a way that hypertension, or the risk thereof, is higher in such areas as compared to non-malaria endemic areas. The purpose of this review is to gain deeper insights into various sparse evidence linking malaria and hypertension and suggesting a way forward.
Collapse
Affiliation(s)
- Auley De
- Parasite-Host Biology, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Aparna Tiwari
- Parasite-Host Biology, ICMR-National Institute of Malaria Research, New Delhi, India.,Department of Biotechnology, Bhimtal, Kumaun University, Nainital, Uttarakhand, India
| | - Veena Pande
- Department of Biotechnology, Bhimtal, Kumaun University, Nainital, Uttarakhand, India
| | - Abhinav Sinha
- Parasite-Host Biology, ICMR-National Institute of Malaria Research, New Delhi, India.
| |
Collapse
|
5
|
Signaling Pathway in the Osmotic Resistance Induced by Angiotensin II AT2 Receptor Activation in Human Erythrocytes. Rep Biochem Mol Biol 2021; 10:314-326. [PMID: 34604421 DOI: 10.52547/rbmb.10.2.314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/07/2021] [Indexed: 12/25/2022]
Abstract
Background Angiotensin II regulates blood volume via AT1 (AT1R) and AT2 (AT2R) receptors. As cell integrity is an important feature of mature erythrocyte, we sought to evaluate, in vitro, whether angiotensin II modulates resistance to hemolysis and the signaling pathway involved. Methods Human blood samples were collected and hemolysis assay and angiotensin II signaling pathway profiling in erythrocytes were done. Results Hemolysis assay created a hemolysis curve in presence of Ang II in several concentrations (10-6 M, 10-8 M, 10-10 M, 10-12 M). Angiotensin II demonstrated protective effect, both in osmotic stressed and physiological situations, by reducing hemolysis in NaCl 0.4% and 0.9%. By adding receptors antagonists (losartan, AT1R antagonist and PD 123319, AT2R antagonist) and/or signaling modulators for AMPK, Akt/PI3K, p38 and PKC we showed the protective effect was enhanced with losartan and abolished with PD 123319. Also, we showed activation of p38 as well as PI3K/Akt pathways in this system. Conclusion Ang II protects human erythrocytes from hypo-osmotic conditions-induced hemolysis by activating AT2 receptors and triggering intracellular pathways.
Collapse
|
6
|
Dhangadamajhi G, Singh S. Malaria link of hypertension: a hidden syndicate of angiotensin II, bradykinin and sphingosine 1-phosphate. Hum Cell 2021; 34:734-744. [PMID: 33683655 DOI: 10.1007/s13577-021-00513-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/22/2021] [Indexed: 01/22/2023]
Abstract
In malaria-endemic countries, the burden of hypertension is on the rise. Although malaria and hypertension seem to have no direct link, several studies in recent years support their possible link. Three bioactive molecules such as angiotensin II (Ang II), bradykinin (BK) and sphingosine 1-phosphate (S1P) are crucial in regulating blood pressure. While the increased level of Ang II and S1P are responsible for inducing hypertension, BK is arthero-protective and anti-hypertensive. Therefore, in the present review, based on available literatures we highlight the present knowledge on the production and bioavailability of these molecules, the mechanism of their regulation of hypertension, and patho-physiological role in malaria. Further, a possible link between malaria and hypertension is hypothesized through various arguments based on experimental evidence. Understanding of their mechanisms of blood pressure regulation during malaria infection may open up avenues for drug therapeutics and management of malaria in co-morbidity with hypertension.
Collapse
Affiliation(s)
- Gunanidhi Dhangadamajhi
- Department of Biotechnology, Maharaja Sriramchandra Bhanjadeo University, Takatpur, Baripada, Odisha, 75003, India.
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
7
|
da Cruz RMD, Braga RM, de Andrade HHN, Monteiro ÁB, Luna IS, da Cruz RMD, Scotti MT, Mendonça-Junior FJB, de Almeida RN. RMD86, a thiophene derivative, promotes antinociceptive and antipyretic activities in mice. Heliyon 2020; 6:e05520. [PMID: 33294672 PMCID: PMC7695913 DOI: 10.1016/j.heliyon.2020.e05520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/28/2020] [Accepted: 11/11/2020] [Indexed: 12/29/2022] Open
Abstract
Treatment of pain and fever remains an important challenge for modern medicine. Non-steroidal anti-inflammatory drugs (NSAIDs) are the pharmacological options most often used, but their frequent use exposes the patient to serious side effects and dangerous drug interactions. In this context, thiophene derivatives are promising therapeutic alternatives. In this study, we evaluated the in vivo and in silico antinociceptive and antipyretic properties of RMD86, a thiophene derivative. At 100 mg/kg, RMD86 induced no significant changes in the motor coordination of mice in the Rotarod test. At 25, 50, and 100 mg/kg RMD86 significantly reduced the number of abdominal contortions induced by acetic acid (antinociceptive activity) in mice when compared to the control. In the formalin test, for the first phase, there was a reduction in licking times at doses of 50 and 100 mg/kg. In the second phase, reduction occurred at all doses. In the hot plate test, RMD86 (at 100 mg/kg) increased latency time in the first 30 min. For antipyretic activity, RMD86, when compared to the reference drug acetaminophen (250 mg/kg), significantly reduced pyrexia at 30, 60, and 120 min, at dosages of 25, 50 and 100 mg/kg. Molecular docking studies revealed that RMD86 presents a greater number of interactions and lower energy values than both the co-crystallized ligand and the reference drug (meloxicam) against COX-1 and COX-2 isoenzymes. The results give evidence of the analgesic and antipyretic properties like NSAIDs suggesting its potential for pain therapy.
Collapse
Affiliation(s)
- Ryldene Marques Duarte da Cruz
- Post-Graduation Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa, PB 58051-900, Brazil
| | - Renan Marinho Braga
- Post-Graduation Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa, PB 58051-900, Brazil
| | - Humberto Hugo Nunes de Andrade
- Post-Graduation Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa, PB 58051-900, Brazil
| | - Álefe Brito Monteiro
- Post-Graduation Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa, PB 58051-900, Brazil
| | - Isadora Silva Luna
- Post-Graduation Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa, PB 58051-900, Brazil
| | - Rayssa Marques Duarte da Cruz
- Post-Graduation Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa, PB 58051-900, Brazil
- Laboratory of Synthesis and Drug Delivery, State University of Paraiba, João Pessoa, PB 58071-160, Brazil
| | - Marcus Tullius Scotti
- Post-Graduation Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa, PB 58051-900, Brazil
| | - Francisco Jaime Bezerra Mendonça-Junior
- Post-Graduation Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa, PB 58051-900, Brazil
- Laboratory of Synthesis and Drug Delivery, State University of Paraiba, João Pessoa, PB 58071-160, Brazil
| | - Reinaldo Nóbrega de Almeida
- Post-Graduation Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa, PB 58051-900, Brazil
| |
Collapse
|
8
|
Dagnino APA, Campos MM, Silva RBM. Kinins and Their Receptors in Infectious Diseases. Pharmaceuticals (Basel) 2020; 13:ph13090215. [PMID: 32867272 PMCID: PMC7558425 DOI: 10.3390/ph13090215] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 01/08/2023] Open
Abstract
Kinins and their receptors have been implicated in a series of pathological alterations, representing attractive pharmacological targets for several diseases. The present review article aims to discuss the role of the kinin system in infectious diseases. Literature data provides compelling evidence about the participation of kinins in infections caused by diverse agents, including viral, bacterial, fungal, protozoan, and helminth-related ills. It is tempting to propose that modulation of kinin actions and production might be an adjuvant strategy for management of infection-related complications.
Collapse
|
9
|
Nwokocha CR, Bafor EE, Ajayi OI, Ebeigbe AB. The Malaria-High Blood Pressure Hypothesis: Revisited. Am J Hypertens 2020; 33:695-702. [PMID: 32211753 DOI: 10.1093/ajh/hpaa051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/24/2020] [Accepted: 03/18/2020] [Indexed: 11/14/2022] Open
Abstract
Malaria etiologies with pathophysiological similarities to hypertension currently constitute a major subject of research. The malaria-high blood pressure hypothesis is strongly supported by observations of the increasing incidence of hypertension in malaria-endemic, low- and middle-income countries with poor socioeconomic conditions, particularly in sub-Saharan African countries. Malnutrition and low birth weight with persistent symptomatic malaria presentations in pregnancy correlate strongly with the development of preeclampsia, gestational hypertension and subsequent hypertension in adult life. Evidence suggest that the link between malaria infection and high blood pressure involves interactions between malaria parasites and erythrocytes, the inflammatory process, effects of the infection during pregnancy; effects on renal and vascular functions as well as effects in sickle cell disease. Possible mechanisms which provide justification for the malaria-high blood pressure hypothesis include the following: endothelial dysfunction (reduced nitric oxide (NO) levels), impaired release of local neurotransmitters and cytokines, decrease in vascular smooth muscle cell viability and/or alterations in cellular calcium signaling leading to enhanced vascular reactivity, remodeling, and cardiomyopathies, deranged homeostasis through dehydration, elevated intracellular mediators and proinflammatory cytokine responses, possible genetic regulations, activation of the renin-angiotensin-aldosterone system mechanisms and renal derangements, severe anemia and hemolysis, renal failure, and end organ damage. Two key mediators of the malaria-high blood pressure association are: endothelial dysfunction (reduced NO) and increased angiotensin-converting enzyme activity/angiotensin II levels. Sickle cell disease is associated with protection against malaria infection and reduced blood pressure. In this review, we present the state of knowledge about the malaria-blood pressure hypothesis and suggest insights for future studies.
Collapse
Affiliation(s)
| | - Enitome E Bafor
- Department of Pharmacology and Toxicology, University of Benin, Benin City, Nigeria
| | - Olutayo I Ajayi
- Department of Physiology, College of Medical Sciences, University of Benin, Benin City, Nigeria
| | - Anthony B Ebeigbe
- Department of Physiology, College of Medical Sciences, University of Benin, Benin City, Nigeria
| |
Collapse
|
10
|
Mohammed El Tabaa M, Mohammed El Tabaa M. Targeting Neprilysin (NEP) pathways: A potential new hope to defeat COVID-19 ghost. Biochem Pharmacol 2020; 178:114057. [PMID: 32470547 PMCID: PMC7250789 DOI: 10.1016/j.bcp.2020.114057] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023]
Abstract
COVID-19 is an ongoing viral pandemic disease that is caused by SARS-CoV2, inducing severe pneumonia in humans. However, several classes of repurposed drugs have been recommended, no specific vaccines or effective therapeutic interventions for COVID-19 are developed till now. Viral dependence on ACE-2, as entry receptors, drove the researchers into RAS impact on COVID-19 pathogenesis. Several evidences have pointed at Neprilysin (NEP) as one of pulmonary RAS components. Considering the protective effect of NEP against pulmonary inflammatory reactions and fibrosis, it is suggested to direct the future efforts towards its potential role in COVID-19 pathophysiology. Thus, the review aimed to shed light on the potential beneficial effects of NEP pathways as a novel target for COVID-19 therapy by summarizing its possible molecular mechanisms. Additional experimental and clinical studies explaining more the relationships between NEP and COVID-19 will greatly benefit in designing the future treatment approaches.
Collapse
Affiliation(s)
- Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute, University of Sadat City, Egypt.
| | | |
Collapse
|
11
|
Ventura PDS, Carvalho CPF, Barros NMT, Martins-Silva L, Dantas EO, Martinez C, Melo PMS, Pesquero JB, Carmona AK, Nagaoka MR, Gazarini ML. Malaria infection promotes a selective expression of kinin receptors in murine liver. Malar J 2019; 18:213. [PMID: 31234939 PMCID: PMC6591901 DOI: 10.1186/s12936-019-2846-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Malaria represents a worldwide medical emergency affecting mainly poor areas. Plasmodium parasites during blood stages can release kinins to the extracellular space after internalization of host kininogen inside erythrocytes and these released peptides could represent an important mechanism in liver pathophysiology by activation of calcium signaling pathway in endothelial cells of vertebrate host. Receptors (B1 and B2) activated by kinins peptides are important elements for the control of haemodynamics in liver and its physiology. The aim of this study was to identify changes in the liver host responses (i.e. kinin receptors expression and localization) and the effect of ACE inhibition during malaria infection using a murine model. METHODS Balb/C mice infected by Plasmodium chabaudi were treated with captopril, an angiotensin I-converting enzyme (ACE) inhibitor, used alone or in association with the anti-malarial chloroquine in order to study the effect of ACE inhibition on mice survival and the activation of liver responses involving B1R and B2R signaling pathways. The kinin receptors (B1R and B2R) expression and localization was analysed in liver by western blotting and immunolocalization in different conditions. RESULTS It was verified that captopril treatment caused host death during the peak of malaria infection (parasitaemia about 45%). B1R expression was stimulated in endothelial cells of sinusoids and other blood vessels of mice liver infected by P. chabaudi. At the same time, it was also demonstrated that B1R knockout mice infected presented a significant reduction of survival. However, the infection did not alter the B2R levels and localization in liver blood vessels. CONCLUSIONS Thus, it was observed through in vivo studies that the vasodilation induced by plasma ACE inhibition increases mice mortality during P. chabaudi infection. Besides, it was also seen that the anti-malarial chloroquine causes changes in B1R expression in liver, even after days of parasite clearance. The differential expression of B1R and B2R in liver during malaria infection may have an important role in the disease pathophysiology and represents an issue for clinical treatments.
Collapse
Affiliation(s)
- Priscilla D S Ventura
- Departamento de Biociências, Universidade Federal de São Paulo, Rua Silva Jardim 136, Lab 329, 3ºandar, Vila Mathias, Santos, 11015020, Brazil
| | - Carolina P F Carvalho
- Departamento de Biociências, Universidade Federal de São Paulo, Rua Silva Jardim 136, Lab 329, 3ºandar, Vila Mathias, Santos, 11015020, Brazil
| | - Nilana M T Barros
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, Brazil
| | | | - Edilson O Dantas
- Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Carolina Martinez
- Departamento de Biociências, Universidade Federal de São Paulo, Rua Silva Jardim 136, Lab 329, 3ºandar, Vila Mathias, Santos, 11015020, Brazil
| | - Pollyana M S Melo
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil
| | - João B Pesquero
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Adriana K Carmona
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marcia R Nagaoka
- Departamento de Biociências, Universidade Federal de São Paulo, Rua Silva Jardim 136, Lab 329, 3ºandar, Vila Mathias, Santos, 11015020, Brazil
| | - Marcos L Gazarini
- Departamento de Biociências, Universidade Federal de São Paulo, Rua Silva Jardim 136, Lab 329, 3ºandar, Vila Mathias, Santos, 11015020, Brazil.
| |
Collapse
|
12
|
Interactions between carboxypeptidase M and kinin B1 receptor in endothelial cells. Inflamm Res 2019; 68:845-855. [DOI: 10.1007/s00011-019-01264-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 05/03/2019] [Accepted: 06/13/2019] [Indexed: 11/25/2022] Open
|
13
|
Silva LS, Pinheiro AS, Teixeira DE, Silva-Aguiar RP, Peruchetti DB, Scharfstein J, Caruso-Neves C, Pinheiro AAS. Kinins Released by Erythrocytic Stages of Plasmodium falciparum Enhance Adhesion of Infected Erythrocytes to Endothelial Cells and Increase Blood Brain Barrier Permeability via Activation of Bradykinin Receptors. Front Med (Lausanne) 2019; 6:75. [PMID: 31058153 PMCID: PMC6478011 DOI: 10.3389/fmed.2019.00075] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/27/2019] [Indexed: 12/13/2022] Open
Abstract
Background:Plasmodium falciparum, the etiologic agent of malaria, is a major cause of infant death in Africa. Although research on the contact system has been revitalized by recent discoveries in the field of thrombosis, limited efforts were done to investigate the role of its proinflammatory arm, the kallikrein kinin system (KKS), in the pathogenesis of neglected parasitic diseases, such as malaria. Owing to the lack of animal models, the dynamics of central nervous system (CNS) pathology caused by the sequestration of erythrocytic stages of P. falciparum is not fully understood. Given the precedent that kinins destabilize the blood brain barrier (BBB) in ischemic stroke, here we sought to determine whether Plasmodium falciparum infected erythrocytes (Pf-iRBC) conditioned medium enhances parasite sequestration and impairs BBB integrity via activation of the kallikrein kinin system (KKS). Methods: Monolayers of human brain endothelial cell line (BMECs) are preincubated with the conditioned medium from Pf-iRBCs or RBCs (controls) in the presence or absence of HOE-140 or DALBK, antagonists of bradykinin receptor B2 (B2R) and bradykinin receptor B1 (B1R), respectively. Following washing, the treated monolayers are incubated with erythrocytes, infected or not with P. falciparum mature forms, to examine whether the above treatment (i) has impact on the adhesion of Pf-iRBC to BMEC monolayer, (ii) increases the macromolecular permeability of the tracer BSA-FITC, and (iii) modifies the staining pattern of junctional proteins (ZO-1 and β-catenin). Results: We found that kinins generated in the parasite conditioned medium, acting via bradykinin B2 and/or B1 receptors (i) enhanced Pf-iRBC adhesion to the endothelium monolayer and (ii) impaired the endothelial junctions formed by ZO-1 and β-catenin, consequently disrupting the integrity of the BBB. Conclusions: Our studies raise the possibility that therapeutic targeting of kinin forming enzymes and/or endothelial bradykinin receptors might reduce extent of Pf-iRBC sequestration and help to preserve BBB integrity in cerebral malaria (CM).
Collapse
Affiliation(s)
- Leandro S Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandro S Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Douglas E Teixeira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo P Silva-Aguiar
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diogo B Peruchetti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julio Scharfstein
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Celso Caruso-Neves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, INCT-Regenera, Conselho Nacional de Pesquisa e Desenvolvimento (CNPq), Rio de Janeiro, Brazil
| | - Ana Acacia S Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
de Moraes LV, Barateiro A, Sousa PM, Penha-Gonçalves C. Bradykinin Sequestration by Plasmodium berghei Infected Erythrocytes Conditions B2R Signaling and Parasite Uptake by Fetal Trophoblasts. Front Microbiol 2018; 9:3106. [PMID: 30619185 PMCID: PMC6305765 DOI: 10.3389/fmicb.2018.03106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/30/2018] [Indexed: 12/13/2022] Open
Abstract
Plasmodium infection during pregnancy causes placental malfunction reducing fetus sustainability and leading to abortions, stillbirths, low birth weight or premature delivery. Accumulation of infected erythrocytes (IE) in the placenta is a key factor in placental malaria pathogenesis but the role played by fetal trophoblast that contact maternal blood has been neglected. Here we explore the hypothesis that interactions between Plasmodium-IE and fetal trophoblast cells impact on vasoactive alterations underlying placental dysfunction. We screened gene expression of key mediators in vasoactive pathways. We found that mRNA of bradykinin receptor 2 (B2R) and nitric oxide synthase (eNOS), as well as levels of bradykinin (BK), were decreased in late gestation placentas of pregnant Plasmodium berghei-infected mice. Co-culturing mouse trophoblasts with IE down-regulated B2R transcription and interleukin (IL)-6 secretion in a B2R-signaling dependent manner. IE showed increased levels of surface B2R and enhanced capacity to bind BK. We propose that down-regulation of B2R signaling in the course of IE–trophoblast interactions is due to BK sequestration by IE. In corroboration, levels of BK were lower in infected placentas and the positive correlation of B2R gene expression and fetal weight was disrupted by infection. This indicates that deregulation of the BK-B2R pathway is associated to placental dysfunction provoked by malaria infection. We further found that upon inhibition of B2R signaling, trophoblasts engulf IE to a lesser extent and show reduced production of IL-6. Our data suggest that BK sequestration by P. berghei represents a strategy for the parasite to ameliorate the risk of phagocytic capture by down modulating B2R activation.
Collapse
Affiliation(s)
| | - André Barateiro
- Disease Genetics, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | |
Collapse
|
15
|
Silva-Filho JL, Caruso-Neves C, Pinheiro AAS. Targeting Angiotensin II Type-1 Receptor (AT 1R) Inhibits the Harmful Phenotype of Plasmodium-Specific CD8 + T Cells during Blood-Stage Malaria. Front Cell Infect Microbiol 2017; 7:42. [PMID: 28261571 PMCID: PMC5311040 DOI: 10.3389/fcimb.2017.00042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/06/2017] [Indexed: 11/26/2022] Open
Abstract
CD8+ T-cell response is critical in the pathogenesis of cerebral malaria during blood-stage. Our group and other have been shown that angiotensin II (Ang II) and its receptor AT1 (AT1R), a key effector axis of renin-angiotensin system (RAS), have immune regulatory effects on T cells. Previously, we showed that inhibition of AT1R signaling protects mice against the lethal disease induced by Plasmodium berghei ANKA infection However, most of the Ang II/AT1R actions were characterized by using only pharmacological approaches, the effects of which may not always be due to a specific receptor blockade. In addition, the mechanisms of action of the AT1R in inducing the pathogenic activity of Plasmodium-specific CD8+ T cells during blood-stage were not determined. Here, we examined how angiotensin II/AT1R axis promotes the harmful response of Plasmodium-specific CD8+ T-cell during blood-stage by using genetic and pharmacological approaches. We evaluated the response of wild-type (WT) and AT1R−/−Plasmodium-specific CD8+ T cells in mice infected with a transgenic PbA lineage expressing ovalbumin; and in parallel infected mice receiving WT Plasmodium-specific CD8+ T cells were treated with losartan (AT1R antagonist) or captopril (ACE inhibitor). Both, AT1R−/− OT-I cells and WT OT-I cells from losartan- or captopril-treated mice showed lower expansion, reduced IL-2 production and IL-2Rα expression, lower activation (lower expression of CD69, CD44 and CD160) and lower exhaustion profiles. AT1R−/− OT-I cells also exhibit lower expression of the integrin LFA-1 and the chemokine receptors CCR5 and CXCR3, known to play a key role in the development of cerebral malaria. Moreover, AT1R−/− OT-I cells produce lower amounts of IFN-γ and TNF-α and show lower degranulation upon restimulation. In conclusion, our results show the pivotal mechanisms of AT1R-induced harmful phenotype of Plasmodium-specific CD8+ T cells during blood-stage malaria.
Collapse
Affiliation(s)
- João L Silva-Filho
- Laboratório de Bioquímica e Sinalização Celular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Celso Caruso-Neves
- Laboratório de Bioquímica e Sinalização Celular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia e Bioimagem, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCTRio de Janeiro, Brazil
| | - Ana A S Pinheiro
- Laboratório de Bioquímica e Sinalização Celular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil; Instituto Nacional para Pesquisa Translacional em Saúde e Ambiente na Região Amazônica, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCTRio de Janeiro, Brazil
| |
Collapse
|