1
|
Gao K, Zha F, Rao J, Chen B. Nonenzymatic glycation as a tunable technique to modify plant proteins: A comprehensive review on reaction process, mechanism, conjugate structure, and functionality. Compr Rev Food Sci Food Saf 2024; 23:e13269. [PMID: 38284590 DOI: 10.1111/1541-4337.13269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/10/2023] [Accepted: 10/25/2023] [Indexed: 01/30/2024]
Abstract
Plant proteins are expected to become a major protein source to replace currently used animal-derived proteins in the coming years. However, there are always challenges when using these proteins due to their low water solubility induced by the high molecular weight storage proteins. One approach to address this challenge is to modify proteins through Maillard glycation, which involves the reaction between proteins and carbohydrates. In this review, we discuss various chemical methods currently available for determining the indicators of the Maillard reaction in the early stage, including the graft degree of glycation and the available lysine or sugar, which are involved in the very beginning of the reaction. We also provide a detailed description of the most popular methods for determining graft sites and assessing different plant protein structures and functionalities upon non-enzymatic glycation. This review offers valuable insights for researchers and food scientists in order to develop plant-based protein ingredients with improved functionality.
Collapse
Affiliation(s)
- Kun Gao
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Fengchao Zha
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Jiajia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
2
|
Di Gioacchino M, Bruni F, Alderman OL, Ricci MA. Interaction of trehalose and glucose with a peptide β-turn in aqueous solution. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
3
|
Dumouilla V, Dussap CG. Online analysis of D-glucose and D-mannose aqueous mixtures using Raman spectroscopy: an in silico and experimental approach. Bioengineered 2021; 12:4420-4431. [PMID: 34308749 PMCID: PMC8806848 DOI: 10.1080/21655979.2021.1955550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/08/2021] [Indexed: 11/30/2022] Open
Abstract
Raman spectroscopy was applied to an aqueous solution containing D-mannose and D-glucose at a fixed dry matter content. The Raman measurement apparatus was adapted online at the industrial scale to monitor a bioprocess including an epimerization reaction. Online Raman spectroscopy and deconvolution techniques were successfully applied to monitor in real time the D-mannose and D-glucose concentrations using the Raman shifts at 960 cm-1 and 974 cm-1 respectively. The two anomeric forms, α and β of D-mannose in the pyranose conformation were quantified. In silico analysis of vibrational frequencies and Raman intensities of hydrated structure of D-mannose and D-glucose in the pyranose form for α and β anomers were carried out using a two-step procedure. First molecular dynamics was used to generate the theoretical carbohydrates' structures keeping the experimental dry matter content, then quantum mechanics was used to compute the Raman frequencies and intensities. Computed vibrational frequencies are in satisfactory agreement with the experimental spectra considering a hydration shell approach. Raman intensities are qualitatively in accordance with the experimental data. The interpretation of Raman frequencies and intensities led to acceptable results regarding the current possible structures of D-mannose and D-glucose in aqueous solution. Online Raman spectroscopy coupled with in silico approaches such as quantum mechanics and molecular dynamics methodology is proved to be a valuable tool to quantify the carbohydrates and stereoisomers content in complex aqueous mixtures. This methodology offers a new way to monitor any bioprocesses that encounter aqueous mixtures of D-glucose and D-mannose.
Collapse
Affiliation(s)
- Vincent Dumouilla
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, Clermont-Ferrand, France
- Biotechnology and Process Department, Roquettes Frères, Lestrem, France
| | - Claude Gilles Dussap
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
4
|
Laurent H, Baker DL, Soper AK, Ries ME, Dougan L. Bridging Structure, Dynamics, and Thermodynamics: An Example Study on Aqueous Potassium Halides. J Phys Chem B 2021; 125:12774-12786. [PMID: 34757756 DOI: 10.1021/acs.jpcb.1c06728] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aqueous salt systems are ubiquitous in all areas of life. The ions in these solutions impose important structural and dynamic perturbations to water. In this study, we employ a combined neutron scattering, nuclear magnetic resonance, and computational modeling approach to deconstruct ion-specific perturbations to water structure and dynamics and shed light on the molecular origins of bulk thermodynamic properties of the solutions. Our approach uses the atomistic scale resolution offered to us by neutron scattering and computational modeling to investigate how the properties of particular short-ranged microenvironments within aqueous systems can be related to bulk properties of the system. We find that by considering only the water molecules in the first hydration shell of the ions that the enthalpy of hydration can be determined. We also quantify the range over which ions perturb water structure by calculating the average enthalpic interaction between a central halide anion and the surrounding water molecules as a function of distance and find that the favorable anion-water enthalpic interactions only extend to ∼4 Å. We further validate this by showing that ions induce structure in their solvating water molecules by examining the distribution of dipole angles in the first hydration shell of the ions but that this perturbation does not extend into the bulk water. We then use these structural findings to justify mathematical models that allow us to examine perturbations to rotational and diffusive dynamics in the first hydration shell around the potassium halide ions from NMR measurements. This shows that as one moves down the halide series from fluorine to iodine, and ionic charge density is therefore reduced, that the enthalpy of hydration becomes less negative. The first hydration shell also becomes less well structured, and rotational and diffusive motions of the hydrating water molecules are increased. This reduction in structure and increase in dynamics are likely the origin of the previously observed increased entropy of hydration as one moves down the halide series. These results also suggest that simple monovalent potassium halide ions induce mostly local perturbations to water structure and dynamics.
Collapse
Affiliation(s)
- Harrison Laurent
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Daniel L Baker
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Alan K Soper
- ISIS Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, U.K
| | - Michael E Ries
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Lorna Dougan
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K.,Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
5
|
Tas O, Ertugrul U, Oztop MH, Mazi BG. Glycation of soy protein isolate with two ketoses:
d
‐Allulose and fructose. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ozan Tas
- Department of Food Engineering Middle East Technical University Dumlupinar Bulvari, #1, Cankaya Ankara 06800 Turkey
| | - Ulku Ertugrul
- Department of Food Engineering Middle East Technical University Dumlupinar Bulvari, #1, Cankaya Ankara 06800 Turkey
| | - Mecit Halil Oztop
- Department of Food Engineering Middle East Technical University Dumlupinar Bulvari, #1, Cankaya Ankara 06800 Turkey
| | - Bekir Gokcen Mazi
- Department of Food Engineering Ordu University Cumhuriyet Yerleşkesi, Altınordu Ordu 52200 Turkey
| |
Collapse
|
6
|
|
7
|
Hirai M, Ajito S, Iwasa T, Wen D, Igarashi N, Shimizu N. Short-Distance Intermolecular Correlations of Mono- and Disaccharides in Condensed Solutions: Bulky Character of Trehalose. ACS OMEGA 2020; 5:10815-10825. [PMID: 32455202 PMCID: PMC7240834 DOI: 10.1021/acsomega.0c00451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Organisms with tolerance to extreme environmental conditions (cryptobiosis) such as desiccation and freezing are known to accumulate stress proteins and/or sugars. Trehalose, a disaccharide, has received considerable attention in the context of cryptobiosis. It has already been shown to have the highest glass-transition temperature and different hydration properties from other mono- and disaccharides. In spite of the importance of understanding cryptobiosis by experimentally clarifying sugar-sugar interactions such as the clustering in concentrated sugar solutions, there is little direct experimental evidence of sugar solution structures formed by intermolecular interactions and/or correlation. Using a wide-angle X-ray scattering method with the real-space resolution from ∼3 to 120 Å, we clarified the characteristics of the structures of sugar solutions (glucose, fructose, mannose, sucrose, and trehalose), over a wide concentration range of 0.05-0.65 g/mL. At low concentrations, the second virial coefficients obtained indicated the repulsive intermolecular interactions for all sugars and also the differences among them depending on the type of sugar. In spite of the presence of such repulsive force, a short-range intermolecular correlation was found to appear at high concentrations for every sugar. The concentration dependence of the observed scattering data and p(r) functions clearly showed that trehalose prefers a more disordered arrangement in solution compared to other sugars, that is, bulky arrangement. The present findings will afford a new insight into the molecular mechanism of the protective functions of the sugars relevant to cryptobiosis, particularly that of trehalose.
Collapse
Affiliation(s)
- Mitsuhiro Hirai
- Graduate
School of Science and Technology, Gunma
University, 4-2 Aramaki, Maebashi, Gunma 371-8510, Japan
| | - Satoshi Ajito
- Graduate
School of Science and Technology, Gunma
University, 4-2 Aramaki, Maebashi, Gunma 371-8510, Japan
| | - Tatsuo Iwasa
- Course
of Advanced Production Systems Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, Hokkaido 657-8510, Japan
| | - Durige Wen
- Course
of Advanced Production Systems Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, Hokkaido 657-8510, Japan
| | - Noriyuki Igarashi
- Institute
of Materials Structure Science, High Energy
Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Nobutaka Shimizu
- Institute
of Materials Structure Science, High Energy
Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| |
Collapse
|
8
|
Pullicin AJ, Penner MH, Lim J. The Sweet Taste of Acarbose and Maltotriose: Relative Detection and Underlying Mechanism. Chem Senses 2020; 44:123-128. [PMID: 30590468 DOI: 10.1093/chemse/bjy081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Although sweet-tasting saccharides possess similar molecular structures, their relative sweetness often varies to a considerable degree. Current understanding of saccharide structure/sweetness interrelationships is limited. Understanding how certain structural features of saccharides and/or saccharide analogs correlate to their relative sweetness can provide insight on the mechanisms underlying sweetness potency. Maltotriose is a short-chain glucose-based oligosaccharide, which we recently reported to elicit sweet taste. Acarbose, an α-glucosidase inhibitor, is a pseudo-saccharide that has an overall resemblance to a glucose-based oligosaccharide and thus may be viewed as a structural analog. During other studies, we recognized that acarbose can also elicit sweet taste. Here, we formally investigated the underlying taste detection mechanism of acarbose, while confirming our previous findings for maltotriose. We found that subjects could detect the sweet taste of acarbose and maltotriose in aqueous solutions but were not able to detect them in the presence of a sweet taste inhibitor lactisole. These findings support that both are ligands of the human sweet taste receptor, hT1R2/hT1R3. In a separate experiment, we measured the relative sweetness detection of acarbose, maltotriose, and other sweet-tasting mono- and disaccharides (glucose, fructose, maltose, and sucrose). Whereas maltotriose was found to have a similar discriminability profile to glucose and maltose, the discriminability of acarbose matched that of fructose at the concentrations tested (18, 32, and 56 mM). These findings are discussed in terms of how specific molecular features (e.g., degree of polymerization and monomer composition) may contribute to the relative sweetness of saccharides.
Collapse
Affiliation(s)
- Alexa J Pullicin
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | - Michael H Penner
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | - Juyun Lim
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
9
|
Henao A, Ruiz GN, Steinke N, Cerveny S, Macovez R, Guàrdia E, Busch S, McLain SE, Lorenz CD, Pardo LC. On the microscopic origin of the cryoprotective effect in lysine solutions. Phys Chem Chem Phys 2020; 22:6919-6927. [DOI: 10.1039/c9cp06192d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lysine cryoprotective properties are due to the tight bonding of the first hydration Shell to the amino acid. However this effect is only possible for concentration up to 5.4 water molecules per lysine.
Collapse
Affiliation(s)
- Andrés Henao
- Grup de Caracterització de Materials
- Departament de Física
- ETSEIB, Universitat Politècnica de Catalunya
- E-08019 Barcelona
- Spain
| | - Guadalupe N. Ruiz
- Grup de Caracterització de Materials
- Departament de Física
- ETSEIB, Universitat Politècnica de Catalunya
- E-08019 Barcelona
- Spain
| | - Nicola Steinke
- Center for Marine Environmental Sciences (MARUM)
- University of Bremen
- 28359 Bremen
- Germany
| | - Silvina Cerveny
- Centro de Física de Materiales (CSIC-UPV/EHU)-Material Physics Centre (MPC)
- Donostia International Physics Center (DIPC)
- 20018 San Sebastián
- Spain
| | - Roberto Macovez
- Grup de Caracterització de Materials
- Departament de Física
- ETSEIB, Universitat Politècnica de Catalunya
- E-08019 Barcelona
- Spain
| | - Elvira Guàrdia
- Grup de Simulació per Ordinador en Matèria Condensada
- Departament de Física
- Universitat Politècnica de Catalunya
- E-08034 Barcelona
- Spain
| | - Sebastian Busch
- German Engineering Materials Science Centre (GEMS) at Heinz Maier-Leibnitz Zentrum (MLZ)
- Helmholtz-Zentrum Geesthacht GmbH
- 85747 Garching bei München
- Germany
| | - Sylvia E. McLain
- Department of Chemistry
- School of Life Sciences
- University of Sussex
- Brighton
- UK
| | | | - Luis Carlos Pardo
- Grup de Caracterització de Materials
- Departament de Física
- ETSEIB, Universitat Politècnica de Catalunya
- E-08019 Barcelona
- Spain
| |
Collapse
|
10
|
Imberti S, McLain SE, Rhys NH, Bruni F, Ricci MA. Role of Water in Sucrose, Lactose, and Sucralose Taste: The Sweeter, The Wetter? ACS OMEGA 2019; 4:22392-22398. [PMID: 31909321 PMCID: PMC6941182 DOI: 10.1021/acsomega.9b02794] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/15/2019] [Indexed: 05/16/2023]
Abstract
Natural sugars combine energy supply and, except a few cases, a pleasant taste. On the other hand, exaggerated consumption may impact population health. This has busted the research for the synthesis of increasingly cheaper artificial sweeteners, with low energy content and intense taste. Here, we suggest that studies of the hydration properties of three disaccharides, namely, the natural sucrose and lactose and the artificial sucralose, may explain the difference by orders of magnitude among their sweetness. This is done by analyzing via Monte Carlo simulations the neutron diffraction differential cross sections of aqueous solutions of the three sugars and their isotopes. Our results show that the strength of the sugar-water hydrogen bond interaction is one of the factors influencing sweetness, another being the number of water molecules within the first neighboring shell of the sugar whether bonded or not.
Collapse
Affiliation(s)
- Silvia Imberti
- UKRI-STFC,
ISIS Neutron and Muon Source, Rutherford
Appleton Laboratory, Harwell Campus, OX11 0QX Didcot, United Kingdom
- E-mail: ,
| | - Sylvia E. McLain
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Falmer, BN1 9RH Brighton, United Kingdom
| | - Natasha H. Rhys
- Department
of Physics, King’s College London, WC2R 2LS London, United Kingdom
| | - Fabio Bruni
- Dipartimento
di Scienze, Sezione di Nanoscienze, Università
degli Studi “Roma Tre”, Via della Vasca Navale 84, 00146 Roma, Italy
| | - Maria Antonietta Ricci
- Dipartimento
di Scienze, Sezione di Nanoscienze, Università
degli Studi “Roma Tre”, Via della Vasca Navale 84, 00146 Roma, Italy
| |
Collapse
|
11
|
Di Gioacchino M, Bruni F, Ricci MA. Protection against Dehydration: A Neutron Diffraction Study on Aqueous Solutions of a Model Peptide and Trehalose. J Phys Chem B 2018; 122:10291-10295. [PMID: 30339006 DOI: 10.1021/acs.jpcb.8b08046] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ability of a wide class of organisms to reversibly go through cycles of suspended life and active metabolism, depending on the turnover of drought and normal water availability conditions, represents a challenging issue. The interest in the natural mechanism for drought survival has grown over time along with the request for always more efficient conservation techniques for biological materials. Carbohydrates, such as trehalose, accumulated in the cytoplasm of drought resistant cells, are considered responsible for desiccation tolerance. Nonetheless, a detailed description of the interaction between trehalose and biomolecules is not yet established. Neutron diffraction experiments show that trehalose entraps a layer of water molecules in the first shell of a model peptide, N-methylacetamide, without direct bonding with it. This evidence contrasts the hypothesis that trehalose substitutes water and supports the opposite view, namely, of trehalose forming a protective shell which entraps a layer of water molecules at the surface of proteins, thus avoiding structural damage due to drought conditions.
Collapse
Affiliation(s)
- Michael Di Gioacchino
- Dipartimento di Scienze , Universitá degli Studi Roma Tre , via della Vasca Navale 84 , 00146 Roma , Italy
| | - Fabio Bruni
- Dipartimento di Scienze , Universitá degli Studi Roma Tre , via della Vasca Navale 84 , 00146 Roma , Italy
| | - Maria Antonietta Ricci
- Dipartimento di Scienze , Universitá degli Studi Roma Tre , via della Vasca Navale 84 , 00146 Roma , Italy
| |
Collapse
|
12
|
Abstract
Trehalose, commonly found in living organisms, is believed to help them survive severe environmental conditions, such as drought or extreme temperatures. With the aim of trying to understand these properties, two recent neutron scattering studies investigate the structure of trehalose water solutions but come to seemingly opposite conclusions. In the first study, which looks at two concentrations of trehalose-water mole ratios of 1:100 and 1:25, the conclusion is that trehalose hydrogen-bonds to water rather weakly and has a relatively minor impact on the structure of water in solution compared to bulk water. On the other hand, for the other, using a mole ratio of 1:38, the conclusion is that the water structure is rather substantially modified by the presence of trehalose and that the hydrogen bonding between water and trehalose hydroxyl groups is significant. In an attempt to try to understand the origin of these divergent views, which arise from similar but independent analyses of different neutron diffraction data, we have performed additional X-ray scattering experiments, which are highly sensitive to water structure, at the same trehalose-water concentrations used in the first study, and combined these with empirical potential structure refinement on the previously collected neutron data. The new analysis unequivocally confirms that trehalose does indeed have only a minor impact on the structure of water, at all three concentrations, and forms relatively weak hydrogen bonds with water. Far from being discrepant with the existing literature, our new analysis of the different datasets suggests a natural explanation for the increased glass-transition temperature of trehalose compared to other sugars and hence its enhanced effectiveness as a protectant against drought stress.
Collapse
Affiliation(s)
- Alan K Soper
- ISIS Facility, STFC Rutherford Appleton Laboratory , Harwell Campus , Didcot OX11 0QX , U.K
| | - Maria Antonietta Ricci
- Dipartimento di Scienze , Università degli Studi "Roma Tre" , via della Vasca Navale 84 , 00146 Roma , Italy
| | - Fabio Bruni
- Dipartimento di Scienze , Università degli Studi "Roma Tre" , via della Vasca Navale 84 , 00146 Roma , Italy
| | - Natasha H Rhys
- Department of Biochemistry , University of Oxford , South Parks Road , Oxford OX1 3QU , U.K
| | - Sylvia E McLain
- Department of Biochemistry , University of Oxford , South Parks Road , Oxford OX1 3QU , U.K
| |
Collapse
|
13
|
Bruni F, Di Mino C, Imberti S, McLain SE, Rhys NH, Ricci MA. Hydrogen Bond Length as a Key To Understanding Sweetness. J Phys Chem Lett 2018; 9:3667-3672. [PMID: 29920095 DOI: 10.1021/acs.jpclett.8b01280] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Neutron diffraction experiments have been performed to investigate and compare the structure of the hydration shell of three monosaccharides, namely, fructose, glucose, and mannose. It is found that despite their differences with respect to many thermodynamical quantities, bioprotective properties against environmental stresses, and taste, the influence of these monosaccharides on the bulk water solvent structure is virtually identical. Conversely, these sugars interact with the neighboring water molecules by forming H bonds of different length and strength. Interestingly, the sweetness of these monosaccharides, along with that of the disaccharide trehalose, is correlated with the length of these H bonds. This suggests that the small differences in stereochemistry between the different sugars determine a relevant change in polarity, which has a fundamental impact on the behavior of these molecules in vivo.
Collapse
Affiliation(s)
- F Bruni
- Dipartimento di Scienze, Sezione di Nanoscienze , Università degli Studi "Roma Tre" , Via della Vasca Navale 84 , 00146 Roma , Italy
| | - C Di Mino
- Dipartimento di Scienze, Sezione di Nanoscienze , Università degli Studi "Roma Tre" , Via della Vasca Navale 84 , 00146 Roma , Italy
| | - S Imberti
- ISIS Neutron and Muon Source, STFC, Rutherford Appleton Laboratory , Harwell Campus , Didcot , Oxfordshire OX11 0QX , United Kingdom
| | - S E McLain
- Department of Biochemistry , University of Oxford , South Park Road , Oxford , Oxfordshire OX1 3QU , United Kingdom
| | - N H Rhys
- Department of Biochemistry , University of Oxford , South Park Road , Oxford , Oxfordshire OX1 3QU , United Kingdom
| | - M A Ricci
- Dipartimento di Scienze, Sezione di Nanoscienze , Università degli Studi "Roma Tre" , Via della Vasca Navale 84 , 00146 Roma , Italy
| |
Collapse
|
14
|
Cardoso de Sá A, Cipri A, González-Calabuig A, Stradiotto NR, del Valle M. Multivariate Determination of Total Sugar Content and Ethanol in Bioethanol Production Using Carbon Electrodes Modified with MWCNT/MeOOH and Chemometric Data Treatment. ELECTROANAL 2018. [DOI: 10.1002/elan.201700725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Acelino Cardoso de Sá
- Department of Analytical Chemistry, Institute of Chemistry; Universidade Estadual Paulista (UNESP); 55 Rua Francisco Degni Araraquara 14800-060, SP Brazil
- Sensors and Biosensors Group, Department of Chemistry; Universitat Autònoma de Barcelona, Edifici Cn; 08193 Bellaterra Barcelona Spain
| | - Andrea Cipri
- Sensors and Biosensors Group, Department of Chemistry; Universitat Autònoma de Barcelona, Edifici Cn; 08193 Bellaterra Barcelona Spain
| | - Andreu González-Calabuig
- Sensors and Biosensors Group, Department of Chemistry; Universitat Autònoma de Barcelona, Edifici Cn; 08193 Bellaterra Barcelona Spain
| | - Nelson Ramos Stradiotto
- Department of Analytical Chemistry, Institute of Chemistry; Universidade Estadual Paulista (UNESP); 55 Rua Francisco Degni Araraquara 14800-060, SP Brazil
| | - Manel del Valle
- Sensors and Biosensors Group, Department of Chemistry; Universitat Autònoma de Barcelona, Edifici Cn; 08193 Bellaterra Barcelona Spain
| |
Collapse
|
15
|
Rhys NH, Bruni F, Imberti S, McLain SE, Ricci MA. Glucose and Mannose: A Link between Hydration and Sweetness. J Phys Chem B 2017; 121:7771-7776. [DOI: 10.1021/acs.jpcb.7b03919] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- N. H. Rhys
- Department
of Biochemistry, University of Oxford, South Park Road, Oxford, Oxfordshire OX1 3QU, United Kingdom
| | - F. Bruni
- Dipartimento
di Scienze, Sezione di Nanoscienze, Università degli Studi “Roma Tre”, Via della Vasca Navale 84, 00146 Roma, Italy
| | - S. Imberti
- ISIS
Neutron and Muon source, STFC, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - S. E. McLain
- Department
of Biochemistry, University of Oxford, South Park Road, Oxford, Oxfordshire OX1 3QU, United Kingdom
| | - M. A. Ricci
- Dipartimento
di Scienze, Sezione di Nanoscienze, Università degli Studi “Roma Tre”, Via della Vasca Navale 84, 00146 Roma, Italy
| |
Collapse
|