1
|
Kirsh J, Kozuch J. Hydrogen Bond Blueshifts in Nitrile Vibrational Spectra Are Dictated by Hydrogen Bond Geometry and Dynamics. JACS AU 2024; 4:4844-4855. [PMID: 39735926 PMCID: PMC11672138 DOI: 10.1021/jacsau.4c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/31/2024]
Abstract
Vibrational Stark effect (VSE) spectroscopy has become one of the most important experimental approaches to determine the strength of noncovalent, electrostatic interactions in chemistry and biology and to quantify their influence on structure and reactivity. Nitriles (C≡N) have been widely used as VSE probes, but their application has been complicated by an anomalous hydrogen bond (HB) blueshift which is not encompassed within the VSE framework. We present an empirical model describing the anomalous HB blueshift in terms of H-bonding geometry, i.e., as a function of HB distance and angle with respect to the C≡N group. This model is obtained by comparing vibrational observables from density functional theory and electrostatics from the polarizable AMOEBA force field, and it provides a physical explanation for the HB blueshift in terms of underlying multipolar and Pauli repulsion contributions. Additionally, we compare predicted blueshifts with experimental results and find our model provides a useful, direct framework to analyze HB geometry for rigid HBs, such as within proteins or chemical frameworks. In contrast, nitriles in highly dynamic H-bonding environments like protic solvents are no longer a function solely of geometry; this is a consequence of motional narrowing, which we demonstrate by simulating IR spectra. Overall, when HB geometry and dynamics are accounted for, an excellent correlation is found between observed and predicted HB blueshifts. This correlation includes different types of nitriles and HB donors, suggesting that our model is general and can aid in understanding HB blueshifts wherever nitriles can be implemented.
Collapse
Affiliation(s)
- Jacob
M. Kirsh
- Department
of Chemistry, Stanford University, Stanford, California 94305-5012, United
States
| | - Jacek Kozuch
- Freie
Universität Berlin, Physics Department,
Experimental Molecular Biophysics, Arnimallee 14, 14195 Berlin, Germany
- Freie
Universität Berlin, SupraFAB Research Building, Altensteinstr. 23a, 14195 Berlin, Germany
| |
Collapse
|
2
|
Koch NG, Budisa N. Evolution of Pyrrolysyl-tRNA Synthetase: From Methanogenesis to Genetic Code Expansion. Chem Rev 2024; 124:9580-9608. [PMID: 38953775 PMCID: PMC11363022 DOI: 10.1021/acs.chemrev.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Over 20 years ago, the pyrrolysine encoding translation system was discovered in specific archaea. Our Review provides an overview of how the once obscure pyrrolysyl-tRNA synthetase (PylRS) tRNA pair, originally responsible for accurately translating enzymes crucial in methanogenic metabolic pathways, laid the foundation for the burgeoning field of genetic code expansion. Our primary focus is the discussion of how to successfully engineer the PylRS to recognize new substrates and exhibit higher in vivo activity. We have compiled a comprehensive list of ncAAs incorporable with the PylRS system. Additionally, we also summarize recent successful applications of the PylRS system in creating innovative therapeutic solutions, such as new antibody-drug conjugates, advancements in vaccine modalities, and the potential production of new antimicrobials.
Collapse
Affiliation(s)
- Nikolaj G. Koch
- Department
of Chemistry, Institute of Physical Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Nediljko Budisa
- Biocatalysis
Group, Institute of Chemistry, Technische
Universität Berlin, 10623 Berlin, Germany
- Chemical
Synthetic Biology Chair, Department of Chemistry, University of Manitoba, Winnipeg MB R3T 2N2, Canada
| |
Collapse
|
3
|
Hu Z, Liang J, Su T, Zhang D, Li H, Gao X, Yao W, Song X. Minimizing the Anticodon-Recognized Loop of Methanococcus jannaschii Tyrosyl-tRNA Synthetase to Improve the Efficiency of Incorporating Noncanonical Amino Acids. Biomolecules 2023; 13:biom13040610. [PMID: 37189358 DOI: 10.3390/biom13040610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
In the field of genetic code expansion (GCE), improvements in the efficiency of noncanonical amino acid (ncAA) incorporation have received continuous attention. By analyzing the reported gene sequences of giant virus species, we noticed some sequence differences at the tRNA binding interface. On the basis of the structural and activity differences between Methanococcus jannaschii Tyrosyl-tRNA Synthetase (MjTyrRS) and mimivirus Tyrosyl-tRNA Synthetase (MVTyrRS), we found that the size of the anticodon-recognized loop of MjTyrRS influences its suppression activity regarding triplet and specific quadruplet codons. Therefore, three MjTyrRS mutants with loop minimization were designed. The suppression of wild-type MjTyrRS loop-minimized mutants increased by 1.8–4.3-fold, and the MjTyrRS variants enhanced the activity of the incorporation of ncAAs by 15–150% through loop minimization. In addition, for specific quadruplet codons, the loop minimization of MjTyrRS also improves the suppression efficiency. These results suggest that loop minimization of MjTyrRS may provide a general strategy for the efficient synthesis of ncAAs-containing proteins.
Collapse
|
4
|
Hartman MCT. Non-canonical Amino Acid Substrates of E. coli Aminoacyl-tRNA Synthetases. Chembiochem 2022; 23:e202100299. [PMID: 34416067 PMCID: PMC9651912 DOI: 10.1002/cbic.202100299] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/03/2021] [Indexed: 01/07/2023]
Abstract
In this comprehensive review, I focus on the twenty E. coli aminoacyl-tRNA synthetases and their ability to charge non-canonical amino acids (ncAAs) onto tRNAs. The promiscuity of these enzymes has been harnessed for diverse applications including understanding and engineering of protein function, creation of organisms with an expanded genetic code, and the synthesis of diverse peptide libraries for drug discovery. The review catalogues the structures of all known ncAA substrates for each of the 20 E. coli aminoacyl-tRNA synthetases, including ncAA substrates for engineered versions of these enzymes. Drawing from the structures in the list, I highlight trends and novel opportunities for further exploitation of these ncAAs in the engineering of protein function, synthetic biology, and in drug discovery.
Collapse
Affiliation(s)
- Matthew C T Hartman
- Department of Chemistry and Massey Cancer Center, Virginia Commonwealth University, 1001 W Main St., Richmond, VA 23220, USA
| |
Collapse
|
5
|
Kim S, Yi H, Kim YT, Lee HS. Engineering Translation Components for Genetic Code Expansion. J Mol Biol 2021; 434:167302. [PMID: 34673113 DOI: 10.1016/j.jmb.2021.167302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/26/2021] [Accepted: 10/05/2021] [Indexed: 12/18/2022]
Abstract
The expansion of the genetic code consisting of four bases and 20 amino acids into diverse building blocks has been an exciting topic in synthetic biology. Many biochemical components are involved in gene expression; therefore, adding a new component to the genetic code requires engineering many other components that interact with it. Genetic code expansion has advanced significantly for the last two decades with the engineering of several components involved in protein synthesis. These components include tRNA/aminoacyl-tRNA synthetase, new codons, ribosomes, and elongation factor Tu. In addition, biosynthesis and enhanced uptake of non-canonical amino acids have been attempted and have made meaningful progress. This review discusses the efforts to engineer these translation components, to improve the genetic code expansion technology.
Collapse
Affiliation(s)
- Sooin Kim
- Department of Chemistry, Sogang University, 35 Baekbeomro Mapogu, Seoul 04107, Republic of Korea
| | - Hanbin Yi
- Department of Chemistry, Sogang University, 35 Baekbeomro Mapogu, Seoul 04107, Republic of Korea
| | - Yurie T Kim
- Department of Chemistry, Sogang University, 35 Baekbeomro Mapogu, Seoul 04107, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, 35 Baekbeomro Mapogu, Seoul 04107, Republic of Korea.
| |
Collapse
|
6
|
Koch NG, Goettig P, Rappsilber J, Budisa N. Engineering Pyrrolysyl-tRNA Synthetase for the Incorporation of Non-Canonical Amino Acids with Smaller Side Chains. Int J Mol Sci 2021; 22:11194. [PMID: 34681855 PMCID: PMC8538471 DOI: 10.3390/ijms222011194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 01/11/2023] Open
Abstract
Site-specific incorporation of non-canonical amino acids (ncAAs) into proteins has emerged as a universal tool for systems bioengineering at the interface of chemistry, biology, and technology. The diversification of the repertoire of the genetic code has been achieved for amino acids with long and/or bulky side chains equipped with various bioorthogonal tags and useful spectral probes. Although ncAAs with relatively small side chains and similar properties are of great interest to biophysics, cell biology, and biomaterial science, they can rarely be incorporated into proteins. To address this gap, we report the engineering of PylRS variants capable of incorporating an entire library of aliphatic "small-tag" ncAAs. In particular, we performed mutational studies of a specific PylRS, designed to incorporate the shortest non-bulky ncAA (S-allyl-l-cysteine) possible to date and based on this knowledge incorporated aliphatic ncAA derivatives. In this way, we have not only increased the number of translationally active "small-tag" ncAAs, but also determined key residues responsible for maintaining orthogonality, while engineering the PylRS for these interesting substrates. Based on the known plasticity of PylRS toward different substrates, our approach further expands the reassignment capacities of this enzyme toward aliphatic amino acids with smaller side chains endowed with valuable functionalities.
Collapse
Affiliation(s)
- Nikolaj G. Koch
- Institut für Chemie, Technische Universität Berlin, 10623 Berlin, Germany;
- Institut für Biotechnologie-Bioanalytik, Technische Universität Berlin, 10623 Berlin, Germany;
| | - Peter Goettig
- Structural Biology Group, Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria;
| | - Juri Rappsilber
- Institut für Biotechnologie-Bioanalytik, Technische Universität Berlin, 10623 Berlin, Germany;
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Nediljko Budisa
- Institut für Chemie, Technische Universität Berlin, 10623 Berlin, Germany;
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
7
|
Kozuch J, Schneider SH, Zheng C, Ji Z, Bradshaw RT, Boxer SG. Testing the Limitations of MD-Based Local Electric Fields Using the Vibrational Stark Effect in Solution: Penicillin G as a Test Case. J Phys Chem B 2021; 125:4415-4427. [PMID: 33900769 PMCID: PMC8522303 DOI: 10.1021/acs.jpcb.1c00578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Noncovalent interactions underlie nearly all molecular processes in the condensed phase from solvation to catalysis. Their quantification within a physically consistent framework remains challenging. Experimental vibrational Stark effect (VSE)-based solvatochromism can be combined with molecular dynamics (MD) simulations to quantify the electrostatic forces in solute-solvent interactions for small rigid molecules and, by extension, when these solutes bind in enzyme active sites. While generalizing this approach toward more complex (bio)molecules, such as the conformationally flexible and charged penicillin G (PenG), we were surprised to observe inconsistencies in MD-based electric fields. Combining synthesis, VSE spectroscopy, and computational methods, we provide an intimate view on the origins of these discrepancies. We observe that the electric fields are correlated to conformation-dependent effects of the flexible PenG side chain, including both the local solvation structure and solute conformational sampling in MD. Additionally, we identified that MD-based electric fields are consistently overestimated in three-point water models in the vicinity of charged groups; this cannot be entirely ameliorated using polarizable force fields (AMOEBA) or advanced water models. This work demonstrates the value of the VSE as a direct method for experiment-guided refinements of MD force fields and establishes a general reductionist approach to calibrating vibrational probes for complex (bio)molecules.
Collapse
Affiliation(s)
- Jacek Kozuch
- Department of Chemistry, Stanford University, Stanford, California 94305-5012, United States
| | - Samuel H Schneider
- Department of Chemistry, Stanford University, Stanford, California 94305-5012, United States
| | - Chu Zheng
- Department of Chemistry, Stanford University, Stanford, California 94305-5012, United States
| | - Zhe Ji
- Department of Chemistry, Stanford University, Stanford, California 94305-5012, United States
| | - Richard T Bradshaw
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305-5012, United States
| |
Collapse
|
8
|
Tseng HW, Baumann T, Sun H, Wang YS, Ignatova Z, Budisa N. Expanding the Scope of Orthogonal Translation with Pyrrolysyl-tRNA Synthetases Dedicated to Aromatic Amino Acids. Molecules 2020; 25:E4418. [PMID: 32992991 PMCID: PMC7582959 DOI: 10.3390/molecules25194418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 11/16/2022] Open
Abstract
In protein engineering and synthetic biology, Methanosarcina mazei pyrrolysyl-tRNA synthetase (MmPylRS), with its cognate tRNAPyl, is one of the most popular tools for site-specific incorporation of non-canonical amino acids (ncAAs). Numerous orthogonal pairs based on engineered MmPylRS variants have been developed during the last decade, enabling a substantial genetic code expansion, mainly with aliphatic pyrrolysine analogs. However, comparatively less progress has been made to expand the substrate range of MmPylRS towards aromatic amino acid residues. Therefore, we set to further expand the substrate scope of orthogonal translation by a semi-rational approach; redesigning the MmPylRS efficiency. Based on the randomization of residues from the binding pocket and tRNA binding domain, we identify three positions (V401, W417 and S193) crucial for ncAA specificity and enzyme activity. Their systematic mutagenesis enabled us to generate MmPylRS variants dedicated to tryptophan (such as β-(1-Azulenyl)-l-alanine or 1-methyl-l-tryptophan) and tyrosine (mainly halogenated) analogs. Moreover, our strategy also significantly improves the orthogonal translation efficiency with the previously activated analog 3-benzothienyl-l-alanine. Our study revealed the engineering of both first shell and distant residues to modify substrate specificity as an important strategy to further expand our ability to discover and recruit new ncAAs for orthogonal translation.
Collapse
Affiliation(s)
- Hsueh-Wei Tseng
- Institut für Chemie, Technische Universität Berlin, Müller-Breslau-Straße 10, 10623 Berlin, Germany; (H.-W.T.); (T.B.); (H.S.)
| | - Tobias Baumann
- Institut für Chemie, Technische Universität Berlin, Müller-Breslau-Straße 10, 10623 Berlin, Germany; (H.-W.T.); (T.B.); (H.S.)
| | - Huan Sun
- Institut für Chemie, Technische Universität Berlin, Müller-Breslau-Straße 10, 10623 Berlin, Germany; (H.-W.T.); (T.B.); (H.S.)
| | - Yane-Shih Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 116, Taiwan;
- Institute of Biochemical Sciences, National Taiwan University, Taipei 116, Taiwan
| | - Zoya Ignatova
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany;
| | - Nediljko Budisa
- Institut für Chemie, Technische Universität Berlin, Müller-Breslau-Straße 10, 10623 Berlin, Germany; (H.-W.T.); (T.B.); (H.S.)
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
9
|
Verma N, Tao Y, Zou W, Chen X, Chen X, Freindorf M, Kraka E. A Critical Evaluation of Vibrational Stark Effect (VSE) Probes with the Local Vibrational Mode Theory. SENSORS 2020; 20:s20082358. [PMID: 32326248 PMCID: PMC7219233 DOI: 10.3390/s20082358] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
Over the past two decades, the vibrational Stark effect has become an important tool to measure and analyze the in situ electric field strength in various chemical environments with infrared spectroscopy. The underlying assumption of this effect is that the normal stretching mode of a target bond such as CO or CN of a reporter molecule (termed vibrational Stark effect probe) is localized and free from mass-coupling from other internal coordinates, so that its frequency shift directly reflects the influence of the vicinal electric field. However, the validity of this essential assumption has never been assessed. Given the fact that normal modes are generally delocalized because of mass-coupling, this analysis was overdue. Therefore, we carried out a comprehensive evaluation of 68 vibrational Stark effect probes and candidates to quantify the degree to which their target normal vibration of probe bond stretching is decoupled from local vibrations driven by other internal coordinates. The unique tool we used is the local mode analysis originally introduced by Konkoli and Cremer, in particular the decomposition of normal modes into local mode contributions. Based on our results, we recommend 31 polyatomic molecules with localized target bonds as ideal vibrational Stark effect probe candidates.
Collapse
Affiliation(s)
- Niraj Verma
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, USA; (N.V.); (Y.T.); (M.F.)
| | - Yunwen Tao
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, USA; (N.V.); (Y.T.); (M.F.)
| | - Wenli Zou
- Institute of Modern Physics, Northwest University, Xi’an 710127, China;
| | - Xia Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Xin Chen
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China;
| | - Marek Freindorf
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, USA; (N.V.); (Y.T.); (M.F.)
| | - Elfi Kraka
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, USA; (N.V.); (Y.T.); (M.F.)
- Correspondence:
| |
Collapse
|
10
|
Derr JB, Tamayo J, Espinoza EM, Clark JA, Vullev VI. Dipole-induced effects on charge transfer and charge transport. Why do molecular electrets matter? CAN J CHEM 2018. [DOI: 10.1139/cjc-2017-0389] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Charge transfer (CT) and charge transport (CTr) are at the core of life-sustaining biological processes and of processes that govern the performance of electronic and energy-conversion devices. Electric fields are invaluable for guiding charge movement. Therefore, as electrostatic analogues of magnets, electrets have unexplored potential for generating local electric fields for accelerating desired CT processes and suppressing undesired ones. The notion about dipole-generated local fields affecting CT has evolved since the middle of the 20th century. In the 1990s, the first reports demonstrating the dipole effects on the kinetics of long-range electron transfer appeared. Concurrently, the development of molecular-level designs of electric junctions has led the exploration of dipole effects on CTr. Biomimetic molecular electrets such as polypeptide helices are often the dipole sources in CT systems. Conversely, surface-charge electrets and self-assembled monolayers of small polar conjugates are the preferred sources for modifying interfacial electric fields for controlling CTr. The multifaceted complexity of such effects on CT and CTr testifies for the challenges and the wealth of this field that still remains largely unexplored. This review outlines the basic concepts about dipole effects on CT and CTr, discusses their evolution, and provides accounts for their future developments and impacts.
Collapse
Affiliation(s)
- James B. Derr
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Jesse Tamayo
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Eli M. Espinoza
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - John A. Clark
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | - Valentine I. Vullev
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
- Department of Chemistry, University of California, Riverside, CA 92521, USA
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
- Materials Science and Engineering Program, University of California, Riverside, CA 92521, USA
| |
Collapse
|
11
|
Slocum JD, Webb LJ. Measuring Electric Fields in Biological Matter Using the Vibrational Stark Effect of Nitrile Probes. Annu Rev Phys Chem 2018; 69:253-271. [DOI: 10.1146/annurev-physchem-052516-045011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Joshua D. Slocum
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, USA
| | - Lauren J. Webb
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, USA
| |
Collapse
|