1
|
Podszywalow-Bartnicka P, Neugebauer KM. Multiple roles for AU-rich RNA binding proteins in the development of haematologic malignancies and their resistance to chemotherapy. RNA Biol 2024; 21:1-17. [PMID: 38798162 PMCID: PMC11135835 DOI: 10.1080/15476286.2024.2346688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2024] [Indexed: 05/29/2024] Open
Abstract
Post-transcriptional regulation by RNA binding proteins can determine gene expression levels and drive changes in cancer cell proteomes. Identifying mechanisms of protein-RNA binding, including preferred sequence motifs bound in vivo, provides insights into protein-RNA networks and how they impact mRNA structure, function, and stability. In this review, we will focus on proteins that bind to AU-rich elements (AREs) in nascent or mature mRNA where they play roles in response to stresses encountered by cancer cells. ARE-binding proteins (ARE-BPs) specifically impact alternative splicing, stability, decay and translation, and formation of RNA-rich biomolecular condensates like cytoplasmic stress granules (SGs). For example, recent findings highlight the role of ARE-BPs - like TIAR and HUR - in chemotherapy resistance and in translational regulation of mRNAs encoding pro-inflammatory cytokines. We will discuss emerging evidence that different modes of ARE-BP activity impact leukaemia and lymphoma development, progression, adaptation to microenvironment and chemotherapy resistance.
Collapse
Affiliation(s)
- Paulina Podszywalow-Bartnicka
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, USA
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Karla M. Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
2
|
Diana A, Setzu MD, Kokaia Z, Nat R, Maxia C, Murtas D. SmartFlare TM is a reliable method for assessing mRNA expression in single neural stem cells. World J Stem Cells 2021; 13:1918-1927. [PMID: 35069990 PMCID: PMC8727230 DOI: 10.4252/wjsc.v13.i12.1918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/11/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND One of the most challenging tasks of modern biology concerns the real-time tracking and quantification of mRNA expression in living cells. On this matter, a novel platform called SmartFlareTM has taken advantage of fluorophore-linked nanoconstructs for targeting RNA transcripts. Although fluorescence emission does not account for the spatial mRNA distribution, NanoFlare technology has grown a range of theranostic applications starting from detecting biomarkers related to diseases, such as cancer, neurodegenerative pathologies or embryonic developmental disorders.
AIM To investigate the potential of SmartFlareTM in determining time-dependent mRNA expression of prominin 1 (CD133) and octamer-binding transcription factor 4 (OCT4) in single living cells through differentiation.
METHODS Brain fragments from the striatum of aborted human fetuses aged 8 wk postconception were processed to obtain neurospheres. For the in vitro differentiation, neurospheres were gently dissociated with Accutase solution. Single cells were resuspended in a basic medium enriched with fetal bovine serum, plated on poly-L-lysine-coated glass coverslips, and grown in a lapse of time from 1 to 4 wk. Live cell mRNA detection was performed using SmartFlareTM probes (CD133, Oct4, Actin, and Scramble). All the samples were incubated at 37 °C for 24 h. For nuclear staining, Hoechst 33342 was added. SmartFlareTM CD133- and OCT4-specific fluorescence signal was assessed using a semiquantitative visual approach, taking into account the fluorescence intensity and the number of labeled cells.
RESULTS In agreement with previous PCR experiments, a unique expression trend was observed for CD133 and OCT4 genes until 7 d in vitro (DIV). Fluorescence resulted in a mixture of diffuse cytoplasmic and spotted-like pattern, also detectable in the contacting neural branches. From 15 to 30 DIV, only few cells showed a scattered fluorescent pattern, in line with the differentiation progression and coherent with mRNA downregulation of these stemness-related genes.
CONCLUSION SmartFlareTM appears to be a reliable, easy-to-handle tool for investigating CD133 and OCT4 expression in a neural stem cell model, preserving cell biological properties in anticipation of downstream experiments.
Collapse
Affiliation(s)
- Andrea Diana
- Department of Biomedical Sciences, University of Cagliari, Monserrato 09042, Cagliari, Italy
| | - Maria Dolores Setzu
- Department of Biomedical Sciences, University of Cagliari, Monserrato 09042, Cagliari, Italy
| | - Zaal Kokaia
- Laboratory of Stem Cells & Restorative Neurology, Lund Stem Cell Center, Lund University, Lund SE-221 84, Lund, Sweden
| | - Roxana Nat
- Institute of Neuroscience, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Cristina Maxia
- Department of Biomedical Sciences, University of Cagliari, Monserrato 09042, Cagliari, Italy
| | - Daniela Murtas
- Department of Biomedical Sciences, University of Cagliari, Monserrato 09042, Cagliari, Italy
| |
Collapse
|
3
|
Si W, Ye S, Ren Z, Liu X, Wu Z, Li Y, Zhou J, Zhang S, Li Y, Deng R, Chen D. miR‑335 promotes stress granule formation to inhibit apoptosis by targeting ROCK2 in acute ischemic stroke. Int J Mol Med 2019; 43:1452-1466. [PMID: 30747210 PMCID: PMC6365079 DOI: 10.3892/ijmm.2019.4073] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 01/16/2019] [Indexed: 12/25/2022] Open
Abstract
Under harmful environmental conditions, stress granules (SGs), macromolecular aggregates that are associated with cell survival and death, are produced in the eukaryotic cytoplasm. However, whether and how microRNAs (miRNAs/miRs) modulate SG formation induced by acute ischemic stroke has not been investigated. In the present study, a rat model of middle cerebral artery occlusion (MCAO) was utilized and miRNA array profiling and reverse transcription‑quantitative polymerase chain reaction were performed. The results revealed that miR‑335 was downregulated during acute ischemic stroke, which was concomitant with reduced SG formation, enhanced apoptosis levels and increased Rho associated protein kinase 2 (ROCK2) expression. In the MCAO rat and serum‑free cell models, miR‑335 treatment upregulated SG formation, alleviated the ischemia‑induced infarction, and decreased ROCK2 protein expression and apoptosis levels. By contrast, when compared with miR‑335 treatment, the inhibition of miR‑335 resulted in reduced SG formation and higher ROCK2 expression and apoptosis levels. Target prediction analysis and luciferase 3'‑untranslated region reporter assay identified ROCK2 as the direct target of miR‑335. Furthermore, ROCK2 silencing enhanced SG formation and attenuated the level of apoptosis in the serum‑free cell model. In addition, ROCK2 silencing markedly inhibited the effect of miR‑335 on SG formation and apoptosis levels. Unexpectedly, the phosphorylation of T‑cell intracellular antigen‑1 was significantly inhibited by miR‑335 in the MCAO rat model, which provides a reasonable explanation for the promotional effect of miR‑335 on SG formation by specifically targeting ROCK2. In conclusion, these results demonstrate that miR‑335 promotes SG formation and inhibits apoptosis by reducing ROCK2 expression in acute ischemic stroke, which provides a possible therapeutic target for brain injury.
Collapse
Affiliation(s)
- Wenwen Si
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Shanyu Ye
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Zhenxing Ren
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Xin Liu
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Zimei Wu
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Yi Li
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Jianhong Zhou
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Saixia Zhang
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Yiwei Li
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Rudong Deng
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Dongfeng Chen
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|