1
|
Princiotto S, Pinna C, Mattio LM, Annunziata F, Beretta GL, Pinto A, Dallavalle S. Cytotoxicity of Benzofuran-Containing Simplified Viniferin Analogues. Pharmaceuticals (Basel) 2024; 17:1012. [PMID: 39204117 PMCID: PMC11357204 DOI: 10.3390/ph17081012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/09/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Within the huge class of plant secondary metabolites, resveratrol-derived stilbenoids show wide structural diversity and mediate a great number of biological responses relevant for human health, including cancer prevention and cytotoxicity. Resveratrol is known to modulate several pathways directly linked to cancer progression, as well as its analogue pterostilbene, characterized by an increased metabolic stability and significant pharmacological activities. To study the potential anticancer activity of other stilbenoids, a home-made collection of resveratrol dimers and simplified analogues was tested on melanoma A375, non-small cell lung cancer H460 and PC3 prostate cancer cell lines. The structural determinants responsible for the antiproliferative activity have been highlighted. Moreover, to investigate the DNA damage ability of the selected molecules, the expression of the γ-H2AX after compound exposure was evaluated.
Collapse
Affiliation(s)
- Salvatore Princiotto
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy; (C.P.); (L.M.M.); (F.A.); (A.P.); (S.D.)
| | - Cecilia Pinna
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy; (C.P.); (L.M.M.); (F.A.); (A.P.); (S.D.)
| | - Luce Micaela Mattio
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy; (C.P.); (L.M.M.); (F.A.); (A.P.); (S.D.)
| | - Francesca Annunziata
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy; (C.P.); (L.M.M.); (F.A.); (A.P.); (S.D.)
| | - Giovanni Luca Beretta
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Tumori, Via Amadeo 42, 20133 Milan, Italy;
| | - Andrea Pinto
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy; (C.P.); (L.M.M.); (F.A.); (A.P.); (S.D.)
| | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy; (C.P.); (L.M.M.); (F.A.); (A.P.); (S.D.)
| |
Collapse
|
2
|
Ye H, Zhang H, Xiang J, Shen G, Yang F, Wang F, Wang J, Tang Y. Advances and prospects of natural dietary polyphenols as G-quadruplex stabilizers in biomedical applications. Int J Biol Macromol 2024; 254:127825. [PMID: 37926317 DOI: 10.1016/j.ijbiomac.2023.127825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
G-quadruplexes (G4s) have arrested continuous interest in cancer research, and targeting G4s with small molecules has become an ideal approach for drug development. Plant-based dietary polyphenols have attracted much attention for their remarkable anti-cancer effects. Studies have suggested that polyphenols exhibit interesting scaffolds to bind G4s, which can effectively downregulate the proto-oncogenes by stabilizing those G4 structures. Therefore, this review not only summarizes studies on natural dietary polyphenols (including analogs) as G4 stabilizers, but also reveals their anti-cancer activities. Furthermore, the structural and antioxidant insights of polyphenols with G4s are discussed, and future development is proposed. These insights may pave the way for the development of the next generation of anti-cancer drugs targeting nucleic acids.
Collapse
Affiliation(s)
- Huanfeng Ye
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hong Zhang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; Beijing National Laboratory for Molecular Sciences (BNLMS), PR China.
| | - Junfeng Xiang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Gang Shen
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; Beijing National Laboratory for Molecular Sciences (BNLMS), PR China
| | - Fengmin Yang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; Beijing National Laboratory for Molecular Sciences (BNLMS), PR China
| | - Fangfang Wang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, PR China.
| | - Yalin Tang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Beijing National Laboratory for Molecular Sciences (BNLMS), PR China.
| |
Collapse
|
3
|
Platella C, Criscuolo A, Riccardi C, Gaglione R, Arciello A, Musumeci D, DellaGreca M, Montesarchio D. Exploring the Binding of Natural Compounds to Cancer-Related G-Quadruplex Structures: From 9,10-Dihydrophenanthrenes to Their Dimeric and Glucoside Derivatives. Int J Mol Sci 2023; 24:ijms24097765. [PMID: 37175474 PMCID: PMC10178421 DOI: 10.3390/ijms24097765] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
In-depth studies on the interaction of natural compounds with cancer-related G-quadruplex structures have been undertaken only recently, despite their high potential as anticancer agents, especially due to their well-known and various bioactivities. In this frame, aiming at expanding the repertoire of natural compounds able to selectively recognize G-quadruplexes, and particularly focusing on phenanthrenoids, a mini-library including dimeric (1-3) and glucoside (4-5) analogues of 9,10-dihydrophenanthrenes, a related tetrahydropyrene glucoside (6) along with 9,10-dihydrophenanthrene 7 were investigated here by several biophysical techniques and molecular docking. Compounds 3 and 6 emerged as the most selective G-quadruplex ligands within the investigated series. These compounds proved to mainly target the grooves/flanking residues of the hybrid telomeric and parallel oncogenic G-quadruplex models exploiting hydrophobic, hydrogen bond and π-π interactions, without perturbing the main folds of the G-quadruplex structures. Notably, a binding preference was found for both ligands towards the hybrid telomeric G-quadruplex. Moreover, compounds 3 and 6 proved to be active on different human cancer cells in the low micromolar range. Overall, these compounds emerged as useful ligands able to target G-quadruplex structures, which are of interest as promising starting scaffolds for the design of analogues endowed with high and selective anticancer activity.
Collapse
Affiliation(s)
- Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy
| | - Andrea Criscuolo
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy
| | - Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy
| | - Rosa Gaglione
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy
| | - Angela Arciello
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy
- Institute of Biostructures and Bioimages, CNR, 80134 Naples, Italy
| | - Marina DellaGreca
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy
- CINMPIS-Consorzio Interuniversitario Nazionale di Ricerca in Metodologie e Processi Innovativi di Sintesi, Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
4
|
Cherian S, Hacisayidli KM, Kurian R, Mathews A. Therapeutically important bioactive compounds of the genus Polygonum L. and their possible interventions in clinical medicine. J Pharm Pharmacol 2023; 75:301-327. [PMID: 36757388 DOI: 10.1093/jpp/rgac105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/26/2022] [Indexed: 02/10/2023]
Abstract
OBJECTIVES Increasing literature data have suggested that the genus Polygonum L. possesses pharmacologically important plant secondary metabolites. These bioactive compounds are implicated as effective agents in preclinical and clinical practice due to their pharmacological effects such as anti-inflammatory, anticancer, antidiabetic, antiaging, neuroprotective or immunomodulatory properties among many others. However, elaborate pharmacological and clinical data concerning the bioavailability, tissue distribution pattern, dosage and pharmacokinetic profiles of these compounds are still scanty. KEY FINDINGS The major bioactive compounds implicated in the therapeutic effects of Polygonum genus include phenolic and flavonoid compounds, anthraquinones and stilbenes, such as quercetin, resveratrol, polydatin and others, and could serve as potential drug leads or as adjuvant agents. Data from in-silico network pharmacology and computational molecular docking studies are also highly helpful in identifying the possible drug target of pathogens or host cell machinery. SUMMARY We provide an up-to-date overview of the data from pharmacodynamic, pharmacokinetic profiles and preclinical (in-vitro and in-vivo) investigations and the available clinical data on some of the therapeutically important compounds of genus Polygonum L. and their medical interventions, including combating the outbreak of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Sam Cherian
- Indian Society for Plant Physiology, New Delhi, India
| | - Kushvar Mammadova Hacisayidli
- Department of Hygiene and Food Safety, Veterinary Medicine Faculty, Azerbaijan State Agricultural University, Ganja City, Azerbaijan
| | - Renju Kurian
- Department of Pathology, Manipal University College, Melaka, Malaysia
| | - Allan Mathews
- Faculty of Pharmacy, Quest International University Perak, Ipoh, Malaysia
| |
Collapse
|
5
|
Falanga AP, Terracciano M, Oliviero G, Roviello GN, Borbone N. Exploring the Relationship between G-Quadruplex Nucleic Acids and Plants: From Plant G-Quadruplex Function to Phytochemical G4 Ligands with Pharmaceutic Potential. Pharmaceutics 2022; 14:2377. [PMID: 36365194 PMCID: PMC9698481 DOI: 10.3390/pharmaceutics14112377] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/19/2022] [Accepted: 11/01/2022] [Indexed: 10/31/2023] Open
Abstract
G-quadruplex (G4) oligonucleotides are higher-order DNA and RNA secondary structures of enormous relevance due to their implication in several biological processes and pathological states in different organisms. Strategies aiming at modulating human G4 structures and their interrelated functions are first-line approaches in modern research aiming at finding new potential anticancer treatments or G4-based aptamers for various biomedical and biotechnological applications. Plants offer a cornucopia of phytocompounds that, in many cases, are effective in binding and modulating the thermal stability of G4s and, on the other hand, contain almost unexplored G4 motifs in their genome that could inspire new biotechnological strategies. Herein, we describe some G4 structures found in plants, summarizing the existing knowledge of their functions and biological role. Moreover, we review some of the most promising G4 ligands isolated from vegetal sources and report on the known relationships between such phytochemicals and G4-mediated biological processes that make them potential leads in the pharmaceutical sector.
Collapse
Affiliation(s)
- Andrea P. Falanga
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Monica Terracciano
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnologies, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Giovanni N. Roviello
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Nicola Borbone
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
- Institute of Applied Sciences and Intelligent Systems, Italian National Council of Research (ISASI-CNR), Via Pietro Castellino 111, 80131 Napoli, Italy
| |
Collapse
|
6
|
Kang Y, Wei C. A stilbene derivative as dual-channel fluorescent probe for mitochondrial G-quadruplex DNA in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 278:121316. [PMID: 35569198 DOI: 10.1016/j.saa.2022.121316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/15/2022] [Accepted: 04/24/2022] [Indexed: 06/15/2023]
Abstract
G-quadruplex DNA has attracted the widespread attention as a novel target of anticancer strategy. Herein, two novel stilbene derivatives 2a and 2b were designed and synthesized under mild reaction conditions, and their interactions with G-quadruplex DNA, cytotoxicity, and distribution in living cells were investigated in detail. Both compounds display a low cytotoxicity and the higher affinity to G-quadruplex DNA than to the other secondary structures, including duplex, single-stranded and i-motif DNA, moreover, the affinity of 2b with m-allyl pyridine salt group to G-quadruplex DNA is about 10-fold stronger than that of 2a with p-allyl pyridine salt group. The interactions of the compounds with the promoter G-quadruplexes are enthalpy-driven by an ITC assay. 2a and 2b not only stabilize the G-quadruplex structure but also induce the G-rich sequences (bcl-2, HRCC and KSS) to fold into the mixed-type G-quadruplex in Na+/K+ free Tris-HCl buffer at pH 7.0, and 2b presents the higher stabilization to G-quadruplex than 2a by a FRET-melting assay. 2b presents a dual-emission at 508 and 600 nm and gives a turn-on and stronger and more sensitive fluorescence response over 2a to the promoter (bcl-2, c-kit 2 and c-myc) and mitochondrial (HRCC and KSS) G-quadruplex DNA at both emission wavelengths, moreover, the peak at 508 nm is blue-shifted to 466 nm after binding to DNA. The blue and red dual-channel CLSM images indicate that 2b is mainly distributed in the mitochondrion of living HepG2 cells. The results show that 2b is a potential dual-channel fluorescent probe for mitochondrial G-quadruplex DNA in living cells.
Collapse
Affiliation(s)
- Yongqiang Kang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, PR China
| | - Chunying Wei
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, PR China.
| |
Collapse
|
7
|
Molecular and Cellular Mechanisms of Propolis and Its Polyphenolic Compounds against Cancer. Int J Mol Sci 2022; 23:ijms231810479. [PMID: 36142391 PMCID: PMC9499605 DOI: 10.3390/ijms231810479] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 12/12/2022] Open
Abstract
In recent years, interest in natural products such as alternative sources of pharmaceuticals for numerous chronic diseases, including tumors, has been renewed. Propolis, a natural product collected by honeybees, and polyphenolic/flavonoid propolis-related components modulate all steps of the cancer progression process. Anticancer activity of propolis and its compounds relies on various mechanisms: cell-cycle arrest and attenuation of cancer cells proliferation, reduction in the number of cancer stem cells, induction of apoptosis, modulation of oncogene signaling pathways, inhibition of matrix metalloproteinases, prevention of metastasis, anti-angiogenesis, anti-inflammatory effects accompanied by the modulation of the tumor microenvironment (by modifying macrophage activation and polarization), epigenetic regulation, antiviral and bactericidal activities, modulation of gut microbiota, and attenuation of chemotherapy-induced deleterious side effects. Ingredients from propolis also "sensitize" cancer cells to chemotherapeutic agents, likely by blocking the activation of the transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). In this review, we summarize the current knowledge related to the the effects of flavonoids and other polyphenolic compounds from propolis on tumor growth and metastasizing ability, and discuss possible molecular and cellular mechanisms involved in the modulation of inflammatory pathways and cellular processes that affect survival, proliferation, invasion, angiogenesis, and metastasis of the tumor.
Collapse
|
8
|
Exploring the Parallel G-Quadruplex Nucleic Acid World: A Spectroscopic and Computational Investigation on the Binding of the c-myc Oncogene NHE III1 Region by the Phytochemical Polydatin. Molecules 2022; 27:molecules27092997. [PMID: 35566347 PMCID: PMC9099682 DOI: 10.3390/molecules27092997] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Trans-polydatin (tPD), the 3-β-D-glucoside of the well-known nutraceutical trans-resveratrol, is a natural polyphenol with documented anti-cancer, anti-inflammatory, cardioprotective, and immunoregulatory effects. Considering the anticancer activity of tPD, in this work, we aimed to explore the binding properties of this natural compound with the G-quadruplex (G4) structure formed by the Pu22 [d(TGAGGGTGGGTAGGGTGGGTAA)] DNA sequence by exploiting CD spectroscopy and molecular docking simulations. Pu22 is a mutated and shorter analog of the G4-forming sequence known as Pu27 located in the promoter of the c-myc oncogene, whose overexpression triggers the metabolic changes responsible for cancer cells transformation. The binding of tPD with the parallel Pu22 G4 was confirmed by CD spectroscopy, which showed significant changes in the CD spectrum of the DNA and a slight thermal stabilization of the G4 structure. To gain a deeper insight into the structural features of the tPD-Pu22 complex, we performed an in silico molecular docking study, which indicated that the interaction of tPD with Pu22 G4 may involve partial end-stacking to the terminal G-quartet and H-bonding interactions between the sugar moiety of the ligand and deoxynucleotides not included in the G-tetrads. Finally, we compared the experimental CD profiles of Pu22 G4 with the corresponding theoretical output obtained using DichroCalc, a web-based server normally used for the prediction of proteins’ CD spectra starting from their “.pdb” file. The results indicated a good agreement between the predicted and the experimental CD spectra in terms of the spectral bands’ profile even if with a slight bathochromic shift in the positive band, suggesting the utility of this predictive tool for G4 DNA CD investigations.
Collapse
|
9
|
Platella C, Napolitano E, Riccardi C, Musumeci D, Montesarchio D. Affinity Chromatography-Based Assays for the Screening of Potential Ligands Selective for G-Quadruplex Structures. ChemistryOpen 2022; 11:e202200090. [PMID: 35608081 PMCID: PMC9127747 DOI: 10.1002/open.202200090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/22/2022] [Indexed: 12/27/2022] Open
Abstract
DNA G-quadruplexes (G4s) are key structures for the development of targeted anticancer therapies. In this context, ligands selectively interacting with G4s can represent valuable anticancer drugs. Aiming at speeding up the identification of G4-targeting synthetic or natural compounds, we developed an affinity chromatography-based assay, named G-quadruplex on Oligo Affinity Support (G4-OAS), by synthesizing G4-forming sequences on commercially available polystyrene OAS. Then, due to unspecific binding of several hydrophobic ligands on nude OAS, we moved to Controlled Pore Glass (CPG). We thus conceived an ad hoc functionalized, universal support on which both the on-support elongation and deprotection of the G4-forming oligonucleotides can be performed, along with the successive affinity chromatography-based assay, renamed as G-quadruplex on Controlled Pore Glass (G4-CPG) assay. Here we describe these assays and their applications to the screening of several libraries of chemically different putative G4 ligands. Finally, ongoing studies and outlook of our G4-CPG assay are reported.
Collapse
Affiliation(s)
- Chiara Platella
- Department of Chemical SciencesUniversity of Naples Federico IIvia Cintia 2180126NaplesItaly
| | - Ettore Napolitano
- Department of Chemical SciencesUniversity of Naples Federico IIvia Cintia 2180126NaplesItaly
| | - Claudia Riccardi
- Department of Chemical SciencesUniversity of Naples Federico IIvia Cintia 2180126NaplesItaly
| | - Domenica Musumeci
- Department of Chemical SciencesUniversity of Naples Federico IIvia Cintia 2180126NaplesItaly
- Institute of Biostructures and BioimagesCNRVia Tommaso De Amicis, 9580145NaplesItaly
| | - Daniela Montesarchio
- Department of Chemical SciencesUniversity of Naples Federico IIvia Cintia 2180126NaplesItaly
| |
Collapse
|
10
|
Platella C, Capasso D, Riccardi C, Musumeci D, DellaGreca M, Montesarchio D. Natural compounds from Juncus plants interacting with telomeric and oncogene G-quadruplex structures as potential anticancer agents. Org Biomol Chem 2021; 19:9953-9965. [PMID: 34747958 DOI: 10.1039/d1ob01995c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aiming at discovering novel, putative anticancer drugs featuring low-to-null side effects, natural compounds isolated from Juncaceae were studied here for their ability to target G-quadruplex structures originating from cancer-related telomeric and oncogene DNA sequences. Particularly, various dihydrophenanthrene, benzocoumarin and dihydrodibenzoxepin derivatives were firstly screened by the affinity chromatography-based G4-CPG assay, and the compound with the highest affinity and selectivity for G-quadruplexes (named J10) was selected for further studies. Fluorescence spectroscopy and circular dichroism experiments corroborated its capability to selectively recognize and stabilize G-quadruplexes over duplex DNA, also showing a preference for parallel G-quadruplexes. Molecular docking proved that the selective G-quadruplex interactions over duplex interactions could be due to the ability of J10 to bind to the grooves of the telomeric and oncogene G-quadruplex structures. Finally, biological assays demonstrated that J10 induces significant antiproliferative effects on human leukemia cells, with no relevant effects on healthy human fibroblasts. Interestingly, J10 exerts its antiproliferative action on tumor cells by activating the apoptotic pathway.
Collapse
Affiliation(s)
- Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 21, 80126 Naples, Italy.
| | - Domenica Capasso
- CIRPEB, University of Naples Federico II, Naples, Italy.,CESTEV, University of Naples Federico II, Naples, Italy
| | - Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 21, 80126 Naples, Italy.
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 21, 80126 Naples, Italy. .,Institute of Biostructures and Bioimaging (IBB) - CNR, Naples, Italy
| | - Marina DellaGreca
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 21, 80126 Naples, Italy.
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 21, 80126 Naples, Italy.
| |
Collapse
|
11
|
Identification of Effective Anticancer G-Quadruplex-Targeting Chemotypes through the Exploration of a High Diversity Library of Natural Compounds. Pharmaceutics 2021; 13:pharmaceutics13101611. [PMID: 34683905 PMCID: PMC8537501 DOI: 10.3390/pharmaceutics13101611] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/21/2021] [Accepted: 09/26/2021] [Indexed: 12/14/2022] Open
Abstract
In the quest for selective G-quadruplex (G4)-targeting chemotypes, natural compounds have been thus far poorly explored, though representing appealing candidates due to the high structural diversity of their scaffolds. In this regard, a unique high diversity in-house library composed of ca. one thousand individual natural products was investigated. The combination of molecular docking-based virtual screening and the G4-CPG experimental screening assay proved to be useful to quickly and effectively identify-out of many natural compounds-five hit binders of telomeric and oncogenic G4s, i.e., Bulbocapnine, Chelidonine, Ibogaine, Rotenone and Vomicine. Biophysical studies unambiguously demonstrated the selective interaction of these compounds with G4s compared to duplex DNA. The rationale behind the G4 selective recognition was suggested by molecular dynamics simulations. Indeed, the selected ligands proved to specifically interact with G4 structures due to peculiar interaction patterns, while they were unable to firmly bind to a DNA duplex. From biological assays, Chelidonine and Rotenone emerged as the most active compounds of the series against cancer cells, also showing good selectivity over normal cells. Notably, the anticancer activity correlated well with the ability of the two compounds to target telomeric G4s.
Collapse
|
12
|
Pop TD, Diaconeasa Z. Recent Advances in Phenolic Metabolites and Skin Cancer. Int J Mol Sci 2021; 22:9707. [PMID: 34575899 PMCID: PMC8471058 DOI: 10.3390/ijms22189707] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 12/16/2022] Open
Abstract
Skin cancer represents any tumor development from the cutaneous structures within the epidermis, dermis or subcutaneous tissue, and is considered to be the most prevalent type of cancer. Compared to other types of cancer, skin cancer is proven to have a positive growth rate of prevalence and mortality. There are available various treatments, including chemotherapy, immunotherapy, radiotherapy and targeted therapy, but because of the multidrug resistance development, a low success has been registered. By this, the importance of studying naturally occurring compounds that are both safe and effective in the chemoprevention of skin cancer is emphasized. This review focuses on melanoma because it is the deadliest form of skin cancer, with a significantly increasing incidence in the last decades. As chemopreventive agents, we present polyphenols and their antioxidant activity, anti-inflammatory effect, their ability to balance the cell cycle and to induce apoptosis and their various other effects on skin melanoma. Besides chemoprevention, studies suggest that polyphenols can have treating abilities in some conditions. The limitations of using polyphenols are also pointed out, which are related to their poor bioavailability and stability, but as the technology is well developed, it is possible to augment the efficacy of polyphenols in the case of melanoma.
Collapse
Affiliation(s)
| | - Zorita Diaconeasa
- Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania;
| |
Collapse
|
13
|
Gupta R, Srivastava D, Sahu M, Tiwari S, Ambasta RK, Kumar P. Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Mol Divers 2021; 25:1315-1360. [PMID: 33844136 PMCID: PMC8040371 DOI: 10.1007/s11030-021-10217-3] [Citation(s) in RCA: 302] [Impact Index Per Article: 100.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
Drug designing and development is an important area of research for pharmaceutical companies and chemical scientists. However, low efficacy, off-target delivery, time consumption, and high cost impose a hurdle and challenges that impact drug design and discovery. Further, complex and big data from genomics, proteomics, microarray data, and clinical trials also impose an obstacle in the drug discovery pipeline. Artificial intelligence and machine learning technology play a crucial role in drug discovery and development. In other words, artificial neural networks and deep learning algorithms have modernized the area. Machine learning and deep learning algorithms have been implemented in several drug discovery processes such as peptide synthesis, structure-based virtual screening, ligand-based virtual screening, toxicity prediction, drug monitoring and release, pharmacophore modeling, quantitative structure-activity relationship, drug repositioning, polypharmacology, and physiochemical activity. Evidence from the past strengthens the implementation of artificial intelligence and deep learning in this field. Moreover, novel data mining, curation, and management techniques provided critical support to recently developed modeling algorithms. In summary, artificial intelligence and deep learning advancements provide an excellent opportunity for rational drug design and discovery process, which will eventually impact mankind. The primary concern associated with drug design and development is time consumption and production cost. Further, inefficiency, inaccurate target delivery, and inappropriate dosage are other hurdles that inhibit the process of drug delivery and development. With advancements in technology, computer-aided drug design integrating artificial intelligence algorithms can eliminate the challenges and hurdles of traditional drug design and development. Artificial intelligence is referred to as superset comprising machine learning, whereas machine learning comprises supervised learning, unsupervised learning, and reinforcement learning. Further, deep learning, a subset of machine learning, has been extensively implemented in drug design and development. The artificial neural network, deep neural network, support vector machines, classification and regression, generative adversarial networks, symbolic learning, and meta-learning are examples of the algorithms applied to the drug design and discovery process. Artificial intelligence has been applied to different areas of drug design and development process, such as from peptide synthesis to molecule design, virtual screening to molecular docking, quantitative structure-activity relationship to drug repositioning, protein misfolding to protein-protein interactions, and molecular pathway identification to polypharmacology. Artificial intelligence principles have been applied to the classification of active and inactive, monitoring drug release, pre-clinical and clinical development, primary and secondary drug screening, biomarker development, pharmaceutical manufacturing, bioactivity identification and physiochemical properties, prediction of toxicity, and identification of mode of action.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Devesh Srivastava
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Swati Tiwari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
| |
Collapse
|
14
|
Perrella F, Coppola F, Petrone A, Platella C, Montesarchio D, Stringaro A, Ravagnan G, Fuggetta MP, Rega N, Musumeci D. Interference of Polydatin/Resveratrol in the ACE2:Spike Recognition during COVID-19 Infection. A Focus on Their Potential Mechanism of Action through Computational and Biochemical Assays. Biomolecules 2021; 11:1048. [PMID: 34356672 PMCID: PMC8301781 DOI: 10.3390/biom11071048] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022] Open
Abstract
In the search for new therapeutic strategies to contrast SARS-CoV-2, we here studied the interaction of polydatin (PD) and resveratrol (RESV)-two natural stilbene polyphenols with manifold, well known biological activities-with Spike, the viral protein essential for virus entry into host cells, and ACE2, the angiotensin-converting enzyme present on the surface of multiple cell types (including respiratory epithelial cells) which is the main host receptor for Spike binding. Molecular Docking simulations evidenced that both compounds can bind Spike, ACE2 and the ACE2:Spike complex with good affinity, although the interaction of PD appears stronger than that of RESV on all the investigated targets. Preliminary biochemical assays revealed a significant inhibitory activity of the ACE2:Spike recognition with a dose-response effect only in the case of PD.
Collapse
Affiliation(s)
- Fulvio Perrella
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (F.P.); (F.C.); (A.P.); (C.P.); (D.M.)
| | - Federico Coppola
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (F.P.); (F.C.); (A.P.); (C.P.); (D.M.)
| | - Alessio Petrone
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (F.P.); (F.C.); (A.P.); (C.P.); (D.M.)
| | - Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (F.P.); (F.C.); (A.P.); (C.P.); (D.M.)
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (F.P.); (F.C.); (A.P.); (C.P.); (D.M.)
| | - Annarita Stringaro
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy;
| | - Giampietro Ravagnan
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche, 00133 Rome, Italy;
| | - Maria Pia Fuggetta
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche, 00133 Rome, Italy;
| | - Nadia Rega
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (F.P.); (F.C.); (A.P.); (C.P.); (D.M.)
- Centro di Ricerca Interdipartimentale sui Biomateriali, University of Naples Federico II, Piazzale Tecchio, 80125 Naples, Italy
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (F.P.); (F.C.); (A.P.); (C.P.); (D.M.)
- Institute of Biostructures and Bioimages, Consiglio Nazionale delle Ricerche, 80134 Naples, Italy
| |
Collapse
|
15
|
Platella C, Mazzini S, Napolitano E, Mattio LM, Beretta GL, Zaffaroni N, Pinto A, Montesarchio D, Dallavalle S. Plant-Derived Stilbenoids as DNA-Binding Agents: From Monomers to Dimers. Chemistry 2021; 27:8832-8845. [PMID: 33890349 PMCID: PMC8251996 DOI: 10.1002/chem.202101229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 01/18/2023]
Abstract
Stilbenoids are natural compounds endowed with several biological activities, including cardioprotection and cancer prevention. Among them, (±)-trans-δ-viniferin, deriving from trans-resveratrol dimerization, was investigated in its ability to target DNA duplex and G-quadruplex structures by exploiting NMR spectroscopy, circular dichroism, fluorescence spectroscopy and molecular docking. (±)-trans-δ-Viniferin proved to bind both the minor and major grooves of duplexes, whereas it bound the 3'- and 5'-ends of a G-quadruplex by stacking on the outer quartets, accompanied by rearrangement of flanking residues. Specifically, (±)-trans-δ-viniferin demonstrated higher affinity for the investigated DNA targets than its monomeric counterpart. Additionally, the methoxylated derivatives of (±)-trans-δ-viniferin and trans-resveratrol, i. e. (±)-pterostilbene-trans-dihydrodimer and trans-pterostilbene, respectively, were evaluated, revealing similar binding modes, affinities and stoichiometries with the DNA targets as their parent analogues. All tested compounds were cytotoxic at μM concentration on several cancer cell lines, showing DNA damaging activity consistent with their ability to tightly interact with duplex and G-quadruplex structures.
Collapse
Affiliation(s)
- Chiara Platella
- Department of Chemical SciencesUniversity of Naples Federico IIvia Cintia 2180126NaplesItaly
| | - Stefania Mazzini
- Department of Food, Environmental and Nutritional Sciences (DeFENS)Università degli Studi di Milanovia Celoria 220133MilanItaly
| | - Ettore Napolitano
- Department of Chemical SciencesUniversity of Naples Federico IIvia Cintia 2180126NaplesItaly
| | - Luce M. Mattio
- Department of Food, Environmental and Nutritional Sciences (DeFENS)Università degli Studi di Milanovia Celoria 220133MilanItaly
| | - Giovanni Luca Beretta
- Molecular Pharmacology UnitDepartment of Applied Research and Technological Development Fondazione IRCCS Istituto Nazionale Tumorivia Amadeo 4220133MilanItaly
| | - Nadia Zaffaroni
- Molecular Pharmacology UnitDepartment of Applied Research and Technological Development Fondazione IRCCS Istituto Nazionale Tumorivia Amadeo 4220133MilanItaly
| | - Andrea Pinto
- Department of Food, Environmental and Nutritional Sciences (DeFENS)Università degli Studi di Milanovia Celoria 220133MilanItaly
| | - Daniela Montesarchio
- Department of Chemical SciencesUniversity of Naples Federico IIvia Cintia 2180126NaplesItaly
| | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences (DeFENS)Università degli Studi di Milanovia Celoria 220133MilanItaly
| |
Collapse
|
16
|
Mulliri S, Laaksonen A, Spanu P, Farris R, Farci M, Mingoia F, Roviello GN, Mocci F. Spectroscopic and In Silico Studies on the Interaction of Substituted Pyrazolo[1,2-a]benzo[1,2,3,4]tetrazine-3-one Derivatives with c-Myc G4-DNA. Int J Mol Sci 2021; 22:6028. [PMID: 34199659 PMCID: PMC8199725 DOI: 10.3390/ijms22116028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/29/2021] [Accepted: 05/30/2021] [Indexed: 12/14/2022] Open
Abstract
Herein we describe a combined experimental and in silico study of the interaction of a series of pyrazolo[1,2-a]benzo[1,2,3,4]tetrazin-3-one derivatives (PBTs) with parallel G-quadruplex (GQ) DNA aimed at correlating their previously reported anticancer activities and the stabilizing effects observed by us on c-myc oncogene promoter GQ structure. Circular dichroism (CD) melting experiments were performed to characterize the effect of the studied PBTs on the GQ thermal stability. CD measurements indicate that two out of the eight compounds under investigation induced a slight stabilizing effect (2-4 °C) on GQ depending on the nature and position of the substituents. Molecular docking results allowed us to verify the modes of interaction of the ligands with the GQ and estimate the binding affinities. The highest binding affinity was observed for ligands with the experimental melting temperatures (Tms). However, both stabilizing and destabilizing ligands showed similar scores, whilst Molecular Dynamics (MD) simulations, performed across a wide range of temperatures on the GQ in water solution, either unliganded or complexed with two model PBT ligands with the opposite effect on the Tms, consistently confirmed their stabilizing or destabilizing ability ascertained by CD. Clues about a relation between the reported anticancer activity of some PBTs and their ability to stabilize the GQ structure of c-myc emerged from our study. Furthermore, Molecular Dynamics simulations at high temperatures are herein proposed for the first time as a means to verify the stabilizing or destabilizing effect of ligands on the GQ, also disclosing predictive potential in GQ-targeting drug discovery.
Collapse
Affiliation(s)
- Simone Mulliri
- Department of Chemical and Geological Sciences, University of Cagliari, I-09042 Monserrato, Italy; (S.M.); (R.F.); (M.F.)
| | - Aatto Laaksonen
- State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
- Division of Physical Chemistry, Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, 700487 Iasi, Romania
- Department of Engineering Sciences and Mathematics, Division of Energy Science, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Pietro Spanu
- Istituto di Chimica Biomolecolare, ICB-CNR-Trav. La Crucca 3, 07100 Sassari, Italy;
| | - Riccardo Farris
- Department of Chemical and Geological Sciences, University of Cagliari, I-09042 Monserrato, Italy; (S.M.); (R.F.); (M.F.)
| | - Matteo Farci
- Department of Chemical and Geological Sciences, University of Cagliari, I-09042 Monserrato, Italy; (S.M.); (R.F.); (M.F.)
| | - Francesco Mingoia
- Istituto per lo Studio dei Materiali Nanostrutturati ISMN-CNR, Via U. La Malfa 153, I-90146 Palermo, Italy;
| | - Giovanni N. Roviello
- Istituto di Biostrutture e Bioimmagini, IBB-CNR, Via Mezzocannone 16, I-80134 Naples, Italy
| | - Francesca Mocci
- Department of Chemical and Geological Sciences, University of Cagliari, I-09042 Monserrato, Italy; (S.M.); (R.F.); (M.F.)
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| |
Collapse
|
17
|
Platella C, Napolitano E, Riccardi C, Musumeci D, Montesarchio D. Disentangling the Structure-Activity Relationships of Naphthalene Diimides as Anticancer G-Quadruplex-Targeting Drugs. J Med Chem 2021; 64:3578-3603. [PMID: 33751881 PMCID: PMC8041303 DOI: 10.1021/acs.jmedchem.1c00125] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
In the context of
developing efficient anticancer therapies aimed
at eradicating any sort of tumors, G-quadruplexes represent excellent
targets. Small molecules able to interact with G-quadruplexes can
interfere with cell pathways specific of tumors and common to all
cancers. Naphthalene diimides
(NDIs) are among the most promising, putative anticancer G-quadruplex-targeting
drugs, due to their ability to simultaneously target multiple G-quadruplexes
and their strong, selective in vitro and in vivo anticancer activity.
Here, all the available biophysical, biological, and structural data
concerning NDIs targeting G-quadruplexes were systematically analyzed.
Structure–activity correlations were obtained by analyzing
biophysical data of their interactions with G-quadruplex targets and
control duplex structures, in parallel to biological data concerning
the antiproliferative activity of NDIs on cancer and normal cells.
In addition, NDI binding modes to G-quadruplexes were discussed in
consideration of the structures and properties of NDIs by in-depth
analysis of the available structural models of G-quadruplex/NDI complexes.
Collapse
Affiliation(s)
- Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy
| | - Ettore Napolitano
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy
| | - Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy.,Institute of Biostructures and Bioimages, CNR, via Mezzocannone 16, I-80134 Naples, Italy
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy
| |
Collapse
|
18
|
Kosiol N, Juranek S, Brossart P, Heine A, Paeschke K. G-quadruplexes: a promising target for cancer therapy. Mol Cancer 2021; 20:40. [PMID: 33632214 PMCID: PMC7905668 DOI: 10.1186/s12943-021-01328-4] [Citation(s) in RCA: 242] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
DNA and RNA can fold into a variety of alternative conformations. In recent years, a particular nucleic acid structure was discussed to play a role in malignant transformation and cancer development. This structure is called a G-quadruplex (G4). G4 structure formation can drive genome instability by creating mutations, deletions and stimulating recombination events. The importance of G4 structures in the characterization of malignant cells was currently demonstrated in breast cancer samples. In this analysis a correlation between G4 structure formation and an increased intratumor heterogeneity was identified. This suggests that G4 structures might allow breast cancer stratification and supports the identification of new personalized treatment options. Because of the stability of G4 structures and their presence within most human oncogenic promoters and at telomeres, G4 structures are currently tested as a therapeutic target to downregulate transcription or to block telomere elongation in cancer cells. To date, different chemical molecules (G4 ligands) have been developed that aim to target G4 structures. In this review we discuss and compare G4 function and relevance for therapeutic approaches and their impact on cancer development for three cancer entities, which differ significantly in their amount and type of mutations: pancreatic cancer, leukemia and malignant melanoma. G4 structures might present a promising new strategy to individually target tumor cells and could support personalized treatment approaches in the future.
Collapse
Affiliation(s)
- Nils Kosiol
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127, Bonn, Germany
| | - Stefan Juranek
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127, Bonn, Germany
| | - Peter Brossart
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127, Bonn, Germany
| | - Annkristin Heine
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127, Bonn, Germany
| | - Katrin Paeschke
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127, Bonn, Germany.
| |
Collapse
|
19
|
|
20
|
Platella C, Trajkovski M, Doria F, Freccero M, Plavec J, Montesarchio D. On the interaction of an anticancer trisubstituted naphthalene diimide with G-quadruplexes of different topologies: a structural insight. Nucleic Acids Res 2020; 48:12380-12393. [PMID: 33170272 PMCID: PMC7708068 DOI: 10.1093/nar/gkaa1001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/29/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Naphthalene diimides showed significant anticancer activity in animal models, with therapeutic potential related to their ability to strongly interact with G-quadruplexes. Recently, a trifunctionalized naphthalene diimide, named NDI-5, was identified as the best analogue of a mini-library of novel naphthalene diimides for its high G-quadruplex binding affinity along with marked, selective anticancer activity, emerging as promising candidate drug for in vivo studies. Here we used NMR, dynamic light scattering, circular dichroism and fluorescence analyses to investigate the interactions of NDI-5 with G-quadruplexes featuring either parallel or hybrid topology. Interplay of different binding modes of NDI-5 to G-quadruplexes was observed for both parallel and hybrid topologies, with end-stacking always operative as the predominant binding event. While NDI-5 primarily targets the 5'-end quartet of the hybrid G-quadruplex model (m-tel24), the binding to a parallel G-quadruplex model (M2) occurs seemingly simultaneously at the 5'- and 3'-end quartets. With parallel G-quadruplex M2, NDI-5 formed stable complexes with 1:3 DNA:ligand binding stoichiometry. Conversely, when interacting with hybrid G-quadruplex m-tel24, NDI-5 showed multiple binding poses on a single G-quadruplex unit and/or formed different complexes comprising two or more G-quadruplex units. NDI-5 produced stabilizing effects on both G-quadruplexes, forming complexes with dissociation constants in the nM range.
Collapse
Affiliation(s)
- Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy
| | - Marko Trajkovski
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Filippo Doria
- Department of Chemistry, University of Pavia, Viale Taramelli 10, I-27100 Pavia, Italy
| | - Mauro Freccero
- Department of Chemistry, University of Pavia, Viale Taramelli 10, I-27100 Pavia, Italy
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
- EN→FIST Centre of Excellence, Trg OF 13, SI-1000 Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy
| |
Collapse
|
21
|
Talib WH, Alsalahat I, Daoud S, Abutayeh RF, Mahmod AI. Plant-Derived Natural Products in Cancer Research: Extraction, Mechanism of Action, and Drug Formulation. Molecules 2020; 25:E5319. [PMID: 33202681 PMCID: PMC7696819 DOI: 10.3390/molecules25225319] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the main causes of death globally and considered as a major challenge for the public health system. The high toxicity and the lack of selectivity of conventional anticancer therapies make the search for alternative treatments a priority. In this review, we describe the main plant-derived natural products used as anticancer agents. Natural sources, extraction methods, anticancer mechanisms, clinical studies, and pharmaceutical formulation are discussed in this review. Studies covered by this review should provide a solid foundation for researchers and physicians to enhance basic and clinical research on developing alternative anticancer therapies.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan;
| | - Izzeddin Alsalahat
- Department of Pharmaceutical Chemistry and Pharmacognosy, Applied Science Private University, Amman 11931, Jordan; (I.A.); (S.D.); (R.F.A.)
| | - Safa Daoud
- Department of Pharmaceutical Chemistry and Pharmacognosy, Applied Science Private University, Amman 11931, Jordan; (I.A.); (S.D.); (R.F.A.)
| | - Reem Fawaz Abutayeh
- Department of Pharmaceutical Chemistry and Pharmacognosy, Applied Science Private University, Amman 11931, Jordan; (I.A.); (S.D.); (R.F.A.)
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan;
| |
Collapse
|
22
|
Pirota V, Platella C, Musumeci D, Benassi A, Amato J, Pagano B, Colombo G, Freccero M, Doria F, Montesarchio D. On the binding of naphthalene diimides to a human telomeric G-quadruplex multimer model. Int J Biol Macromol 2020; 166:1320-1334. [PMID: 33166559 DOI: 10.1016/j.ijbiomac.2020.11.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023]
Abstract
To selectively target telomeric G-quadruplex (G4) DNA, monomeric and dimeric naphthalene diimides (NDIs) were investigated as binders of multimeric G4 structures able to discriminate duplex DNA. These NDIs were analysed by the affinity chromatography-based screening G4-CPG (G-quadruplex on Controlled Pore Glass), using the sequence d[AGGG(TTAGGG)7] (tel46), folding into two consecutive G4s, as model of the human telomeric G4 multimer. In parallel, a telomeric G4 monomer (tel26) and a duplex structure (ds27) were used as controls. According to G4-CPG screening, NDI-5 proved to be the best ligand in terms of dimeric G4 vs. duplex DNA selectivity and was analysed by circular dichroism (CD), gel electrophoresis, isothermal titration calorimetry (ITC) and fluorescence spectroscopy in its interactions with tel46. NDI-5 strongly binds and stabilizes tel46 G4, favouring a hybrid folding in K+-containing buffer. Under these conditions, the binding process comprises a first event involving three molecules of NDI-5 and a second one in which other six molecules bind to the DNA. In a metal cation-free system, NDI-5 induces tel46 G4 folding, as indicated by CD and PAGE, favouring an antiparallel structuring. Docking simulations showed that NDI-5 can effectively bind to the pocket between two G4 units, representing a promising ligand for multimeric G4s.
Collapse
Affiliation(s)
- Valentina Pirota
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy
| | - Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | | | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Giorgio Colombo
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy
| | - Mauro Freccero
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy
| | - Filippo Doria
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy.
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy.
| |
Collapse
|
23
|
Reina C, Cavalieri V. Epigenetic Modulation of Chromatin States and Gene Expression by G-Quadruplex Structures. Int J Mol Sci 2020; 21:E4172. [PMID: 32545267 PMCID: PMC7312119 DOI: 10.3390/ijms21114172] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
G-quadruplexes are four-stranded helical nucleic acid structures formed by guanine-rich sequences. A considerable number of studies have revealed that these noncanonical structural motifs are widespread throughout the genome and transcriptome of numerous organisms, including humans. In particular, G-quadruplexes occupy strategic locations in genomic DNA and both coding and noncoding RNA molecules, being involved in many essential cellular and organismal functions. In this review, we first outline the fundamental structural features of G-quadruplexes and then focus on the concept that these DNA and RNA structures convey a distinctive layer of epigenetic information that is critical for the complex regulation, either positive or negative, of biological activities in different contexts. In this framework, we summarize and discuss the proposed mechanisms underlying the functions of G-quadruplexes and their interacting factors. Furthermore, we give special emphasis to the interplay between G-quadruplex formation/disruption and other epigenetic marks, including biochemical modifications of DNA bases and histones, nucleosome positioning, and three-dimensional organization of chromatin. Finally, epigenetic roles of RNA G-quadruplexes in post-transcriptional regulation of gene expression are also discussed. Undoubtedly, the issues addressed in this review take on particular importance in the field of comparative epigenetics, as well as in translational research.
Collapse
Affiliation(s)
- Chiara Reina
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy;
| | - Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
24
|
Bajaj S, Kumar MS, Peters GJ, Mayur YC. Targeting telomerase for its advent in cancer therapeutics. Med Res Rev 2020; 40:1871-1919. [PMID: 32391613 DOI: 10.1002/med.21674] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 12/24/2022]
Abstract
Telomerase has emerged as an important primary target in anticancer therapy. It is a distinctive reverse transcriptase enzyme, which extends the length of telomere at the 3' chromosomal end, and uses telomerase reverse transcriptase (TERT) and telomerase RNA template-containing domains. Telomerase has a vital role and is a contributing factor in human health, mainly affecting cell aging and cell proliferation. Due to its unique feature, it ensures unrestricted cell proliferation in malignancy and plays a major role in cancer disease. The development of telomerase inhibitors with increased specificity and better pharmacokinetics is being considered to design and develop newer potent anticancer agents. Use of natural and synthetic compounds for the inhibition of telomerase activity can lead to an opening of new vistas in cancer treatment. This review details about the telomerase biochemistry, use of natural and synthetic compounds; vaccines and oncolytic virus in therapy that suppress the telomerase activity. We have discussed structure-activity relationships of various natural and synthetic telomerase inhibitors to help medicinal chemists and chemical biology researchers with a ready reference and updated status of their clinical trials. Suppression of human TERT (hTERT) activity through inhibition of hTERT promoter is an important approach for telomerase inhibition.
Collapse
Affiliation(s)
| | | | - G J Peters
- Department of Medical Oncology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Y C Mayur
- SPPSPTM, SVKM's NMIMS, Mumbai, India
| |
Collapse
|
25
|
Trifunctionalized Naphthalene Diimides and Dimeric Analogues as G-Quadruplex-Targeting Anticancer Agents Selected by Affinity Chromatography. Int J Mol Sci 2020; 21:ijms21061964. [PMID: 32183038 PMCID: PMC7139804 DOI: 10.3390/ijms21061964] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 12/14/2022] Open
Abstract
A focused library of newly designed monomeric and dimeric naphthalene diimides (NDIs) was analyzed in its ability to recognize specific G-quadruplex (G4) structures discriminating duplex DNA. The best G4 ligands—according to an affinity chromatography-based screening method named G4-CPG—were tested on human cancer and healthy cells, inducing DNA damage at telomeres, and in parallel, showing selective antiproliferative activity on HeLa cancer cells with IC50 values in the low nanomolar range. CD and fluorescence spectroscopy studies allowed detailed investigation of the interaction in solution with different G4 and duplex DNA models of the most promising NDI of the series, as determined by combining the biophysical and biological assays’ data.
Collapse
|
26
|
Lin J, Tang M, Zhao R, Du Q, Shen L, Du G, Zhang Y, Li Y, Pan X. Synthetic Optimization of Ellipticine and Antitumor Activity of Novel Hexacyclic Derivatives of Ellipticine. Curr Pharm Des 2019; 25:3578-3589. [DOI: 10.2174/1381612825666190404122650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/27/2019] [Indexed: 01/05/2023]
Abstract
Background:
For decades, a great deal of research work has been done to synthesize ellipticine and
its derivatives because of their potential antitumor properties and anti-HIV activities. However, the resonance
structures in different media, a low level of solubility at physiological pH and systemic toxicity have prevented
the use of ellipticine as a therapeutic agent. Besides, the low yield and complex steps of ellipticine synthesis limit
its application.
Methods:
A high-yield synthetic procedure of ellipticine has been optimized, and the total yield was up to 50%
without silica gel column chromatography. Novel hexacyclic ellipticine derivatives were synthesized by coupling
ellipticine with o-aminobenzoic acid. Their cytotoxicities against HCT116, MGC803, HT29 and MCF-7 tumor
cells were evaluated.
Results:
The synthesis process of ellipticine was optimized, and the total yield of the synthetic route was increased
to 50% through several operation steps optimization. Fourteen ellipticine hexacyclic derivatives were
synthesized. The synthetic compounds were screened for anti-tumor activity in vivo and in vitro, and some of the
derivatives had good anti-tumor activity.
Conclusion:
Compared with ellipticine, the compound 1l showed higher antitumor activity and better tolerance to
tumor models. The compound 1l treatment increased the percentage of late apoptotic cells from 3.1% (DMSO) to
21.6% (20.0 μM) in NCI-H460 cells. It also was observed the effect of 1l on G2 phase arrest was similar as that
of ellipticine. The mechanism of action indicated compound 1l could be a topoisomerase IIα poison. These studies
provided the basis for the pharmacodynamics and toxicology of ellipticine, and further clarifies the structureactivity
relationship of antitumor activity of ellipticine.
Collapse
Affiliation(s)
- Jingjing Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Mei Tang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ru Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qianqian Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Longying Shen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guohua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yafen Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yan Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiandao Pan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
27
|
Mohamed HA, Al-Shareef HF. Design, Synthesis, Anti-Proliferative Evaluation and Cell Cycle Analysis of Hybrid 2-Quinolones. Anticancer Agents Med Chem 2019; 19:1132-1140. [DOI: 10.2174/1871520619666190319142934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 11/22/2022]
Abstract
Background:
Quinolones are a significant group of nitrogen heterocyclic compounds that exist in therapeutic
agents, alkaloids, and synthetic small molecules that have important biological activities. A wide range of
quinolones have been used as antituberculosis, antibacterial, anti-malarial, antifungal, anticonvulsant, anticancer
agents and urease inhibitors.
Methods:
Ethyl 3,3-disubstituted-2-cyano propionates containing hybride quinolones derivatives were synthesized
by the reaction of 1-amino-7-hydroxy-4-methylquinolin-2(1H)-one and its dibromo derivative with α, β-unsaturated
carbonyl in ethanol.
Results:
A novel series of hybrid 2-quinolone derivatives was designed and synthesized. The compounds structures
were confirmed using different spectroscopic methods and elemental analysis. The cytotoxic activities of all the
compounds were assessed against HepG2 cell line in comparison with doxorubicin as a standard drug.
Conclusion:
Most compounds revealed superior anti-proliferative activity than the standard. Compound 4b, is the
most active compound (IC50 = 0.39mM) compared with doxorubicin (IC50 = 9.23mM). DNA flow cytometric analysis
of compound 4b showed cell cycle arrest at G2/M phase with a concomitant increase of cells in apoptotic phase.
Dual annexin-V/ propidium iodide staining assay of compound 4b revealed that the selected candidate increased the
apoptosis of HepG-2 cells more than control.
Collapse
Affiliation(s)
- Heba A.E. Mohamed
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, P. O. Box 13401, Makkah 21955, Saudi Arabia
| | - Hossa F. Al-Shareef
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, P. O. Box 13401, Makkah 21955, Saudi Arabia
| |
Collapse
|
28
|
Synthesis, DNA binding studies, and antiproliferative activity of novel Pt(II)-complexes with an L-alanyl-based ligand. J Inorg Biochem 2019; 203:110868. [PMID: 31837618 DOI: 10.1016/j.jinorgbio.2019.110868] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/22/2019] [Accepted: 09/24/2019] [Indexed: 12/14/2022]
Abstract
An artificial alanine-based amino acid {(S)-2-amino-3-[4-propyl-3-(thiophen-2-yl)-5-thioxo-4,5-dihydro-1H-1,2,4-triazol-1-yl]propanoic acid, here named TioxAla}, bearing a substituted triazolyl-thione group on the side chain and able to bind RNA biomedical targets, was here chosen as a valuable scaffold for the synthesis of new platinum complexes with potential dual action owing to the concomitant presence of the metal centre and the amino acid moiety. Three new platinum complexes, obtained from the reaction of TioxAla with K2PtCl4, were characterized by mass spectrometry, nuclear magnetic resonance and UV-vis spectroscopy: one compound (Pt1, bis-{(S)-2-amino-3-[4-propyl-3-(thiophen-2-yl)-5-thioxo-4,5-dihydro-1H-1,2,4-triazol-1-yl]propanoate-O,S} platinum(II)) consisted of two amino acid units coordinating the Pt(II) ion; the other two, Pt2 [potassium dichloro-{(S)-2-amino-3-[4-propyl-3-(thiophen-2-yl)-5-thioxo-4,5-dihydro-1H-1,2,4-triazol-1-yl]propanoate (O,S)} platinum(II)] and Pt3 [potassium dichloro-{(S)-2-amino-3-[4-propyl-3-(thiophen-2-yl)-5-thioxo-4,5-dihydro-1H-1,2,4-triazol-1-yl]propanoate (O,N)} platinum(II)], were isomers bearing one TioxAla unit, and two chlorides as Pt-ligands. Pt coordination involved preferentially the amino, carboxylic and thione functions of TioxAla. By preliminary antiproliferative assays, a moderate cytotoxic activity on cancer cells was observed only for Pt2 and Pt3, while no anticancer activity was found for both the chloride-free complex (Pt1) and TioxAla. This cytotoxicity, however lower than that of cisplatin, well correlated with the marked ability, here found only for Pt2 and Pt3 complexes, to bind DNA sequences either in random coil or in structured forms (duplex and G-quadruplex), as verified by spectroscopic and spectrometric analysis.
Collapse
|
29
|
Li QS, Li Y, Deora GS, Ruan BF. Derivatives and Analogues of Resveratrol: Recent Advances in Structural Modification. Mini Rev Med Chem 2019; 19:809-825. [DOI: 10.2174/1389557519666190128093840] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/05/2018] [Accepted: 01/09/2019] [Indexed: 12/13/2022]
Abstract
Resveratrol is a non-flavonoid polyphenol containing a terpenoid backbone. It has been intensively studied because of its various promising biological properties, such as anticancer, antioxidant, antibacterial, neuroprotective and anti-inflammatory activities. However, the medicinal application of resveratrol is constrained by its poor bioavailability and stability. In the past decade, more attention has been focused on making resveratrol derivatives to improve its pharmacological activities and pharmacokinetics. This review covers the literature published over the past 15 years on synthetic analogues of resveratrol. The emphasis is on the chemistry of new compounds and relevant biological activities along with structure-activity relationship. This review aims to provide a scientific and reliable basis for the development of resveratrol-based clinical drugs.
Collapse
Affiliation(s)
- Qing-Shan Li
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yao Li
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Girdhar Singh Deora
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Ban-Feng Ruan
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
30
|
Benzodifurans for biomedical applications: BZ4, a selective anti-proliferative and anti-amyloid lead compound. Future Med Chem 2019; 11:285-302. [PMID: 30801198 DOI: 10.4155/fmc-2018-0473] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
AIM Our goal is to evaluate benzodifuran-based scaffolds for biomedical applications. METHODOLOGY We here explored the anticancer and anti-amyloid activities of a novel compound (BZ4) in comparison with other known benzodifuran analogs, previously studied in our group, and we have explored its ability to interact with different DNA model systems. RESULTS BZ4 shows antiproliferative activity on different cancer cells; does not affect noncancerous control cells and alters the aggregation properties of β-amyloid, as ascertained by circular dichroism, fluorescence spectroscopy and scanning electron microscopy analysis. An overall, qualitative picture on the mechanistic aspects related to the biological activities is discussed in light of the dynamic light scattering, UV, circular dichroism and fluorescence data, as well as of the metal ion-binding properties of BZ4.
Collapse
|
31
|
Sengupta A, Ganguly A, Chowdhury S. Promise of G-Quadruplex Structure Binding Ligands as Epigenetic Modifiers with Anti-Cancer Effects. Molecules 2019; 24:E582. [PMID: 30736345 PMCID: PMC6384772 DOI: 10.3390/molecules24030582] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 11/16/2022] Open
Abstract
Evidences from more than three decades of work support the function of non-duplex DNA structures called G-quadruplex (G4) in important processes like transcription and replication. In addition, G4 structures have been studied in connection with DNA base modifications and chromatin/nucleosome arrangements. Recent work, interestingly, shows promise of G4 structures, through interaction with G4 structure-interacting proteins, in epigenetics-in both DNA and histone modification. Epigenetic changes are found to be intricately associated with initiation as well as progression of cancer. Multiple oncogenes have been reported to harbor the G4 structure at regulatory regions. In this context, G4 structure-binding ligands attain significance as molecules with potential to modify the epigenetic state of chromatin. Here, using examples from recent studies we discuss the emerging role of G4 structures in epigenetic modifications and, therefore, the promise of G4 structure-binding ligands in epigenetic therapy.
Collapse
Affiliation(s)
- Antara Sengupta
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi-110025, India.
- Academy of Scientific and Innovative Research, Rafi Marg, New Delhi-110001, India.
| | - Akansha Ganguly
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi-110025, India.
| | - Shantanu Chowdhury
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi-110025, India.
- Academy of Scientific and Innovative Research, Rafi Marg, New Delhi-110001, India.
- GNR Knowledge Centre for Genome Informatics, CSIR Institute of Genomics and Integrative Biology, Mathura Road, New Delhi-110025, India.
| |
Collapse
|
32
|
Ren G, Sun H, Guo J, Fan J, Li G, Xu S. Molecular mechanism of the interaction between resveratrol and trypsin via spectroscopy and molecular docking. Food Funct 2019; 10:3291-3302. [DOI: 10.1039/c9fo00183b] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mechanism of the interaction between resveratrol and trypsin and its effect on their biological activity.
Collapse
Affiliation(s)
- Guoyan Ren
- College of Food and Bioengineering
- Henan University of Science and Technology
- Luoyang 471023
- China
| | - He Sun
- College of Food and Bioengineering
- Henan University of Science and Technology
- Luoyang 471023
- China
| | - Jinying Guo
- College of Food and Bioengineering
- Henan University of Science and Technology
- Luoyang 471023
- China
| | - Jinling Fan
- College of Food and Bioengineering
- Henan University of Science and Technology
- Luoyang 471023
- China
| | - Gen Li
- College of Food and Bioengineering
- Henan University of Science and Technology
- Luoyang 471023
- China
| | - Saiwen Xu
- College of Food and Bioengineering
- Henan University of Science and Technology
- Luoyang 471023
- China
| |
Collapse
|
33
|
Amato J, Platella C, Iachettini S, Zizza P, Musumeci D, Cosconati S, Pagano A, Novellino E, Biroccio A, Randazzo A, Pagano B, Montesarchio D. Tailoring a lead-like compound targeting multiple G-quadruplex structures. Eur J Med Chem 2018; 163:295-306. [PMID: 30529547 DOI: 10.1016/j.ejmech.2018.11.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/30/2018] [Accepted: 11/23/2018] [Indexed: 11/27/2022]
Abstract
A focused library of analogs of a lead-like G-quadruplex (G4) targeting compound (4), sharing a furobenzoxazine naphthoquinone core and differing for the pendant groups on the N-atom of the oxazine ring, has been here analyzed with the aim of developing more potent and selective ligands. These molecules have been tested vs. topologically different G4s by the G4-CPG assay, an affinity chromatography-based method for screening putative G4 ligands. The obtained results showed that all these compounds were able to bind several G4 structures, both telomeric and extra-telomeric, thus behaving as multi-target ligands, and two of them fully discriminated G4 vs. duplex DNA. Biological assays proved that almost all the compounds produced effective DNA damage, showing marked antiproliferative effects on tumor cells in the low μM range. Combined analysis of the G4-CPG binding assays and biological data led us to focus on compound S4-5, proved to be less cytotoxic than the parent compound 4 on normal cells. An in-depth biophysical characterization of the binding of S4-5 to different G4s showed that the here identified ligand has higher affinity for the G4s and higher ability to discriminate G4 vs. duplex DNA than 4. Molecular docking studies, in agreement with the NMR data, suggest that S4-5 interacts with the accessible grooves of the target G4 structures, giving clues for its increased G4 vs. duplex selectivity.
Collapse
Affiliation(s)
- Jussara Amato
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy
| | - Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Sara Iachettini
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Pasquale Zizza
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Sandro Cosconati
- DiSTABiF, Università della Campania Luigi Vanvitelli, 81100, Caserta, Italy
| | - Alessia Pagano
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy
| | - Annamaria Biroccio
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy.
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy.
| |
Collapse
|
34
|
Peng KT, Chiang YC, Ko HH, Chi PL, Tsai CL, Ko MI, Lee MH, Hsu LF, Lee CW. Mechanism of Lakoochin A Inducing Apoptosis of A375.S2 Melanoma Cells through Mitochondrial ROS and MAPKs Pathway. Int J Mol Sci 2018; 19:ijms19092649. [PMID: 30200660 PMCID: PMC6164788 DOI: 10.3390/ijms19092649] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 02/07/2023] Open
Abstract
Malignant melanoma is developed from pigment-containing cells, melanocytes, and primarily found on the skin. Malignant melanoma still has a high mortality rate, which may imply a lack of therapeutic agents. Lakoochin A, a compound isolated from Artocarpus lakoocha and Artocarpus xanthocarpus, has an inhibitory function of tyrosinase activity and melanin production, but the anti-cancer effects are still unclear. In the current study, the therapeutic effects of lakoochin A with their apoptosis functions and possible mechanisms were investigated on A375.S2 melanoma cells. Several methods were applied, including 3-(4,5-Dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT), flow cytometry, and immunoblotting. Results suggest that lakoochin A attenuated the growth of A375.S2 melanoma cells through an apoptosis mechanism. Lakoochin A first increase the production of cellular and mitochondrial reactive oxygen species (ROSs); mitochondrial ROSs then promote mitogen-activated protein kinases (MAPKs) pathway activation and raise downstream apoptosis-related protein and caspase expression. This is the first study to demonstrate that lakoochin A, through ROS-MAPK, apoptosis-related proteins, caspases cascades, can induce melanoma cell apoptosis and may be a potential candidate compound for treating malignant melanoma.
Collapse
Affiliation(s)
- Kuo-Ti Peng
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County 61363, Taiwan.
- College of Medicine, Chang Gung University, Guishan Dist., Taoyuan City 33303, Taiwan.
| | - Yao-Chang Chiang
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County 61363, Taiwan.
| | - Horng-Huey Ko
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Pei-Ling Chi
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Zuoying Dist., Kaohsiung City 81362, Taiwan.
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Zuoying Dist., Kaohsiung City 81362, Taiwan.
| | - Chia-Lan Tsai
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Guishan Dist., Taoyuan City 33303, Taiwan.
| | - Ming-I Ko
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County 61363, Taiwan.
| | - Ming-Hsueh Lee
- Division of Neurosurgery, Department of Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County 61363, Taiwan.
- Department of Respiratory Care, Chang Gung University of Science and Technology, Puzi City, Chiayi County 61363, Taiwan.
| | - Lee-Fen Hsu
- Division of Neurosurgery, Department of Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County 61363, Taiwan.
- Department of Respiratory Care, Chang Gung University of Science and Technology, Puzi City, Chiayi County 61363, Taiwan.
| | - Chiang-Wen Lee
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County 61363, Taiwan.
- Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Guishan Dist., Taoyuan City 33303, Taiwan.
- Department of Rehabilitation, Chang Gung Memorial Hospital, Chang Gung Memorial Hospital, Puzi City, Chiayi County 61363, Taiwan.
| |
Collapse
|
35
|
Platella C, Musumeci D, Arciello A, Doria F, Freccero M, Randazzo A, Amato J, Pagano B, Montesarchio D. Controlled Pore Glass-based oligonucleotide affinity support: towards High Throughput Screening methods for the identification of conformation-selective G-quadruplex ligands. Anal Chim Acta 2018; 1030:133-141. [PMID: 30032762 DOI: 10.1016/j.aca.2018.04.071] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 10/17/2022]
Abstract
Target selectivity is one of the main challenges in the search for small molecules able to act as effective and non-toxic anticancer and/or antiviral drugs. To achieve this goal, handy, rapid and reliable High Throughput Screening methodologies are needed. We here describe a novel functionalization for the solid phase synthesis of oligonucleotides on Controlled Pore Glass, including a flexible hexaethylene glycol spacer linking the first nucleoside through the nucleobase via a covalent bond stable to the final deprotection step. This allowed us preparing fully deprotected oligonucleotides still covalently attached to their supports. In detail, on this support we performed both the on-line synthesis of different secondary structure-forming oligonucleotides and the affinity chromatography-based screenings of conformation-selective G-quadruplex ligands. By using a fluorescent core-extended naphthalene diimide with different emitting response upon binding to sequences folding into G-quadruplexes of different topologies, we have been able to discriminate not only G-quadruplex vs. duplex DNA structures, but also different G-quadruplex conformations on the glass beads by confocal microscopy.
Collapse
Affiliation(s)
- Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, 80126, Naples, Italy
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, 80126, Naples, Italy
| | - Angela Arciello
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, 80126, Naples, Italy
| | - Filippo Doria
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Mauro Freccero
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, 80126, Naples, Italy.
| |
Collapse
|
36
|
Ganesan K, Xu B. Telomerase Inhibitors from Natural Products and Their Anticancer Potential. Int J Mol Sci 2017; 19:ijms19010013. [PMID: 29267203 PMCID: PMC5795965 DOI: 10.3390/ijms19010013] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/10/2017] [Accepted: 12/19/2017] [Indexed: 12/25/2022] Open
Abstract
Telomeres and telomerase are nowadays exploring traits on targets for anticancer therapy. Telomerase is a unique reverse transcriptase enzyme, considered as a primary factor in almost all cancer cells, which is mainly responsible to regulate the telomere length. Hence, telomerase ensures the indefinite cell proliferation during malignancy—a hallmark of cancer—and this distinctive feature has provided telomerase as the preferred target for drug development in cancer therapy. Deactivation of telomerase and telomere destabilization by natural products provides an opening to succeed new targets for cancer therapy. This review aims to provide a fundamental knowledge for research on telomere, working regulation of telomerase and its various binding proteins to inhibit the telomere/telomerase complex. In addition, the review summarizes the inhibitors of the enzyme catalytic subunit and RNA component, natural products that target telomeres, and suppression of transcriptional and post-transcriptional levels. This extensive understanding of telomerase biology will provide indispensable information for enhancing the efficiency of rational anti-cancer drug design.
Collapse
Affiliation(s)
- Kumar Ganesan
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China.
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China.
| |
Collapse
|