1
|
Rainot A, D'Anna L, Terenzi A, Rouget R, Grandemange S, Piro B, Barone G, Barbault F, Monari A. In Silico Design of a Solution-Gated Graphene Transistor Sensor for the Efficient Detection of Guanine Quadruplexes. J Phys Chem Lett 2024:10881-10887. [PMID: 39441974 DOI: 10.1021/acs.jpclett.4c02796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Guanine quadruplexes (G4s) are nucleic acid structures present in diverse regions of the genome, such as telomeres and transcription initiators. Recently, the different biological roles of G4s have been evidenced as well as their role as biomarkers for tumors or viral infections. However, the fast and efficient detection of G4s in complex matrices remains elusive. In this contribution, by using long-scale molecular dynamics simulations, we propose the design of a biosensor based on organic field-effect transistors recognizing G4s. In particular, we show that the interaction of the G4s with the biosensor is translated into a change in the charge density profile, which correlates with the electrical transduction of the signal, thus allowing the detection of the nucleic acid structure. We also provide rules of thumb for the optimization of the design of the device and more generally for the integration of computationally driven design approaches.
Collapse
Affiliation(s)
- Aurianne Rainot
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France
- Università degli Studi di Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies Viale delle Scienze, Edificio 17, 90128 Palermo, Italy
| | - Luisa D'Anna
- Università degli Studi di Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies Viale delle Scienze, Edificio 17, 90128 Palermo, Italy
| | - Alessio Terenzi
- Università degli Studi di Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies Viale delle Scienze, Edificio 17, 90128 Palermo, Italy
| | - Raphael Rouget
- Université de Lorraine and CNRS, UMR 7039 CRAN, F-54000 Nancy, France
| | | | - Benoit Piro
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France
| | - Giampaolo Barone
- Università degli Studi di Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies Viale delle Scienze, Edificio 17, 90128 Palermo, Italy
| | | | - Antonio Monari
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France
| |
Collapse
|
2
|
Kretzer B, Herényi L, Csík G, Supala E, Orosz Á, Tordai H, Kiss B, Kellermayer M. TMPyP binding evokes a complex, tunable nanomechanical response in DNA. Nucleic Acids Res 2024; 52:8399-8418. [PMID: 38943349 PMCID: PMC11317170 DOI: 10.1093/nar/gkae560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 07/01/2024] Open
Abstract
TMPyP is a porphyrin capable of DNA binding and used in photodynamic therapy and G-quadruplex stabilization. Despite its broad applications, TMPyP's effect on DNA nanomechanics is unknown. Here we investigated, by manipulating λ-phage DNA with optical tweezers combined with microfluidics in equilibrium and perturbation kinetic experiments, how TMPyP influences DNA nanomechanics across wide ranges of TMPyP concentration (5-5120 nM), mechanical force (0-100 pN), NaCl concentration (0.01-1 M) and pulling rate (0.2-20 μm/s). Complex responses were recorded, for the analysis of which we introduced a simple mathematical model. TMPyP binding, which is a highly dynamic process, leads to dsDNA lengthening and softening. dsDNA stability increased at low (<10 nM) TMPyP concentrations, then decreased progressively upon increasing TMPyP concentration. Overstretch cooperativity decreased, due most likely to mechanical roadblocks of ssDNA-bound TMPyP. TMPyP binding increased ssDNA's contour length. The addition of NaCl at high (1 M) concentration competed with the TMPyP-evoked nanomechanical changes. Because the largest amplitude of the changes is induced by the pharmacologically relevant TMPyP concentration range, this porphyrin derivative may be used to tune DNA's structure and properties, hence control the wide array of biomolecular DNA-dependent processes including replication, transcription, condensation and repair.
Collapse
Affiliation(s)
- Balázs Kretzer
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó Str. 37-47, H1094 Budapest, Hungary
- HUNREN-SE Biophysical Virology Group, Tűzoltó Str. 37-47, H1094 Budapest, Hungary
| | - Levente Herényi
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó Str. 37-47, H1094 Budapest, Hungary
| | - Gabriella Csík
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó Str. 37-47, H1094 Budapest, Hungary
| | - Eszter Supala
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó Str. 37-47, H1094 Budapest, Hungary
| | - Ádám Orosz
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó Str. 37-47, H1094 Budapest, Hungary
| | - Hedvig Tordai
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó Str. 37-47, H1094 Budapest, Hungary
| | - Bálint Kiss
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó Str. 37-47, H1094 Budapest, Hungary
- HUNREN-SE Biophysical Virology Group, Tűzoltó Str. 37-47, H1094 Budapest, Hungary
| | - Miklós Kellermayer
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó Str. 37-47, H1094 Budapest, Hungary
- HUNREN-SE Biophysical Virology Group, Tűzoltó Str. 37-47, H1094 Budapest, Hungary
| |
Collapse
|
3
|
Sengupta P, Dutta A, Suseela YV, Roychowdhury T, Banerjee N, Dutta A, Halder S, Jana K, Mukherjee G, Chattopadhyay S, Govindaraju T, Chatterjee S. G-quadruplex structural dynamics at MAPK12 promoter dictates transcriptional switch to determine stemness in breast cancer. Cell Mol Life Sci 2024; 81:33. [PMID: 38214819 PMCID: PMC11073236 DOI: 10.1007/s00018-023-05046-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 01/13/2024]
Abstract
P38γ (MAPK12) is predominantly expressed in triple negative breast cancer cells (TNBC) and induces stem cell (CSC) expansion resulting in decreased survival of the patients due to metastasis. Abundance of G-rich sequences at MAPK12 promoter implied the functional probability to reverse tumorigenesis, though the formation of G-Quadruplex (G4) structures at MAPK12 promoter is elusive. Here, we identified two evolutionary consensus adjacent G4 motifs upstream of the MAPK12 promoter, forming parallel G4 structures. They exist in an equilibria between G4 and duplex, regulated by the binding turnover of Sp1 and Nucleolin that bind to these G4 motifs and regulate MAPK12 transcriptional homeostasis. To underscore the gene-regulatory functions of G4 motifs, we employed CRISPR-Cas9 system to eliminate G4s from TNBC cells and synthesized a naphthalene diimide (NDI) derivative (TGS24) which shows high-affinity binding to MAPK12-G4 and inhibits MAPK12 transcription. Deletion of G4 motifs and NDI compound interfere with the recruitment of the transcription factors, inhibiting MAPK12 expression in cancer cells. The molecular basis of NDI-induced G4 transcriptional regulation was analysed by RNA-seq analyses, which revealed that MAPK12-G4 inhibits oncogenic RAS transformation and trans-activation of NANOG. MAPK12-G4 also reduces CD44High/CD24Low population in TNBC cells and downregulates internal stem cell markers, arresting the stemness properties of cancer cells.
Collapse
Affiliation(s)
- Pallabi Sengupta
- Department of Biological Sciences, Unified Academic Campus, Bose Institute, EN-80, Sector V, Salt Lake, Bidhan Nagar, Kolkata, West Bengal, 700091, India
| | - Anindya Dutta
- Department of Biological Sciences, Unified Academic Campus, Bose Institute, EN-80, Sector V, Salt Lake, Bidhan Nagar, Kolkata, West Bengal, 700091, India
| | - Y V Suseela
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, Karnataka, 560064, India
| | - Tanaya Roychowdhury
- Department of Cancer Biology and Inflammatory Disorder, IICB, Kolkata, West Bengal, India
| | - Nilanjan Banerjee
- Department of Biological Sciences, Unified Academic Campus, Bose Institute, EN-80, Sector V, Salt Lake, Bidhan Nagar, Kolkata, West Bengal, 700091, India
| | - Ananya Dutta
- Department of Biological Sciences, Unified Academic Campus, Bose Institute, EN-80, Sector V, Salt Lake, Bidhan Nagar, Kolkata, West Bengal, 700091, India
| | - Satyajit Halder
- Department of Biological Sciences, Unified Academic Campus, Bose Institute, EN-80, Sector V, Salt Lake, Bidhan Nagar, Kolkata, West Bengal, 700091, India
| | - Kuladip Jana
- Department of Biological Sciences, Unified Academic Campus, Bose Institute, EN-80, Sector V, Salt Lake, Bidhan Nagar, Kolkata, West Bengal, 700091, India
| | - Gopeswar Mukherjee
- Barasat Cancer Research and Welfare Centre, Barasat, Kolkata, West Bengal, India
| | - Samit Chattopadhyay
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, K. K. Birla Goa Campus, Goa, 403726, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, Karnataka, 560064, India.
| | - Subhrangsu Chatterjee
- Department of Biological Sciences, Unified Academic Campus, Bose Institute, EN-80, Sector V, Salt Lake, Bidhan Nagar, Kolkata, West Bengal, 700091, India.
| |
Collapse
|
4
|
Garnique A, Rezende-Teixeira P, Machado‐Santelli G. Telomerase inhibitors TMPyP4 and thymoquinone decreased cell proliferation and induced cell death in the non-small cell lung cancer cell line LC-HK2, modifying the pattern of focal adhesion. Braz J Med Biol Res 2023; 56:e12897. [PMID: 37909496 PMCID: PMC10609552 DOI: 10.1590/1414-431x2023e12897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/13/2023] [Indexed: 11/03/2023] Open
Abstract
G-quadruplexes (G4) are structures formed at the ends of telomeres rich in guanines and stabilized by molecules that bind to specific sites. TMPyP4 and thymoquinone (TQ) are small molecules that bind to G4 and have drawn attention because of their role as telomerase inhibitors. The aim of this study was to evaluate the effects of telomerase inhibitors on cellular proliferation, senescence, and death. Two cell lines, LC-HK2 (non-small cell lung cancer - NSCLC) and RPE-1 (hTERT-immortalized), were treated with TMPyP4 (5 μM) and TQ (10 μM). Both inhibitors decreased telomerase activity. TMPyP4 increased the percentage of cells with membrane damage associated with cell death and decreased the frequency of cells in the S-phase. TMPyP4 reduced cell adhesion ability and modified the pattern of focal adhesion. TQ acted in a concentration-dependent manner, increasing the frequency of senescent cells and inducing cell cycle arrest in G1 phase. Thus, the present results showed that TMPyP4 and TQ, although acting as telomerase inhibitors, had a broader effect on other signaling pathways and processes in cells, differing from each other. However, they act both on malignant and immortalized cells, and further studies are needed before their anti-cancer potential can be considered.
Collapse
Affiliation(s)
- A.M.B. Garnique
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - P. Rezende-Teixeira
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - G.M. Machado‐Santelli
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
5
|
Binacchi F, Elia C, Cirri D, Van de Griend C, Zhou XQ, Messori L, Bonnet S, Pratesi A, Biver T. A biophysical study of the interactions of palladium(II), platinum(II) and gold(III) complexes of aminopyridyl-2,2'-bipyridine ligands with RNAs and other nucleic acid structures. Dalton Trans 2023; 52:598-608. [PMID: 36562298 DOI: 10.1039/d2dt03483b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metal compounds form an attractive class of ligands for a variety of nucleic acids. Five metal complexes bearing aminopyridyl-2,2'-bipyridine tetradentate ligands and possessing a quasi-planar geometry were challenged toward different types of nucleic acid molecules including RNA polynucleotides in the duplex or triplex form, an RNA Holliday four-way junction, natural double helix DNA and a DNA G-quadruplex. The binding process was monitored comparatively using different spectroscopic and melting methods. The binding preferences that emerge from our analysis are discussed in relation to the structural features of the metal complexes.
Collapse
Affiliation(s)
- Francesca Binacchi
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Cassandra Elia
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Damiano Cirri
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Corjan Van de Griend
- Leiden Institute of Chemistry, Leiden University, 2333CC Leiden, The Netherlands
| | - Xue-Quan Zhou
- Leiden Institute of Chemistry, Leiden University, 2333CC Leiden, The Netherlands
| | - Luigi Messori
- Laboratory of Metals in Medicine (MetMed), Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Leiden University, 2333CC Leiden, The Netherlands
| | - Alessandro Pratesi
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Tarita Biver
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, 56124 Pisa, Italy.
| |
Collapse
|
6
|
Biver T. Discriminating between Parallel, Anti-Parallel and Hybrid G-Quadruplexes: Mechanistic Details on Their Binding to Small Molecules. Molecules 2022; 27:molecules27134165. [PMID: 35807410 PMCID: PMC9268745 DOI: 10.3390/molecules27134165] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
G-quadruplexes (G4) are now extensively recognised as a peculiar non-canonical DNA geometry that plays a prime importance role in processes of biological relevance whose number is increasing continuously. The same is true for the less-studied RNA G4 counterpart. G4s are stable structures; however, their geometrical parameters may be finely tuned not only by the presence of particular sequences of nucleotides but also by the salt content of the medium or by a small molecule that may act as a peculiar topology inducer. As far as the interest in G4s increases and our knowledge of these species deepens, researchers do not only verify the G4s binding by small molecules and the subsequent G4 stabilisation. The most innovative studies now aim to elucidate the mechanistic details of the interaction and the ability of a target species (drug) to bind only to a peculiar G4 geometry. In this focused review, we survey the advances in the studies of the binding of small molecules of medical interest to G4s, with particular attention to the ability of these species to bind differently (intercalation, lateral binding or sitting atop) to different G4 topologies (parallel, anti-parallel or hybrid structures). Some species, given the very high affinity with some peculiar G4 topology, can first bind to a less favourable geometry and then induce its conversion. This aspect is also considered.
Collapse
Affiliation(s)
- Tarita Biver
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
7
|
Dobrovodsky D, Danhel A, Mothes-Martin E, Pratviel G, Mergny JL, Fojta M. Voltammetric studies of selected porphyrin G-quadruplex ligands and their interaction with DNA in solution and at the mercury electrode surface. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Bağda E, Bağda E, Kocak A, Durmuş M. Investigation of Binding behaviour of a water-soluble gallium (III) phthalocyanine with double-stranded and G-quadruplex DNA via experimental and computational methods. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Santos T, Salgado GF, Cabrita EJ, Cruz C. G-Quadruplexes and Their Ligands: Biophysical Methods to Unravel G-Quadruplex/Ligand Interactions. Pharmaceuticals (Basel) 2021; 14:769. [PMID: 34451866 PMCID: PMC8401999 DOI: 10.3390/ph14080769] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Progress in the design of G-quadruplex (G4) binding ligands relies on the availability of approaches that assess the binding mode and nature of the interactions between G4 forming sequences and their putative ligands. The experimental approaches used to characterize G4/ligand interactions can be categorized into structure-based methods (circular dichroism (CD), nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography), affinity and apparent affinity-based methods (surface plasmon resonance (SPR), isothermal titration calorimetry (ITC) and mass spectrometry (MS)), and high-throughput methods (fluorescence resonance energy transfer (FRET)-melting, G4-fluorescent intercalator displacement assay (G4-FID), affinity chromatography and microarrays. Each method has unique advantages and drawbacks, which makes it essential to select the ideal strategies for the biological question being addressed. The structural- and affinity and apparent affinity-based methods are in several cases complex and/or time-consuming and can be combined with fast and cheap high-throughput approaches to improve the design and development of new potential G4 ligands. In recent years, the joint use of these techniques permitted the discovery of a huge number of G4 ligands investigated for diagnostic and therapeutic purposes. Overall, this review article highlights in detail the most commonly used approaches to characterize the G4/ligand interactions, as well as the applications and types of information that can be obtained from the use of each technique.
Collapse
Affiliation(s)
- Tiago Santos
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;
| | - Gilmar F. Salgado
- ARNA Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR 5320, IECB, 33607 Pessac, France;
| | - Eurico J. Cabrita
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Carla Cruz
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;
| |
Collapse
|
10
|
Santolaya J, Busto N, Martínez-Alonso M, Espino G, Grunenberg J, Barone G, García B. Experimental and theoretical characterization of the strong effects on DNA stability caused by half-sandwich Ru(II) and Ir(III) bearing thiabendazole complexes. J Biol Inorg Chem 2020; 25:1067-1083. [PMID: 32951085 DOI: 10.1007/s00775-020-01823-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/31/2020] [Indexed: 12/28/2022]
Abstract
The synthesis and characterization of two half-sandwich complexes of Ru(II) and Ir(III) with thiabendazole as ancillary ligand and their DNA binding ability were investigated using experimental and computational methods. 1H NMR and acid-base studies have shown that aquo-complexes are the reactive species. Kinetic studies show that both complexes bind covalently to DNA through the metal site and non covalently through the ancillary ligand. Thermal stability studies, viscosity, circular dichroism measurements and quantum chemical calculations have shown that the covalent binding causes breaking of the H-bonding between base pairs, bringing about DNA denaturation and compaction. Additionally, molecular dynamics (MD) simulations and quantum mechanics/molecular mechanics (QM/MM) calculations shed light into the binding features of the Ru(II) and Ir(III) complexes and their respective enantiomers toward double-helical DNA, highlighting the important role played by the NˆN ancillary ligand once the complexes are covalently linked to DNA. Moreover, metal quantification in the nucleus of SW480 colon adenocarcinoma cells were carried out by inductively coupled plasma-mass spectrometry (ICP-MS), both complexes are more internalized than cisplatin after 4 h of exposition. However, in spite of the dramatic changes in the helicity of the DNA secondary structure induced by these complexes and their nuclear localization, antiproliferative studies have revealed that both, Ru(II) and Ir(III) complexes, cannot be considered cytotoxic. This unexpected behavior can be justified by the fast formation of aquo-complexes, which may react with components of the cell culture medium or the cytoplasm compartment in such a way that they may become deactivated before reaching DNA.
Collapse
Affiliation(s)
- Javier Santolaya
- Chemistry Department, University of Burgos, Pza. Misael Bañuelos s/n, 09001, Burgos, Spain.,Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, viale delle Scienze, Ed. 17, 90128, Palermo, Italy
| | - Natalia Busto
- Chemistry Department, University of Burgos, Pza. Misael Bañuelos s/n, 09001, Burgos, Spain.
| | - Marta Martínez-Alonso
- Chemistry Department, University of Burgos, Pza. Misael Bañuelos s/n, 09001, Burgos, Spain.,Laboratory for Inorganic Chemical Biology, Institute of Chemistry for Life and Health Sciences, Chimie ParisTech, PSL University, CNRS, 75005, Paris, France
| | - Gustavo Espino
- Chemistry Department, University of Burgos, Pza. Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Jörg Grunenberg
- Institut für Organische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Giampaolo Barone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, viale delle Scienze, Ed. 17, 90128, Palermo, Italy
| | - Begoña García
- Chemistry Department, University of Burgos, Pza. Misael Bañuelos s/n, 09001, Burgos, Spain
| |
Collapse
|
11
|
Butkus JM, Pytko KG, Stead CE, Basu S. Binding of quadruplex DNA to nickel and zinc complexes monitored by surface-enhanced raman and fluorescence spectroscopy. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Ji N, Shi HQ, Fang XY, Wu ZY. Exploring the interaction of G-quadruplex and porphyrin derivative by single protein nanopore sensing interface. Anal Chim Acta 2020; 1106:126-132. [DOI: 10.1016/j.aca.2020.01.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/18/2020] [Accepted: 01/23/2020] [Indexed: 11/26/2022]
|
13
|
Kossakowska-Zwierucho M, Szewczyk G, Sarna T, Nakonieczna J. Farnesol potentiates photodynamic inactivation of Staphylococcus aureus with the use of red light-activated porphyrin TMPyP. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2020; 206:111863. [PMID: 32224392 DOI: 10.1016/j.jphotobiol.2020.111863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/11/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023]
Abstract
Photodynamic inactivation (PDI) or antibacterial photodynamic therapy (aPDT) is a method based on the use of a photosensitizer, light of a proper wavelength and oxygen, which combined together leads to an oxidative stress and killing of target cells. PDI can be applied towards various pathogenic bacteria independently on their antibiotic resistance profile. Optimization of photodynamic treatment to eradicate the widest range of human pathogens remains challenging despite the availability of numerous photosensitizing compounds. Therefore, a search for molecules that could act as adjuvants potentiating antibacterial photoinactivation is of high scientific and clinical importance. Here we propose farnesol (FRN), a well described sesquiterpene, as a potent adjuvant of PDI, which specifically sensitizes Staphylococcus aureus to 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin tetratosylate (TMPyP) upon red light irradiation. Interestingly, the observed potentiation strongly depends on the presence of light. Analysis of this combined action of FRN and TMPyP, however, showed no influence of farnesol on TMPyP photochemical properties, i.e. the amount of reactive oxygen species that were produced by TMPyP in the presence of FRN. The accumulation rate of TMPyP in Staphylococcus aureus cells did not change, as well as the influence of staphyloxanthin inhibition. The precise mechanism of observed sensitization is unclear and probably involves specific molecular targets.
Collapse
Affiliation(s)
- Monika Kossakowska-Zwierucho
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Grzegorz Szewczyk
- Department of Biophysics, Faculty of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Joanna Nakonieczna
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Gdansk, Poland.
| |
Collapse
|
14
|
Conformational rearrangements of G-quadruplex topology promoted by Cu(II) 12-MC Cu(II)PyrAcHA-4 metallacrown. Int J Biol Macromol 2019; 156:1258-1269. [PMID: 31759020 DOI: 10.1016/j.ijbiomac.2019.11.163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 11/20/2022]
Abstract
Cu(II) 12-MCCu(II)PyrAcHA-4 metallacrown was studied by several spectroscopic techniques as an interacting ligand with G-quadruplex DNA structures. Investigations were performed on oligonucleotides bearing human telomeric and protooncogenic c-myc sequences in buffered solution mimicking ionic conditions in cellular environment. The planar square-based Cu(II) 12-MC-4 metallacrown interacts with GQ via an end-stacking mode with 1:1 stoichiometry. Circular dichroism (CD) titration revealed capability of this metallacrown to induce transformation of the GQ hybrid topology into the parallel form. Thermal melting experiment indicated higher thermal stability of both antiparallel (ΔTm = +15 °C) and parallel (ΔTm = ≥27 °C) G-quadruplexes in the presence of Cu (II) 12-MC-4. Indirect GQ FID assay let to determine high binding affinity of the Cu(II) 12-MC-4 to antiparallel 22Htel/Na+ GQ (KMC = 3.9 (±0.4) x 106 M-1). Comparing with lower binding constants previously reported for Ln (III) 15-MC-5 and Sm (III) 12-MC-4, one can conclude that the square planar geometry and the positive charge of metallacrown play an important role in MC/GQ interactions.
Collapse
|
15
|
Antioxidant Activity and Hepatotoxicity of Flavonoids and Their Metal Complexes Through Co‐Administration of β‐Cyclodextrin. ChemistrySelect 2019. [DOI: 10.1002/slct.201902124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Qi Q, Yang C, Xia Y, Guo S, Song D, Su H. Preferential Binding of π-Ligand Porphyrin Targeting 5'-5' Stacking Interface of Human Telomeric RNA G-Quadruplex Dimer. J Phys Chem Lett 2019; 10:2143-2150. [PMID: 30995046 DOI: 10.1021/acs.jpclett.9b00637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Human telomeric RNA (TERRA) containing thousands of G-rich repeats has the propensity to form parallel-stranded G-quadruplexes. The emerging crucial roles of TERRA G-quadruplexes in RNA biology fuel increasing attention for studying anticancer ligand binding with such structures, which, however, remains scarce. Here we utilized multiple steady-state and time-resolved spectroscopy analyses in conjunction with NMR methods and investigated thoroughly the binding behavior of TMPyP4 to a TERRA G-quadruplex dimer formed by the 10-nucleotide sequence r(GGGUUAGGGU). It is clearly identified that TMPyP4 intercalates into the 5'-5' stacking interface of two G-quadruplex blocks with a binding stoichiometry of 1:1 and binding constant of 1.92 × 106 M-1. This is consistent with the unique TERRA structural features of the enlarged π-π stacking plane of the A·(G·G·G·G)·A hexad at 5'-ends of each G-quadruplex block. The preferential binding of π-ligand porphyrin to the 5'-5' stacking interface of the native TERRA G-quadruplex dimer is first ascertained by the combination of dynamics and structural characterization.
Collapse
Affiliation(s)
- Qige Qi
- Beijing National Laboratory for Molecular Science, Institute of Chemistry , Chinese Academy of Science , Beijing 100190 , China
- University of Chinese Academy of Science , Beijing 100049 , China
| | - Chunfan Yang
- College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Ye Xia
- College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Shaoshi Guo
- College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Di Song
- Beijing National Laboratory for Molecular Science, Institute of Chemistry , Chinese Academy of Science , Beijing 100190 , China
| | - Hongmei Su
- College of Chemistry , Beijing Normal University , Beijing 100875 , China
| |
Collapse
|
17
|
Sengupta A, Ganguly A, Chowdhury S. Promise of G-Quadruplex Structure Binding Ligands as Epigenetic Modifiers with Anti-Cancer Effects. Molecules 2019; 24:E582. [PMID: 30736345 PMCID: PMC6384772 DOI: 10.3390/molecules24030582] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 11/16/2022] Open
Abstract
Evidences from more than three decades of work support the function of non-duplex DNA structures called G-quadruplex (G4) in important processes like transcription and replication. In addition, G4 structures have been studied in connection with DNA base modifications and chromatin/nucleosome arrangements. Recent work, interestingly, shows promise of G4 structures, through interaction with G4 structure-interacting proteins, in epigenetics-in both DNA and histone modification. Epigenetic changes are found to be intricately associated with initiation as well as progression of cancer. Multiple oncogenes have been reported to harbor the G4 structure at regulatory regions. In this context, G4 structure-binding ligands attain significance as molecules with potential to modify the epigenetic state of chromatin. Here, using examples from recent studies we discuss the emerging role of G4 structures in epigenetic modifications and, therefore, the promise of G4 structure-binding ligands in epigenetic therapy.
Collapse
Affiliation(s)
- Antara Sengupta
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi-110025, India.
- Academy of Scientific and Innovative Research, Rafi Marg, New Delhi-110001, India.
| | - Akansha Ganguly
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi-110025, India.
| | - Shantanu Chowdhury
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi-110025, India.
- Academy of Scientific and Innovative Research, Rafi Marg, New Delhi-110001, India.
- GNR Knowledge Centre for Genome Informatics, CSIR Institute of Genomics and Integrative Biology, Mathura Road, New Delhi-110025, India.
| |
Collapse
|
18
|
Developing Novel G-Quadruplex Ligands: from Interaction with Nucleic Acids to Interfering with Nucleic Acid⁻Protein Interaction. Molecules 2019; 24:molecules24030396. [PMID: 30678288 PMCID: PMC6384609 DOI: 10.3390/molecules24030396] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/10/2019] [Accepted: 01/22/2019] [Indexed: 12/20/2022] Open
Abstract
G-quadruplex is a special secondary structure of nucleic acids in guanine-rich sequences of genome. G-quadruplexes have been proved to be involved in the regulation of replication, DNA damage repair, and transcription and translation of oncogenes or other cancer-related genes. Therefore, targeting G-quadruplexes has become a novel promising anti-tumor strategy. Different kinds of small molecules targeting the G-quadruplexes have been designed, synthesized, and identified as potential anti-tumor agents, including molecules directly bind to the G-quadruplex and molecules interfering with the binding between the G-quadruplex structures and related binding proteins. This review will explore the feasibility of G-quadruplex ligands acting as anti-tumor drugs, from basis to application. Meanwhile, since helicase is the most well-defined G-quadruplex-related protein, the most extensive research on the relationship between helicase and G-quadruplexes, and its meaning in drug design, is emphasized.
Collapse
|
19
|
Prado E, Bonnat L, Bonnet H, Lavergne T, Van der Heyden A, Pratviel G, Dejeu J, Defrancq E. Influence of the SPR Experimental Conditions on the G-Quadruplex DNA Recognition by Porphyrin Derivatives. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13057-13064. [PMID: 30293430 DOI: 10.1021/acs.langmuir.8b02942] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Surface plasmon resonance (SPR) is a powerful technique to study the interactions of ligands with analytes and therefore a number of biosensor surfaces and injection methods have been developed so far. However, many experimental parameters can affect the interactions and consequently the affinity measurements. In particular, the interactions of positively charged analytes (often used for anionic nucleic acids targets) can be influenced by the sensing surfaces (e.g., negatively charged), leading to significant nonspecific interactions as well as regeneration problems. The aim of the present work is to investigate the effect of different parameters, including ionic strength, SPR biosensor (i.e., nature of the surfaces), and the injection method on the recognition of porphyrin G-quadruplex ligands. We demonstrate that the injection method does not influence the affinity whereas the ionic strength and the nature of the surface impact the recognition properties of the porphyrin for the G-quadruplex DNA. We also found that self-assembled monolayer coating surface presents many advantages in comparison with carboxymethylated dextran surface for SPR studies of G-quadruplex DNA/ligand interactions: (i) the electrostatic interaction with charged analytes is less important, (ii) its structure/composition is less sensitive to the ionic concentration and less prone to unspecific adsorption, (iii) it is easily homemade, and (iv) the cost is approximately 10 times cheaper.
Collapse
Affiliation(s)
- E Prado
- Univ. Grenoble Alpes, CNRS, DCM , 38000 Grenoble , France
| | - L Bonnat
- Univ. Grenoble Alpes, CNRS, DCM , 38000 Grenoble , France
| | - H Bonnet
- Univ. Grenoble Alpes, CNRS, DCM , 38000 Grenoble , France
| | - T Lavergne
- Univ. Grenoble Alpes, CNRS, DCM , 38000 Grenoble , France
| | | | - G Pratviel
- CNRS, Laboratoire de Chimie de Coordination , 205 route de Narbonne, BP44099 , F-31077 Toulouse Cedex 4, France
- Université de Toulouse, UPS, INPT , Toulouse , France
| | - J Dejeu
- Univ. Grenoble Alpes, CNRS, DCM , 38000 Grenoble , France
| | - E Defrancq
- Univ. Grenoble Alpes, CNRS, DCM , 38000 Grenoble , France
| |
Collapse
|
20
|
Liu W, Sun T, Zhang P, Li L, Lv J, Li B. [Application of atomic force microscopy-based single molecule force spectroscopy in G-quadruplex studies]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:1107-1114. [PMID: 30377115 DOI: 10.12122/j.issn.1673-4254.2018.09.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Telomere plays a crucial role in the physiological and pathological processes of cells. At the end of the telomere, the single-stranded DNA repeat sequence rich in guanine (G) folds in the presence of monovalent metal ions such as Na+ or K+ to form a G-quadruplex structure. This structure can not be extended by telomerase and inhibits the activity of telomerase, thus becoming a potential anticancer target. Stabilizing the formation of DNA G-quadruplex structures by small molecule ligands has become a new strategy for designing many anticancer drugs, and studying the interaction strength of these small molecule ligands with G-quadruplex is thus of particular importance for screening highly effective anticancer drugs. Single molecule force spectroscopy enables direct measurement of the interaction between small molecule ligands and G-quadruplexes. This review highlights the advances of single-molecule force spectroscopy based on atomic force microscopy in the study of the G quadruplex structure and its interaction with small molecule ligands, and summarizes the application and development trend of single molecule force spectrum technology in G quadruplex.
Collapse
Affiliation(s)
- Wenjing Liu
- Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Sun
- Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Zhang
- Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Li
- School of Science, Ningbo University, Ningbo 315211, China
| | - Junhong Lv
- Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Bin Li
- Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|