1
|
Nakasone Y, Murakami H, Tokonami S, Oda T, Terazima M. Time-resolved study on signaling pathway of photoactivated adenylate cyclase and its nonlinear optical response. J Biol Chem 2023; 299:105285. [PMID: 37742920 PMCID: PMC10634658 DOI: 10.1016/j.jbc.2023.105285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023] Open
Abstract
Photoactivated adenylate cyclases (PACs) are multidomain BLUF proteins that regulate the cellular levels of cAMP in a light-dependent manner. The signaling route and dynamics of PAC from Oscillatoria acuminata (OaPAC), which consists of a light sensor BLUF domain, an adenylate cyclase domain, and a connector helix (α3-helix), were studied by detecting conformational changes in the protein moiety. Although circular dichroism and small-angle X-ray scattering measurements did not show significant changes upon light illumination, the transient grating method successfully detected light-induced changes in the diffusion coefficient (diffusion-sensitive conformational change (DSCC)) of full-length OaPAC and the BLUF domain with the α3-helix. DSCC of full-length OaPAC was observed only when both protomers in a dimer were photoconverted. This light intensity dependence suggests that OaPAC is a cyclase with a nonlinear light intensity response. The enzymatic activity indeed nonlinearly depends on light intensity, that is, OaPAC is activated under strong light conditions. It was also found that both DSCC and enzymatic activity were suppressed by a mutation in the W90 residue, indicating the importance of the highly conserved Trp in many BLUF domains for the function. Based on these findings, a reaction scheme was proposed together with the reaction dynamics.
Collapse
Affiliation(s)
- Yusuke Nakasone
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Hiroto Murakami
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Shunrou Tokonami
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Takashi Oda
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan.
| |
Collapse
|
2
|
Nakasone Y, Terazima M. Time-resolved diffusion reveals photoreactions of BLUF proteins with similar functional domains. Photochem Photobiol Sci 2022; 21:493-507. [PMID: 35391638 DOI: 10.1007/s43630-022-00214-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/21/2022] [Indexed: 11/30/2022]
Abstract
BLUF (blue light sensor using flavin) proteins are the blue light receptors that consist of flavin-binding BLUF domains and functional domains. Upon blue light excitation, the hydrogen bond network around the flavin chromophore changes, and the absorption spectrum in the visible region shifts to red. Light signal received in the BLUF domain is intramolecularly or intermolecularly transmitted to the functional region. In this review, the reactions of three BLUF proteins with similar EAL functional groups within the protein (BlrP1, and YcgF), or with a separated target protein (PapB) are described using time-resolved diffusion technique. The diffusion coefficients (D) of the BLUF domains did not significantly change upon photoexcitation, whereas those of the full-length proteins BlrP1 and YcgF and the PapB-PapA system significantly decreased. The changes in D should be due to diffusion-sensitive conformational changes (DSCC) that alter the friction of diffusion. The time constants of the major D changes of BlrP1 and PapB-PapA were similar (~ 20 ms), although the magnitude of the friction change depended on the proteins. Similarities and differences among the reactions of these proteins were clarified from the viewpoint of DSCC.
Collapse
Affiliation(s)
- Yusuke Nakasone
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
3
|
Nakasone Y, Terazima M. A Time-Resolved Diffusion Technique for Detection of the Conformational Changes and Molecular Assembly/Disassembly Processes of Biomolecules. Front Genet 2021; 12:691010. [PMID: 34276791 PMCID: PMC8278059 DOI: 10.3389/fgene.2021.691010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/31/2021] [Indexed: 12/20/2022] Open
Abstract
Biological liquid-liquid phase separation (LLPS) is driven by dynamic and multivalent interactions, which involves conformational changes and intermolecular assembly/disassembly processes of various biomolecules. To understand the molecular mechanisms of LLPS, kinetic measurements of the intra- and intermolecular reactions are essential. In this review, a time-resolved diffusion technique which has a potential to detect molecular events associated with LLPS is presented. This technique can detect changes in protein conformation and intermolecular interaction (oligomer formation, protein-DNA interaction, and protein-lipid interaction) in time domain, which are difficult to obtain by other methods. After the principle and methods for signal analyses are described in detail, studies on photoreactive molecules (intermolecular interaction between light sensor proteins and its target DNA) and a non-photoreactive molecule (binding and folding reaction of α-synuclein upon mixing with SDS micelle) are presented as typical examples of applications of this unique technique.
Collapse
Affiliation(s)
- Yusuke Nakasone
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Noto N, Takahashi K, Goryo S, Takakado A, Iwata K, Koike T, Akita M. Laser Flash Photolysis Studies on Radical Monofluoromethylation by (Diarylamino)naphthalene Photoredox Catalysis: Long Lifetime of the Excited State is Not Always a Requisite. J Org Chem 2020; 85:13220-13227. [DOI: 10.1021/acs.joc.0c01999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Naoki Noto
- School of Materials and Chemical Technology, Tokyo Institute of Technology, R1-27, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Keigo Takahashi
- School of Materials and Chemical Technology, Tokyo Institute of Technology, R1-27, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Shion Goryo
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshimaku, Tokyo 171-8588, Japan
| | - Akira Takakado
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshimaku, Tokyo 171-8588, Japan
| | - Koichi Iwata
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshimaku, Tokyo 171-8588, Japan
| | - Takashi Koike
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, R1-27, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
- School of Materials and Chemical Technology, Tokyo Institute of Technology, R1-27, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Munetaka Akita
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, R1-27, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
- School of Materials and Chemical Technology, Tokyo Institute of Technology, R1-27, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
5
|
Takeda K, Terazima M. Dynamics of Conformational Changes in Full-Length Phytochrome from Cyanobacterium Synechocystis sp. PCC6803 (Cph1) Monitored by Time-Resolved Translational Diffusion Detection. Biochemistry 2019; 58:2720-2729. [DOI: 10.1021/acs.biochem.9b00081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kimitoshi Takeda
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
6
|
Takeda K, Terazima M. Photoinduced Orientation Change of the Dimer Structure of the Pr-I State of Cph1Δ2. Biochemistry 2018; 57:5058-5071. [DOI: 10.1021/acs.biochem.8b00605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Kimitoshi Takeda
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|