1
|
Moraca F, Vespoli I, Mastroianni D, Piscopo V, Gaglione R, Arciello A, De Nisco M, Pacifico S, Catalanotti B, Pedatella S. Synthesis, biological evaluation and metadynamics simulations of novel N-methyl β-sheet breaker peptides as inhibitors of Alzheimer's β-amyloid fibrillogenesis. RSC Med Chem 2024; 15:2286-2299. [PMID: 39026638 PMCID: PMC11253850 DOI: 10.1039/d4md00057a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/07/2024] [Indexed: 07/20/2024] Open
Abstract
Several scientific evidences report that a central role in the pathogenesis of Alzheimer's disease is played by the deposition of insoluble aggregates of β-amyloid proteins in the brain. Because Aβ is self-assembling, one possible design strategy is to inhibit the aggregation of Aβ peptides using short peptide fragments homologous to the full-length wild-type Aβ protein. In the past years, several studies have reported on the synthesis of some short synthetic peptides called β-sheet breaker peptides (BSBPs). Herein, we present the synthesis of novel (cell-permeable) N-methyl BSBPs, designed based on literature information on the structural key features of BSBPs. Three-dimensional GRID-based pharmacophore peptide screening combined with PT-WTE metadynamics was performed to support the results of the design and microwave-assisted synthesis of peptides 2 and 3 prepared and analyzed for their fibrillogenesis inhibition activity and cytotoxicity. An HR-MS-based cell metabolomic approach highlighted their cell permeability properties.
Collapse
Affiliation(s)
- Federica Moraca
- Department of Pharmacy, University of Napoli Federico II Via Domenico Montesano 49 I-80131 Napoli Italy
- Net4Science Academic Spin-Off, University "Magna Græcia" of Catanzaro Viale Europa 88100 Catanzaro Italy
| | - Ilaria Vespoli
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo náměstí 542/2 CZ-16610 Prague Czech Republic
| | - Domenico Mastroianni
- Department of Chemical Sciences, University of Napoli Federico II Via Cintia 4 I-80126 Napoli Italy
| | - Vincenzo Piscopo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli" Viale Abramo Lincoln 5 I-81100 Caserta Italy
| | - Rosa Gaglione
- Department of Chemical Sciences, University of Napoli Federico II Via Cintia 4 I-80126 Napoli Italy
- Istituto Nazionale di Biostrutture e Biosistemi (INBB) Viale delle Medaglie d'Oro 305 I-80145 Roma Italy
| | - Angela Arciello
- Department of Chemical Sciences, University of Napoli Federico II Via Cintia 4 I-80126 Napoli Italy
- Istituto Nazionale di Biostrutture e Biosistemi (INBB) Viale delle Medaglie d'Oro 305 I-80145 Roma Italy
| | - Mauro De Nisco
- Department of Sciences, University of Basilicata Viale dell'Ateneo Lucano I-85100 Potenza Italy
| | - Severina Pacifico
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli" Viale Abramo Lincoln 5 I-81100 Caserta Italy
| | - Bruno Catalanotti
- Department of Pharmacy, University of Napoli Federico II Via Domenico Montesano 49 I-80131 Napoli Italy
| | - Silvana Pedatella
- Department of Chemical Sciences, University of Napoli Federico II Via Cintia 4 I-80126 Napoli Italy
| |
Collapse
|
2
|
Del Giudice R, Lindvall M, Nilsson O, Monti DM, Lagerstedt JO. The Apparent Organ-Specificity of Amyloidogenic ApoA-I Variants Is Linked to Tissue-Specific Extracellular Matrix Components. Int J Mol Sci 2022; 24:318. [PMID: 36613763 PMCID: PMC9820410 DOI: 10.3390/ijms24010318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Apolipoprotein A-I (ApoA-I) amyloidosis is a rare protein misfolding disease where fibrils of the N-terminal domain of the protein accumulate in several organs, leading to their failure. Although ApoA-I amyloidosis is systemic, the different amyloidogenic variants show a preferential tissue accumulation that appears to correlate with the location of the mutation in the protein sequence and with the local extracellular microenvironment. However, the factors leading to cell/tissues damage, as well as the mechanisms behind the observed organ specificity are mostly unknown. Therefore, we investigated the impact of ApoA-I variants on cell physiology and the mechanisms driving the observed tissue specificity. We focused on four ApoA-I amyloidogenic variants and analyzed their cytotoxicity as well as their ability to alter redox homeostasis in cell lines from different tissues (liver, kidney, heart, skin). Moreover, variant-specific interactions with extracellular matrix (ECM) components were measured by synchrotron radiation circular dichroism and enzyme-linked immunosorbent assay. Data indicated that ApoA-I variants exerted a cytotoxic effect in a time and cell-type-specific manner that seems to be due to protein accumulation in lysosomes. Interestingly, the ApoA-I variants exhibited specific preferential binding to the ECM components, reflecting their tissue accumulation pattern in vivo. While the binding did not to appear to affect protein conformations in solution, extended incubation of the amyloidogenic variants in the presence of different ECM components resulted in different aggregation propensity and aggregation patterns.
Collapse
Affiliation(s)
- Rita Del Giudice
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Mikaela Lindvall
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Oktawia Nilsson
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Daria Maria Monti
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Napoli, Italy
- Istituto Nazionale di Biostrutture e Biosistemi (INBB), 00136 Rome, Italy
| | - Jens O. Lagerstedt
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, 20506 Malmö, Sweden
| |
Collapse
|
3
|
Del Giudice R, Imbimbo P, Pietrocola F, Martins I, De Palma FDE, Bravo-San Pedro JM, Kroemer G, Maiuri MC, Monti DM. Autophagy Alteration in ApoA-I Related Systemic Amyloidosis. Int J Mol Sci 2022; 23:ijms23073498. [PMID: 35408859 PMCID: PMC8998969 DOI: 10.3390/ijms23073498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 02/06/2023] Open
Abstract
Amyloidoses are characterized by the accumulation and aggregation of misfolded proteins into fibrils in different organs, leading to cell death and consequent organ dysfunction. The specific substitution of Leu 75 for Pro in Apolipoprotein A-I protein sequence (ApoA-I; L75P-ApoA-I) results in late onset amyloidosis, where deposition of extracellular protein aggregates damages the normal functions of the liver. In this work, we describe that the autophagic process is inhibited in the presence of the L75P-ApoA-I amyloidogenic variant in stably transfected human hepatocyte carcinoma cells. The L75P-ApoA-I amyloidogenic variant alters the redox status of the cells, resulting into excessive mitochondrial stress and consequent cell death. Moreover, L75P-ApoA-I induces an impairment of the autophagic flux. Pharmacological induction of autophagy or transfection-enforced overexpression of the pro-autophagic transcription factor EB (TFEB) restores proficient proteostasis and reduces oxidative stress in these experimental settings, suggesting that pharmacological stimulation of autophagy could be a promising target to alleviate ApoA-I amyloidosis.
Collapse
Affiliation(s)
- Rita Del Giudice
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Napoli, Italy; (R.D.G.); (P.I.)
| | - Paola Imbimbo
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Napoli, Italy; (R.D.G.); (P.I.)
| | - Federico Pietrocola
- Department of Biosciences and Nutrition, Karolinska Institute, 14157 Huddinge, Sweden;
| | - Isabelle Martins
- Centre de Recherche des Cordeliers, INSERM U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France; (I.M.); (F.D.E.D.P.); (G.K.); (M.C.M.)
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - Fatima Domenica Elisa De Palma
- Centre de Recherche des Cordeliers, INSERM U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France; (I.M.); (F.D.E.D.P.); (G.K.); (M.C.M.)
- CEINGE-Biotecnologie Avanzate s.c.a.r.l., 80145 Napoli, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli Federico II, 80131 Napoli, Italy
| | | | - Guido Kroemer
- Centre de Recherche des Cordeliers, INSERM U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France; (I.M.); (F.D.E.D.P.); (G.K.); (M.C.M.)
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
- Institut Universitaire de France, 75005 Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, Ap-hp, 75015 Paris, France
| | - Maria Chiara Maiuri
- Centre de Recherche des Cordeliers, INSERM U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France; (I.M.); (F.D.E.D.P.); (G.K.); (M.C.M.)
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
- Pharmacy Department, University of Napoli Federico II, 80131 Napoli, Italy
| | - Daria Maria Monti
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Napoli, Italy; (R.D.G.); (P.I.)
- Istituto Nazionale di Biostrutture e Biosistemi (INBB), 00136 Rome, Italy
- Correspondence:
| |
Collapse
|
4
|
Lewkowicz E, Gursky O. Dynamic protein structures in normal function and pathologic misfolding in systemic amyloidosis. Biophys Chem 2022; 280:106699. [PMID: 34773861 PMCID: PMC9416430 DOI: 10.1016/j.bpc.2021.106699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 02/08/2023]
Abstract
Dynamic and disordered regions in native proteins are often critical for their function, particularly in ligand binding and signaling. In certain proteins, however, such regions can contribute to misfolding and pathologic deposition as amyloid fibrils in vivo. For example, dynamic and disordered regions can promote amyloid formation by destabilizing the native structure, by directly triggering the aggregation, by promoting protein condensation, or by acting as sites of early proteolytic cleavage that favor a release of aggregation-prone fragments or facilitate fibril maturation. At the same time, enhanced dynamics in the native protein state accelerates proteolytic degradation that counteracts amyloid accumulation in vivo. Therefore, the functional need for dynamic protein regions must be balanced against their inherently labile nature. How exactly this balance is achieved and how is it shifted upon amyloidogenic mutations or post-translational modifications? To illustrate possible scenarios, here we review the beneficial and pathologic roles of dynamic and disordered regions in the native states of three families of human plasma proteins that form amyloid precursors in systemic amyloidoses: immunoglobulin light chain, apolipoproteins, and serum amyloid A. Analysis of structure, stability and local dynamics of these diverse proteins and their amyloidogenic variants exemplifies how disordered/dynamic regions can provide a functional advantage as well as an Achilles heel in pathologic amyloid formation.
Collapse
|
5
|
Gisonno RA, Masson T, Ramella NA, Barrera EE, Romanowski V, Tricerri MA. Evolutionary and structural constraints influencing apolipoprotein A-I amyloid behavior. Proteins 2021; 90:258-269. [PMID: 34414600 DOI: 10.1002/prot.26217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022]
Abstract
Apolipoprotein A-I (apoA-I) has a key function in the reverse cholesterol transport. However, aggregation of apoA-I single point mutants can lead to hereditary amyloid pathology. Although several studies have tackled the biophysical and structural consequences introduced by these mutations, there is little information addressing the relationship between the evolutionary and structural features that contribute to the amyloid behavior of apoA-I. We combined evolutionary studies, in silico mutagenesis and molecular dynamics (MD) simulations to provide a comprehensive analysis of the conservation and pathogenic role of the aggregation-prone regions (APRs) present in apoA-I. Sequence analysis demonstrated that among the four amyloidogenic regions described for human apoA-I, only two (APR1 and APR4) are evolutionary conserved across different species of Sarcopterygii. Moreover, stability analysis carried out with the FoldX engine showed that APR1 contributes to the marginal stability of apoA-I. Structural properties of full-length apoA-I models suggest that aggregation is avoided by placing APRs into highly packed and rigid portions of its native fold. Compared to silent variants extracted from the gnomAD database, the thermodynamic and pathogenic impact of amyloid mutations showed evidence of a higher destabilizing effect. MD simulations of the amyloid variant G26R evidenced the partial unfolding of the alpha-helix bundle with the concomitant exposure of APR1 to the solvent, suggesting an insight into the early steps involved in its aggregation. Our findings highlight APR1 as a relevant component for apoA-I structural integrity and emphasize a destabilizing effect of amyloid variants that leads to the exposure of this region.
Collapse
Affiliation(s)
- Romina A Gisonno
- Facultad de Ciencias Médicas, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP, CONICET-UNLP), Universidad Nacional de La Plata, La Plata, Argentina
| | - Tomas Masson
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM, CONICET-UNLP), Universidad Nacional de La Plata, La Plata, Argentina
| | - Nahuel A Ramella
- Facultad de Ciencias Médicas, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP, CONICET-UNLP), Universidad Nacional de La Plata, La Plata, Argentina
| | - Exequiel E Barrera
- Group of Biomolecular Simulations, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Víctor Romanowski
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM, CONICET-UNLP), Universidad Nacional de La Plata, La Plata, Argentina
| | - M Alejandra Tricerri
- Facultad de Ciencias Médicas, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP, CONICET-UNLP), Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
6
|
Gaglione R, Smaldone G, Cesaro A, Rumolo M, De Luca M, Di Girolamo R, Petraccone L, Del Vecchio P, Oliva R, Notomista E, Pedone E, Arciello A. Impact of a Single Point Mutation on the Antimicrobial and Fibrillogenic Properties of Cryptides from Human Apolipoprotein B. Pharmaceuticals (Basel) 2021; 14:ph14070631. [PMID: 34209895 PMCID: PMC8308739 DOI: 10.3390/ph14070631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022] Open
Abstract
Host defense peptides (HDPs) are gaining increasing interest, since they are endowed with multiple activities, are often effective on multidrug resistant bacteria and do not generally lead to the development of resistance phenotypes. Cryptic HDPs have been recently identified in human apolipoprotein B and found to be endowed with a broad-spectrum antimicrobial activity, with anti-biofilm, wound healing and immunomodulatory properties, and with the ability to synergistically act in combination with conventional antibiotics, while being not toxic for eukaryotic cells. Here, a multidisciplinary approach was used, including time killing curves, differential scanning calorimetry, circular dichroism, ThT binding assays, and transmission electron microscopy analyses. The effects of a single point mutation (Pro → Ala in position 7) on the biological properties of ApoB-derived peptide r(P)ApoBLPro have been evaluated. Although the two versions of the peptide share similar antimicrobial and anti-biofilm properties, only r(P)ApoBLAla peptide was found to exert bactericidal effects. Interestingly, antimicrobial activity of both peptide versions appears to be dependent from their interaction with specific components of bacterial surfaces, such as LPS or LTA, which induce peptides to form β-sheet-rich amyloid-like structures. Altogether, obtained data indicate a correlation between ApoB-derived peptides self-assembling state and their antibacterial activity.
Collapse
Affiliation(s)
- Rosa Gaglione
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.G.); (A.C.); (M.R.); (M.D.L.); (R.D.G.); (L.P.); (P.D.V.)
- Istituto Nazionale di Biostrutture e Biosistemi (INBB), 00136 Rome, Italy
| | | | - Angela Cesaro
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.G.); (A.C.); (M.R.); (M.D.L.); (R.D.G.); (L.P.); (P.D.V.)
| | - Mariano Rumolo
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.G.); (A.C.); (M.R.); (M.D.L.); (R.D.G.); (L.P.); (P.D.V.)
| | - Maria De Luca
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.G.); (A.C.); (M.R.); (M.D.L.); (R.D.G.); (L.P.); (P.D.V.)
| | - Rocco Di Girolamo
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.G.); (A.C.); (M.R.); (M.D.L.); (R.D.G.); (L.P.); (P.D.V.)
| | - Luigi Petraccone
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.G.); (A.C.); (M.R.); (M.D.L.); (R.D.G.); (L.P.); (P.D.V.)
| | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.G.); (A.C.); (M.R.); (M.D.L.); (R.D.G.); (L.P.); (P.D.V.)
| | - Rosario Oliva
- Physical Chemistry I—Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany;
| | - Eugenio Notomista
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy;
| | - Emilia Pedone
- Istituto di Biostrutture e Bioimmagini, CNR, 80134 Naples, Italy;
- Research Centre on Bioactive Peptides (CIRPeB), University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy
| | - Angela Arciello
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.G.); (A.C.); (M.R.); (M.D.L.); (R.D.G.); (L.P.); (P.D.V.)
- Istituto Nazionale di Biostrutture e Biosistemi (INBB), 00136 Rome, Italy
- Correspondence: ; Tel.: +39-081-679147
| |
Collapse
|
7
|
Turbant F, Partouche D, El Hamoui O, Trépout S, Legoubey T, Wien F, Arluison V. Apomorphine Targets the Pleiotropic Bacterial Regulator Hfq. Antibiotics (Basel) 2021; 10:antibiotics10030257. [PMID: 33806663 PMCID: PMC8000489 DOI: 10.3390/antibiotics10030257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 12/15/2022] Open
Abstract
Hfq is a bacterial regulator with key roles in gene expression. The protein notably regulates translation efficiency and RNA decay in Gram-negative bacteria, thanks to its binding to small regulatory noncoding RNAs. This property is of primary importance for bacterial adaptation and survival in hosts. Small RNAs and Hfq are, for instance, involved in the response to antibiotics. Previous work has shown that the E. coli Hfq C-terminal region (Hfq-CTR) self-assembles into an amyloid structure. It was also demonstrated that the green tea compound EpiGallo Catechin Gallate (EGCG) binds to Hfq-CTR amyloid fibrils and remodels them into nonamyloid structures. Thus, compounds that target the amyloid region of Hfq may be used as antibacterial agents. Here, we show that another compound that inhibits amyloid formation, apomorphine, may also serve as a new antibacterial. Our results provide an alternative in order to repurpose apomorphine, commonly used in the treatment of Parkinson’s disease, as an antibiotic to block bacterial adaptation to treat infections.
Collapse
Affiliation(s)
- Florian Turbant
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France; (F.T.); (D.P.); (T.L.)
| | - David Partouche
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France; (F.T.); (D.P.); (T.L.)
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint Aubin BP48, 91192 Gif-sur-Yvette, France;
| | - Omar El Hamoui
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint Aubin BP48, 91192 Gif-sur-Yvette, France;
| | - Sylvain Trépout
- Institut Curie, Inserm US43, and CNRS UMS2016, 91405 Orsay CEDEX, France;
| | - Théa Legoubey
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France; (F.T.); (D.P.); (T.L.)
| | - Frank Wien
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint Aubin BP48, 91192 Gif-sur-Yvette, France;
- Correspondence: (F.W.); or (V.A.); Tel.: +33-(0)169359665 (F.W.); +33-(0)169083282 (V.A.)
| | - Véronique Arluison
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France; (F.T.); (D.P.); (T.L.)
- UFR Sciences du Vivant, Université de Paris, 75006 Paris CEDEX, France
- Correspondence: (F.W.); or (V.A.); Tel.: +33-(0)169359665 (F.W.); +33-(0)169083282 (V.A.)
| |
Collapse
|
8
|
Ma'arfi F, Chandra S, Fatima JE, Khan MY, Mir SS, Yusuf MA. Probing the Structure-Function relationship and amyloidogenic propensities in natural variants of apolipoprotein A-I. Biochem Biophys Rep 2020; 24:100815. [PMID: 33024841 PMCID: PMC7527581 DOI: 10.1016/j.bbrep.2020.100815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/09/2020] [Accepted: 09/13/2020] [Indexed: 11/25/2022] Open
Abstract
Background Apolipoprotein A-I (apoA-I) protects against atherosclerosis and participates in the removal of excess cellular cholesterol from peripheral organs. Several naturally occurring apoA-I mutations are associated with familial systemic amyloidosis, with deposition of amyloid aggregates in peripheral organs, resulting in multiple organ failure. Systematic studies on naturally occurring variants are needed to delineate their roles and involvement in pathogenesis. Methods We performed a comparative structure–function analysis of five naturally occurring apoA-I variants and the wild-type protein. Circular dichroism, Fourier-transform infrared spectroscopy, thioflavin T and congo red fluorescence assays, thermal, chemical, and proteolytic stability assays, and 1,2-Dimyristoyl-sn-glycero-3-phosphocholine clearance analyses were used to assess the effects of mutations on the structure, function, stability, aggregation, and proteolytic susceptibility of the proteins to explore the mechanisms underlying amyloidosis and hypercholesterolemia. Results We observed structural changes in the mutants independent of fibril formation, suggesting the influence of the surrounding environment. The mutants were involved in aggregate formation to varying degree; L170P, R173P, and V156E showed an increased propensity to aggregate under different physiological conditions. β sheet formation indicates that L170P and R173P participate in amyloid formation. Compared to WT, V156E and L170P exhibited higher capacity for lipid clearance. Conclusions The selected point mutations, including those outside the hot spot regions of apoA-I structure, perturb the physiochemical and conformational behavior of the protein, influencing its function. General significance The study provides insights into the structure–function relationships of naturally occurring apoA-I variants outside the hot spot mutation sites. Several apoA-I mutants are associated with systemic amyloidosis. Structure–function analysis of five apoA-I variants and wild-type protein was done. Point mutations alter the physicochemical behavior and conformation of the variants.
Collapse
Affiliation(s)
- Farah Ma'arfi
- Department of Bioengineering, Integral University, Kursi Road, Dasauli, Lucknow, 226026, India
| | - Subhash Chandra
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Jamal e Fatima
- Department of Bioengineering, Integral University, Kursi Road, Dasauli, Lucknow, 226026, India
| | - Mohd Yasir Khan
- Department of Biosciences, Integral University, Kursi Road, Dasauli, Lucknow, 226026, India
| | - Snober S. Mir
- Department of Bioengineering, Integral University, Kursi Road, Dasauli, Lucknow, 226026, India
| | - Mohd Aslam Yusuf
- Department of Bioengineering, Integral University, Kursi Road, Dasauli, Lucknow, 226026, India
- Corresponding author. ;
| |
Collapse
|
9
|
Zanoni P, von Eckardstein A. Inborn errors of apolipoprotein A-I metabolism: implications for disease, research and development. Curr Opin Lipidol 2020; 31:62-70. [PMID: 32022753 DOI: 10.1097/mol.0000000000000667] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW We review current knowledge regarding naturally occurring mutations in the human apolipoprotein A-I (APOA1) gene with a focus on their clinical complications as well as their exploitation for the elucidation of structure-function-(disease) relationships and therapy. RECENT FINDINGS Bi-allelic loss-of-function mutations in APOA1 cause HDL deficiency and, in the majority of patients, premature atherosclerotic cardiovascular disease (ASCVD) and corneal opacities. Heterozygous HDL-cholesterol decreasing mutations in APOA1 were associated with increased risk of ASCVD in several but not all studies. Some missense mutations in APOA1 cause familial amyloidosis. Structure-function-reationships underlying the formation of amyloid as well as the manifestion of amyloidosis in specific tissues are better understood. Lessons may also be learnt from the progress in the treatment of amyloidoses induced by transthyretin variants. Infusion of reconstituted HDL (rHDL) containing apoA-I (Milano) did not cause regression of atherosclerosis in coronary arteries of patients with acute coronary syndrome. However, animal experiments indicate that rHDL with apoA-I (Milano) or apoA-I mimetic peptides may be useful for the treatment of heart failure of inflammatory bowel disease. SUMMARY Specific mutations in APOA1 are the cause of premature ASCVD or familial amyloidosis. Synthetic mimetics of apoA-I (mutants) may be useful for the treatment of several diseases beyond ASCVD.
Collapse
Affiliation(s)
- Paolo Zanoni
- Institute of Medical Genetics, University of Zurich
| | | |
Collapse
|
10
|
Kurimitsu N, Mizuguchi C, Fujita K, Taguchi S, Ohgita T, Nishitsuji K, Shimanouchi T, Saito H. Phosphatidylethanolamine accelerates aggregation of the amyloidogenic N-terminal fragment of apoA-I. FEBS Lett 2020; 594:1443-1452. [PMID: 31968125 DOI: 10.1002/1873-3468.13737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/28/2019] [Accepted: 01/02/2020] [Indexed: 12/13/2022]
Abstract
Membrane lipid composition is known to influence aggregation and fibril formation of many amyloidogenic proteins. Here, we found that phosphatidylethanolamine (PE) accelerates aggregation of the N-terminal 1-83 fragment of an amyloidogenic G26R variant of apoA-I on lipid membranes. Circular dichroism and isothermal titration calorimetry measurements demonstrated that PE does not affect the α-helical structure and lipid binding property of apoA-I 1-83/G26R. Rather, fluorescence measurements indicated that PE induces more ordered lipid packing at the interfacial and acyl chain regions, providing more hydrophobic environments especially around the highly amyloidogenic regions in apoA-I on the membrane surface. These results suggest that PE promotes aggregation of the amyloidogenic N-terminal fragment of apoA-I on lipid membranes by inducing hydrophobic membrane environments.
Collapse
Affiliation(s)
- Naoko Kurimitsu
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Chiharu Mizuguchi
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kaho Fujita
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Suzuno Taguchi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Takashi Ohgita
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | | | - Toshinori Shimanouchi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Hiroyuki Saito
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
11
|
Gisonno RA, Prieto ED, Gorgojo JP, Curto LM, Rodriguez ME, Rosú SA, Gaddi GM, Finarelli GS, Cortez MF, Schinella GR, Tricerri MA, Ramella NA. Fibrillar conformation of an apolipoprotein A-I variant involved in amyloidosis and atherosclerosis. Biochim Biophys Acta Gen Subj 2020; 1864:129515. [PMID: 31904503 DOI: 10.1016/j.bbagen.2020.129515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/21/2019] [Accepted: 12/30/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Different protein conformations may be involved in the development of clinical manifestations associated with human amyloidosis. Although a fibrillar conformation is usually the signature of damage in the tissues of patients, it is not clear whether this species is per se the cause or the consequence of the disease. Hereditary amyloidosis due to variants of apolipoprotein A-I (apoA-I) with a substitution of a single amino acid is characterized by the presence of fibrillar protein within the lesions. Thus mutations result in increased protein aggregation. Here we set up to characterize the folding of a natural variant with a mutation leading to a deletion at position 107 (apoA-I Lys107-0). Patients carrying this variant show amyloidosis and severe atherosclerosis. METHODS We oxidized this variant under controlled concentrations of hydrogen peroxide and analyzed the structure obtained after 30-day incubation by fluorescence, circular dichroism and microscopy approaches. Neutrophils activation was characterized by confocal microscopy. RESULTS We obtained a high yield of well-defined stable fibrillar structures of apoA-I Lys107-0. In an in vitro neutrophils system, we were able to detect the induction of Neutrophils Extracellular Traps (NETs) when we incubated with oxidized apoA-I variants. This effect was exacerbated by the fibrillar structure of oxidized Lys 107-0. CONCLUSIONS We conclude that a pro-inflammatory microenvironment could result in the formation of aggregation-prone species, which, in addition may induce a positive feed-back in the activation of an inflammatory response. GENERAL SIGNIFICANCE These events may explain a close association between amyloidosis due to apoA-I Lys107-0 and atherosclerosis.
Collapse
Affiliation(s)
- Romina A Gisonno
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Argentina; Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, La Plata, Argentina
| | - Eduardo D Prieto
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), La Plata, Argentina
| | - Juan P Gorgojo
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), La Plata, Argentina
| | - Lucrecia M Curto
- Instituto de Química y Fisicoquímica Biológicas "Profesor Alejandro C. Paladini" (IQUIFIB) y Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CABA, Argentina
| | - M Eugenia Rodriguez
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), La Plata, Argentina
| | - Silvana A Rosú
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Argentina; Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, La Plata, Argentina
| | - Gisela M Gaddi
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Argentina; Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, La Plata, Argentina
| | | | - M Fernanda Cortez
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Argentina
| | - Guillermo R Schinella
- Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, La Plata, Argentina
| | - M Alejandra Tricerri
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Argentina; Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, La Plata, Argentina.
| | - Nahuel A Ramella
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Argentina; Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, La Plata, Argentina.
| |
Collapse
|
12
|
Gaglione R, Pane K, Dell’Olmo E, Cafaro V, Pizzo E, Olivieri G, Notomista E, Arciello A. Cost-effective production of recombinant peptides in Escherichia coli. N Biotechnol 2019; 51:39-48. [DOI: 10.1016/j.nbt.2019.02.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/12/2019] [Accepted: 02/16/2019] [Indexed: 01/08/2023]
|
13
|
Effect of Phosphatidylserine and Cholesterol on Membrane-mediated Fibril Formation by the N-terminal Amyloidogenic Fragment of Apolipoprotein A-I. Sci Rep 2018; 8:5497. [PMID: 29615818 PMCID: PMC5882889 DOI: 10.1038/s41598-018-23920-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/22/2018] [Indexed: 01/31/2023] Open
Abstract
Here, we examined the effects of phosphatidylserine (PS) and cholesterol on the fibril-forming properties of the N-terminal 1‒83 fragment of an amyloidogenic G26R variant of apoA-I bound to small unilamellar vesicles. A thioflavin T fluorescence assay together with microscopic observations showed that PS significantly retards the nucleation step in fibril formation by apoA-I 1‒83/G26R, whereas cholesterol slightly enhances fibril formation. Circular dichroism analyses demonstrated that PS facilitates a structural transition from random coil to α-helix in apoA-I 1‒83/G26R with great stabilization of the α-helical structure upon lipid binding. Isothermal titration calorimetry measurements revealed that PS induces a marked increase in capacity for binding of apoA-I 1‒83/G26R to the membrane surface, perhaps due to electrostatic interactions of positively charged amino acids in apoA-I with PS. Such effects of PS to enhance lipid interactions and inhibit fibril formation of apoA-I were also observed for the amyloidogenic region-containing apoA-I 8‒33/G26R peptide. Fluorescence measurements using environment-sensitive probes indicated that PS induces a more solvent-exposed, membrane-bound conformation in the amyloidogenic region of apoA-I without affecting membrane fluidity. Since cell membranes have highly heterogeneous lipid compositions, our findings may provide a molecular basis for the preferential deposition of apoA-I amyloid fibrils in tissues and organs.
Collapse
|