1
|
Lu R, Li X, Hu J, Wang Y, Jin L. Expression of a single-chain monellin (MNEI) mutant with enhanced stability in transgenic mice milk. Transgenic Res 2024; 33:211-218. [PMID: 38858256 DOI: 10.1007/s11248-024-00389-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024]
Abstract
Monellin is a sweet protein that may be used as a safe and healthy sweetener. However, due to its low stability, the application of monellin is currently very limited. Here, we describe a wild-type, a double-sites mutant (E2N/E23A) and a triple-sites mutant (N14A/E23Q/S76Y) of single-chain monellin (MNEI) expressed in transgenic mice milk. Based on enzyme-linked immunoassay (ELISA), Western blot, and sweetness intensity testing, their sweetness and stability were compared. After boiling for 2 min at different pH conditions (2.5, 5.1, 6.8, and 8.2), N14A/E23Q/S76Y-MNEI showed significantly higher sweetness and stability than the wild-type and E2N/E23A-MNEI. These results suggest that N14A/E23Q/S76Y-MNEI shows remarkable potential as a sweetener in the future.
Collapse
Affiliation(s)
- Rui Lu
- Jiangsu Food and Pharmaceutical Science College, Huaian, Jiangsu, China
| | - Xiaoming Li
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu, China
| | - Jian Hu
- Jiangsu Food and Pharmaceutical Science College, Huaian, Jiangsu, China
| | - Yancui Wang
- Jiangsu Food and Pharmaceutical Science College, Huaian, Jiangsu, China.
| | - Le Jin
- Jiangsu Food and Pharmaceutical Science College, Huaian, Jiangsu, China.
| |
Collapse
|
2
|
Lucignano R, Spadaccini R, Merlino A, Ami D, Natalello A, Ferraro G, Picone D. Structural insights and aggregation propensity of a super-stable monellin mutant: A new potential building block for protein-based nanostructured materials. Int J Biol Macromol 2024; 254:127775. [PMID: 38287601 DOI: 10.1016/j.ijbiomac.2023.127775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/12/2023] [Accepted: 10/27/2023] [Indexed: 01/31/2024]
Abstract
Protein fibrillation is commonly associated with pathologic amyloidosis. However, under appropriate conditions several proteins form fibrillar structures in vitro that can be used for biotechnological applications. MNEI and its variants, firstly designed as single chain derivatives of the sweet protein monellin, are also useful models for protein fibrillary aggregation studies. In this work, we have drawn attention to a protein dubbed Mut9, already characterized as a "super stable" MNEI variant. Comparative analysis of the respective X-ray structures revealed how the substitutions present in Mut9 eliminate several unfavorable interactions and stabilize the global structure. Molecular dynamic predictions confirmed the presence of a hydrogen-bonds network in Mut9 which increases its stability, especially at neutral pH. Thioflavin-T (ThT) binding assays and Fourier transform infrared (FTIR) spectroscopy indicated that the aggregation process occurs both at acidic and neutral pH, with and without addition of NaCl, even if with a different kinetics. Accordingly, Transmission Electron Microscopy (TEM) showed a fibrillar organization of the aggregates in all the tested conditions, albeit with some differences in the quantity and in the morphology of the fibrils. Our data underline the great potential of Mut9, which combines great stability in solution with the versatile conversion into nanostructured biomaterials.
Collapse
Affiliation(s)
- Rosanna Lucignano
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, 80126 Naples, Italy
| | - Roberta Spadaccini
- Department of Science and Technology, University of Sannio, Via de Sanctis, 82100 Benevento, Italy
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, 80126 Naples, Italy
| | - Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 20126 Milano, Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 20126 Milano, Italy
| | - Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, 80126 Naples, Italy.
| | - Delia Picone
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, 80126 Naples, Italy.
| |
Collapse
|
3
|
Review on the applications of atomic force microscopy imaging in proteins. Micron 2022; 159:103293. [DOI: 10.1016/j.micron.2022.103293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/22/2022] [Accepted: 05/06/2022] [Indexed: 11/19/2022]
|
4
|
A Super Stable Mutant of the Plant Protein Monellin Endowed with Enhanced Sweetness. Life (Basel) 2021; 11:life11030236. [PMID: 33809397 PMCID: PMC7999979 DOI: 10.3390/life11030236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
Sweet proteins are a class of proteins with the ability to elicit a sweet sensation in humans upon interaction with sweet taste receptor T1R2/T1R3. Single-chain Monellin, MNEI, is among the sweetest proteins known and it could replace sugar in many food and beverage recipes. Nonetheless, its use is limited by low stability and high aggregation propensity at neutral pH. To solve this inconvenience, we designed a new construct of MNEI, dubbed Mut9, which led to gains in both sweetness and stability. Mut9 showed an extraordinary stability in acidic and neutral environments, where we observed a melting temperature over 20 °C higher than that of MNEI. In addition, Mut9 resulted twice as sweet than MNEI. Both proteins were extensively characterized by biophysical and sensory analyses. Notably, Mut9 preserved its structure and function even after 10 min boiling, with the greatest differences being observed at pH 6.8, where it remained folded and sweet, whereas MNEI lost its structure and function. Finally, we performed a 6-month shelf-life assessment, and the data confirmed the greater stability of the new construct in a wide range of conditions. These data prove that Mut9 has an even greater potential for food and beverage applications than MNEI.
Collapse
|
5
|
Montioli R, Campagnari R, Fasoli S, Fagagnini A, Caloiu A, Smania M, Menegazzi M, Gotte G. RNase A Domain-Swapped Dimers Produced Through Different Methods: Structure-Catalytic Properties and Antitumor Activity. Life (Basel) 2021; 11:life11020168. [PMID: 33669993 PMCID: PMC7926746 DOI: 10.3390/life11020168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 11/16/2022] Open
Abstract
Upon oligomerization, RNase A can acquire important properties, such as cytotoxicity against leukemic cells. When lyophilized from 40% acetic acid solutions, the enzyme self-associates through the so-called three-dimensional domain swapping (3D-DS) mechanism involving both N- and/or C-terminals. The same species are formed if the enzyme is subjected to thermal incubation in various solvents, especially in 40% ethanol. We evaluated here if significant structural modifications might occur in RNase A N- or C-swapped dimers and/or in the residual monomer(s), as a function of the oligomerization protocol applied. We detected that the monomer activity vs. ss-RNA was partly affected by both protocols, although the protein does not suffer spectroscopic alterations. Instead, the two N-swapped dimers showed differences in the fluorescence emission spectra but almost identical enzymatic activities, while the C-swapped dimers displayed slightly different activities vs. both ss- or ds-RNA substrates together with not negligible fluorescence emission alterations within each other. Besides these results, we also discuss the reasons justifying the different relative enzymatic activities displayed by the N-dimers and C-dimers. Last, similarly with data previously registered in a mouse model, we found that both dimeric species significantly decrease human melanoma A375 cell viability, while only N-dimers reduce human melanoma MeWo cell growth.
Collapse
Affiliation(s)
- Riccardo Montioli
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie, 8, I-37134 Verona, Italy; (R.M.); (R.C.); (S.F.); (A.F.); (M.S.)
| | - Rachele Campagnari
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie, 8, I-37134 Verona, Italy; (R.M.); (R.C.); (S.F.); (A.F.); (M.S.)
| | - Sabrina Fasoli
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie, 8, I-37134 Verona, Italy; (R.M.); (R.C.); (S.F.); (A.F.); (M.S.)
| | - Andrea Fagagnini
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie, 8, I-37134 Verona, Italy; (R.M.); (R.C.); (S.F.); (A.F.); (M.S.)
| | - Andra Caloiu
- Department of Microbiology and Virology, Wexham Park Hospital, Wexham Road, Slough SL24HL, Berkshire, UK;
| | - Marcello Smania
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie, 8, I-37134 Verona, Italy; (R.M.); (R.C.); (S.F.); (A.F.); (M.S.)
| | - Marta Menegazzi
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie, 8, I-37134 Verona, Italy; (R.M.); (R.C.); (S.F.); (A.F.); (M.S.)
- Correspondence: (M.M.); (G.G.); Tel.: +39-045-8027168 (M.M.); +39-045-8027694 (G.G.)
| | - Giovanni Gotte
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie, 8, I-37134 Verona, Italy; (R.M.); (R.C.); (S.F.); (A.F.); (M.S.)
- Correspondence: (M.M.); (G.G.); Tel.: +39-045-8027168 (M.M.); +39-045-8027694 (G.G.)
| |
Collapse
|
6
|
Delfi M, Leone S, Emendato A, Ami D, Borriello M, Natalello A, Iannuzzi C, Picone D. Understanding the self-assembly pathways of a single chain variant of monellin: A first step towards the design of sweet nanomaterials. Int J Biol Macromol 2020; 152:21-29. [PMID: 32088237 DOI: 10.1016/j.ijbiomac.2020.02.229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/20/2022]
Abstract
Peptides and proteins possess an inherent tendency to self-assemble, prompting the formation of amyloid aggregates from their soluble and functional states. Amyloids are linked to many devastating diseases, but self-assembling proteins can also represent formidable tools to produce new and sustainable biomaterials for biomedical and biotechnological applications. The mechanism of fibrillar aggregation, which influences the morphology and the properties of the protein aggregates, depend on factors such as pH, ionic strength, temperature, agitation, and protein concentration. We have here used intensive mechanical agitation, with or without beads, to prompt the aggregation of the single-chain derivative of the plant protein monellin, named MNEI, which is a well characterized sweet protein. Transmission electron microscopy confirmed the formation of fibrils several micrometers long, morphologically different from the previously characterized fibers of MNEI. Changes in the protein secondary structures during the aggregation process were monitored by Fourier transform infrared spectroscopy, which detected differences in the conformation of the final aggregates obtained under mechanical agitation. Moreover, soluble oligomers could be detected in the early phases of aggregation by polyacrylamide gel-electrophoresis. These findings emphasize the existence of multiple pathways of fibrillar aggregation for MNEI, which could be exploited for the design of innovative protein-based biomaterials.
Collapse
Affiliation(s)
- Masoud Delfi
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Serena Leone
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Alessandro Emendato
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Margherita Borriello
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Clara Iannuzzi
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy.
| | - Delia Picone
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Napoli, Italy.
| |
Collapse
|
7
|
Donnarumma F, Leone S, Delfi M, Emendato A, Ami D, Laurents DV, Natalello A, Spadaccini R, Picone D. Probing structural changes during amyloid aggregation of the sweet protein MNEI. FEBS J 2019; 287:2808-2822. [DOI: 10.1111/febs.15168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/20/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Federica Donnarumma
- Department of Chemical Sciences University of Naples ‘Federico II’ Napoli Italy
| | - Serena Leone
- Department of Chemical Sciences University of Naples ‘Federico II’ Napoli Italy
| | - Masoud Delfi
- Department of Chemical Sciences University of Naples ‘Federico II’ Napoli Italy
| | - Alessandro Emendato
- Department of Chemical Sciences University of Naples ‘Federico II’ Napoli Italy
| | - Diletta Ami
- Department of Biotechnology and Biosciences University of Milano‐Bicocca Italy
| | - Douglas V. Laurents
- Institute of Physical Chemistry ‘Rocasolano’ Consejo Superior de Investigaciones Científicas Madrid Spain
| | - Antonino Natalello
- Department of Biotechnology and Biosciences University of Milano‐Bicocca Italy
| | - Roberta Spadaccini
- Department of Science and Technology Università degli Studi del Sannio Benevento Italy
| | - Delia Picone
- Department of Chemical Sciences University of Naples ‘Federico II’ Napoli Italy
| |
Collapse
|
8
|
Miele NA, Leone S, Cabisidan EK, Picone D, Di Monaco R, Cavella S. Temporal sweetness profile of the emerging sweetener MNEI in stirred yogurt. J SENS STUD 2019. [DOI: 10.1111/joss.12505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Nicoletta A. Miele
- Center of Food Innovation and Development in the Food IndustryUniversity of Naples Federico II Portici Italy
- Department of Agricultural SciencesUniversity of Naples Federico II Portici Italy
| | - Serena Leone
- Department of Chemical SciencesUniversity of Naples Federico II Naples Italy
| | - Erliza K. Cabisidan
- Research & Development Division, Mondelez International RD&Q Sp. Z o.o. Kobierzyce Poland
| | - Delia Picone
- Department of Chemical SciencesUniversity of Naples Federico II Naples Italy
| | - Rossella Di Monaco
- Center of Food Innovation and Development in the Food IndustryUniversity of Naples Federico II Portici Italy
- Department of Agricultural SciencesUniversity of Naples Federico II Portici Italy
| | - Silvana Cavella
- Center of Food Innovation and Development in the Food IndustryUniversity of Naples Federico II Portici Italy
- Department of Agricultural SciencesUniversity of Naples Federico II Portici Italy
| |
Collapse
|
9
|
Florio D, Malfitano AM, Di Somma S, Mügge C, Weigand W, Ferraro G, Iacobucci I, Monti M, Morelli G, Merlino A, Marasco D. Platinum(II) O, S Complexes Inhibit the Aggregation of Amyloid Model Systems. Int J Mol Sci 2019; 20:ijms20040829. [PMID: 30769904 PMCID: PMC6413125 DOI: 10.3390/ijms20040829] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/08/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023] Open
Abstract
Platinum(II) complexes with different cinnamic acid derivatives as ligands were investigated for their ability to inhibit the aggregation process of amyloid systems derived from Aβ, Yeast Prion Protein Sup35p and the C-terminal domain of nucleophosmin 1. Thioflavin T binding assays and circular dichroism data indicate that these compounds strongly inhibit the aggregation of investigated peptides exhibiting IC50 values in the micromolar range. MS analysis confirms the formation of adducts between peptides and Pt(II) complexes that are also able to reduce amyloid cytotoxicity in human SH-SY5Y neuroblastoma cells. Overall data suggests that bidentate ligands based on β-hydroxy dithiocinnamic esters can be used to develop platinum or platinoid compounds with anti-amyloid aggregation properties.
Collapse
Affiliation(s)
- Daniele Florio
- Department of Pharmacy, University of Naples Federico II, Napoli 80134, Italy.
| | - Anna Maria Malfitano
- Department of Translational Medical Science, University of Naples Federico II, Napoli 80131, Italy.
| | - Sarah Di Somma
- Department of Translational Medical Science, University of Naples Federico II, Napoli 80131, Italy.
| | - Carolin Mügge
- Institute for Inorganic and Analytical Chemistry, University of Jena, Jena 07743, Germany.
- Department of Biology, Ruhr-University Bochum, Bochum 44801, Germany.
| | - Wolfgang Weigand
- Institute for Inorganic and Analytical Chemistry, University of Jena, Jena 07743, Germany.
| | - Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II, Napoli 80126, Italy.
| | - Ilaria Iacobucci
- Department of Chemical Sciences, University of Naples Federico II, Napoli 80126, Italy.
- CEINGE Biotecnologie Avanzate s.c.a r.l., University of Naples Federico II, Napoli 80145, Italy.
| | - Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, Napoli 80126, Italy.
- CEINGE Biotecnologie Avanzate s.c.a r.l., University of Naples Federico II, Napoli 80145, Italy.
| | - Giancarlo Morelli
- Department of Pharmacy, University of Naples Federico II, Napoli 80134, Italy.
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Napoli 80126, Italy.
| | - Daniela Marasco
- Department of Pharmacy, University of Naples Federico II, Napoli 80134, Italy.
| |
Collapse
|
10
|
Boumaiza M, Colarusso A, Parrilli E, Garcia-Fruitós E, Casillo A, Arís A, Corsaro MM, Picone D, Leone S, Tutino ML. Getting value from the waste: recombinant production of a sweet protein by Lactococcus lactis grown on cheese whey. Microb Cell Fact 2018; 17:126. [PMID: 30111331 PMCID: PMC6094915 DOI: 10.1186/s12934-018-0974-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/07/2018] [Indexed: 12/18/2022] Open
Abstract
Background Recent biotechnological advancements have allowed for the adoption of Lactococcus lactis, a typical component of starter cultures used in food industry, as the host for the production of food-grade recombinant targets. Among several advantages, L. lactis has the important feature of growing on lactose, the main carbohydrate in milk and a majoritarian component of dairy wastes, such as cheese whey. Results We have used recombinant L. lactis NZ9000 carrying the nisin inducible pNZ8148 vector to produce MNEI, a small sweet protein derived from monellin, with potential for food industry applications as a high intensity sweetener. We have been able to sustain this production using a medium based on the cheese whey from the production of ricotta cheese, with minimal pre-treatment of the waste. As a proof of concept, we have also tested these conditions for the production of MMP-9, a protein that had been previously successfully obtained from L. lactis cultures in standard growth conditions. Conclusions Other than presenting a new system for the recombinant production of MNEI, more compliant with its potential applications in food industry, our results introduce a strategy to valorize dairy effluents through the synthesis of high added value recombinant proteins. Interestingly, the possibility of using this whey-derived medium relied greatly on the choice of the appropriate codon usage for the target gene. In fact, when a gene optimized for L. lactis was used, the production of MNEI proceeded with good yields. On the other hand, when an E. coli optimized gene was employed, protein synthesis was greatly reduced, to the point of being completely abated in the cheese whey-based medium. The production of MMP-9 was comparable to what observed in the reference conditions. Electronic supplementary material The online version of this article (10.1186/s12934-018-0974-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mohamed Boumaiza
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126, Naples, Italy
| | - Andrea Colarusso
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126, Naples, Italy
| | - Ermenegilda Parrilli
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126, Naples, Italy
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140, Caldes de Montbui, Spain
| | - Angela Casillo
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126, Naples, Italy
| | - Anna Arís
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140, Caldes de Montbui, Spain
| | - Maria Michela Corsaro
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126, Naples, Italy
| | - Delia Picone
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126, Naples, Italy
| | - Serena Leone
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126, Naples, Italy.
| | - Maria Luisa Tutino
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126, Naples, Italy.
| |
Collapse
|
11
|
Castiglia D, Leone S, Tamburino R, Sannino L, Fonderico J, Melchiorre C, Carpentieri A, Grillo S, Picone D, Scotti N. High-level production of single chain monellin mutants with enhanced sweetness and stability in tobacco chloroplasts. PLANTA 2018; 248:465-476. [PMID: 29777363 DOI: 10.1007/s00425-018-2920-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/14/2018] [Indexed: 06/08/2023]
Abstract
MAIN CONCLUSION Plastid-based MNEI protein mutants retain the structure, stability and sweetness of their bacterial counterparts, confirming the attractiveness of the plastid transformation technology for high-yield production of recombinant proteins. The prevalence of obesity and diabetes has dramatically increased the industrial demand for the development and use of alternatives to sugar and traditional sweeteners. Sweet proteins, such as MNEI, a single chain derivative of monellin, are the most promising candidates for industrial applications. In this work, we describe the use of tobacco chloroplasts as a stable plant expression platform to produce three MNEI protein mutants with improved taste profile and stability. All plant-based proteins were correctly expressed in tobacco chloroplasts, purified and subjected to in-depth chemical and sensory analyses. Recombinant MNEI mutants showed a protein yield ranging from 5% to more than 50% of total soluble proteins, which, to date, represents the highest accumulation level of MNEI mutants in plants. Comparative analyses demonstrated the high similarity, in terms of structure, stability and function, of the proteins produced in plant chloroplasts and bacteria. The high yield and the extreme sweetness perceived for the plant-derived proteins prove that plastid transformation technology is a safe, stable and cost-effective production platform for low-calorie sweeteners, with an estimated production of up to 25-30 mg of pure protein/plant.
Collapse
Affiliation(s)
- Daniela Castiglia
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and BioResources, Portici, NA, Italy
| | - Serena Leone
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Rachele Tamburino
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and BioResources, Portici, NA, Italy
| | - Lorenza Sannino
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and BioResources, Portici, NA, Italy
| | - Jole Fonderico
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Chiara Melchiorre
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Andrea Carpentieri
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Stefania Grillo
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and BioResources, Portici, NA, Italy
| | - Delia Picone
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Nunzia Scotti
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and BioResources, Portici, NA, Italy.
| |
Collapse
|
12
|
Leone S, Fonderico J, Melchiorre C, Carpentieri A, Picone D. Structural effects of methylglyoxal glycation, a study on the model protein MNEI. Mol Cell Biochem 2018; 451:165-171. [PMID: 30014221 DOI: 10.1007/s11010-018-3403-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 07/12/2018] [Indexed: 12/23/2022]
Abstract
The reaction of free amino groups in proteins with reactive carbonyl species, known as glycation, leads to the formation of mixtures of products, collectively referred to as advanced glycation endproducts (AGEs). These compounds have been implicated in several important diseases, but their role in pathogenesis and clinical symptoms' development is still debated. Particularly, AGEs are often associated to the formation of amyloid deposits in conformational diseases, such as Alzheimer's and Parkinson's disease, and it has been suggested that they might influence the mechanisms and kinetics of protein aggregation. We here present the characterization of the products of glycation of the model protein MNEI with methylglyoxal and their effect on the protein structure. We demonstrate that, despite being an uncontrolled process, glycation occurs only at specific residues of the protein. Moreover, while not affecting the protein fold, it alters its shape and hydrodynamic properties and increases its tendency to fibrillar aggregation. Our study opens the way to in deep structural investigations to shed light on the complex link between protein post-translational modifications, structure, and stability.
Collapse
Affiliation(s)
- Serena Leone
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, 80126, Naples, Italy.
| | - Jole Fonderico
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, 80126, Naples, Italy
| | - Chiara Melchiorre
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, 80126, Naples, Italy
| | - Andrea Carpentieri
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, 80126, Naples, Italy
| | - Delia Picone
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, 80126, Naples, Italy.
| |
Collapse
|
13
|
|