1
|
Toledo-Solís FJ, Larrán AM, Ortiz-Delgado JB, Sarasquete C, Dias J, Morais S, Fernández I. Specific Blood Plasma Circulating miRs Are Associated with the Physiological Impact of Total Fish Meal Replacement with Soybean Meal in Diets for Rainbow Trout ( Oncorhynchus mykiss). BIOLOGY 2023; 12:937. [PMID: 37508368 PMCID: PMC10376541 DOI: 10.3390/biology12070937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023]
Abstract
High dietary SBM content is known to induce important physiological alterations, hampering its use as a major FM alternative. Rainbow trout (Oncorhynchus mykiss) juveniles were fed two experimental diets during 9 weeks: (i) a FM diet containing 12% FM; and (ii) a vegetable meal (VM) diet totally devoid of FM and based on SBM (26%). Fish fed the VM diet did not show reduced growth performance when compared with fish fed the FM diet. Nevertheless, fish fed the VM diet had an increased viscerosomatic index, lower apparent fat digestibility, higher aminopeptidase enzyme activity and number of villi fusions, and lower α-amylase enzyme activity and brush border integrity. Small RNA-Seq analysis identified six miRs (omy-miR-730a-5p, omy-miR-135c-5p, omy-miR-93a-3p, omy-miR-152-5p, omy-miR-133a-5p, and omy-miR-196a-3p) with higher expression in blood plasma from fish fed the VM diet. Bioinformatic prediction of target mRNAs identified several overrepresented biological processes known to be associated with high dietary SBM content (e.g., lipid metabolism, epithelial integrity disruption, and bile acid status). The present research work increases our understanding of how SBM dietary content has a physiological impact in farmed fish and suggests circulating miRs might be suitable, integrative, and less invasive biomarkers in fish.
Collapse
Affiliation(s)
- Francisco Javier Toledo-Solís
- Aquaculture Research Center, Agro-Technological Institute of Castilla y León (ITACyL), Ctra. Arévalo, Zamarramala, 40196 Segovia, Spain
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Av. Insurgentes Sur 1582, Col. Crédito 6 Constructor, Alcaldía Benito Juárez, Mexico City 03940, Mexico
| | - Ana M Larrán
- Aquaculture Research Center, Agro-Technological Institute of Castilla y León (ITACyL), Ctra. Arévalo, Zamarramala, 40196 Segovia, Spain
| | - Juan B Ortiz-Delgado
- Instituto de Ciencias Marinas de Andalucía-ICMAN/CSIC, Campus Universitario Río San Pedro, Apdo. Oficial, Puerto Real, 11510 Cádiz, Spain
| | - Carmen Sarasquete
- Instituto de Ciencias Marinas de Andalucía-ICMAN/CSIC, Campus Universitario Río San Pedro, Apdo. Oficial, Puerto Real, 11510 Cádiz, Spain
| | - Jorge Dias
- SPAROS Ltd., Área Empresarial de Marim, Lote C, 8700-221 Olhão, Portugal
| | - Sofia Morais
- Lucta S.A., Innovation Division, UAB Research Park, 08193 Bellaterra, Spain
| | - Ignacio Fernández
- Aquaculture Research Center, Agro-Technological Institute of Castilla y León (ITACyL), Ctra. Arévalo, Zamarramala, 40196 Segovia, Spain
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), CSIC, 36390 Vigo, Spain
| |
Collapse
|
2
|
Cardona E, Milhade L, Pourtau A, Panserat S, Terrier F, Lanuque A, Roy J, Marandel L, Bobe J, Skiba-Cassy S. Tissue origin of circulating microRNAs and their response to nutritional and environmental stress in rainbow trout (Oncorhynchus mykiss). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158584. [PMID: 36087674 DOI: 10.1016/j.scitotenv.2022.158584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 05/19/2023]
Abstract
Stresses associated with changes in diet or environmental disturbances are common situations that fish encounter during their lifetime. The stability and ease of measuring microRNAs (miRNAs) present in biological fluids make these molecules particularly interesting biomarkers for non-lethal assessment of stress in animals. Rainbow trout were exposed for four weeks to abiotic stress (moderate hypoxia) and/or nutritional stress (a high-carbohydrate/low-protein diet). Blood plasma and epidermal mucus were sampled at the end of the experiment, and miRNAs were assessed using small RNA sequencing. We identified four miRNAs (miR-122-5p, miR-184-3p, miR-192-5p and miR-194a-5p) and three miRNAs (miR-210-3p, miR-153a-3p and miR-218c-5p) that accumulated in response to stress in blood plasma and epidermal mucus, respectively. In particular, the abundance of miR-210-3p, a hypoxamiR in mammals, increased strongly in the epidermal mucus of rainbow trout subjected to moderate hypoxia, and can thus be considered a relevant biomarker of hypoxic stress in trout. We explored the contribution of 22 tissues/organs to the abundance of circulating miRNAs (c-miRNAs) in blood plasma and epidermal mucus influenced by the treatments. Some miRNAs were tissue-specific, while others were distributed among several tissues. Some c-miRNAs (e.g., miR-210-3p, miR184-3p) showed similar variations in both tissues and fluids, while others showed an inverse trend (e.g., miR-122-5p) or no apparent relationship (e.g. miR-192-5p, miR-194a-5p. Overall, these results demonstrate that c-miRNAs can be used as non-lethal biomarkers to study stress in fish. In particular, the upregulation of miR-210-3p in epidermal mucus induced by hypoxia demonstrates the potential of using epidermal mucus as a matrix for identifying non-invasive biomarkers of stress. This study provides information about the tissue sources of c-miRNAs and highlights the potential difficulty in relating variations in miRNA abundance in biological fluids to that in tissues.
Collapse
Affiliation(s)
- Emilie Cardona
- INRAE, E2S UPPA, Nutrition Metabolism, Aquaculture, Univ. Pau & Pays Adour, 64310 Saint Pée-sur-Nivelle, France; INRAE, UR1037 Fish Physiology and Genomic Laboratory, F-35000 Rennes, France.
| | - Léo Milhade
- IRISA, INRIA, CNRS, University of Rennes 1, UMR 6074, F-35000, Rennes, France
| | - Angéline Pourtau
- INRAE, E2S UPPA, Nutrition Metabolism, Aquaculture, Univ. Pau & Pays Adour, 64310 Saint Pée-sur-Nivelle, France; INRAE, Gip Geves St Martin 0652, F-40390 Saint-Martin-de-Hinx, France
| | - Stéphane Panserat
- INRAE, E2S UPPA, Nutrition Metabolism, Aquaculture, Univ. Pau & Pays Adour, 64310 Saint Pée-sur-Nivelle, France
| | - Fréderic Terrier
- INRAE, E2S UPPA, Nutrition Metabolism, Aquaculture, Univ. Pau & Pays Adour, 64310 Saint Pée-sur-Nivelle, France
| | - Anthony Lanuque
- INRAE, E2S UPPA, Nutrition Metabolism, Aquaculture, Univ. Pau & Pays Adour, 64310 Saint Pée-sur-Nivelle, France
| | - Jérôme Roy
- INRAE, E2S UPPA, Nutrition Metabolism, Aquaculture, Univ. Pau & Pays Adour, 64310 Saint Pée-sur-Nivelle, France
| | - Lucie Marandel
- INRAE, E2S UPPA, Nutrition Metabolism, Aquaculture, Univ. Pau & Pays Adour, 64310 Saint Pée-sur-Nivelle, France
| | - Julien Bobe
- INRAE, UR1037 Fish Physiology and Genomic Laboratory, F-35000 Rennes, France
| | - Sandrine Skiba-Cassy
- INRAE, E2S UPPA, Nutrition Metabolism, Aquaculture, Univ. Pau & Pays Adour, 64310 Saint Pée-sur-Nivelle, France
| |
Collapse
|
3
|
Acosta M, Quiroz E, Tovar-Ramírez D, Roberto VP, Dias J, Gavaia PJ, Fernández I. Fish Microbiome Modulation and Convenient Storage of Aquafeeds When Supplemented with Vitamin K1. Animals (Basel) 2022; 12:ani12233248. [PMID: 36496769 PMCID: PMC9735498 DOI: 10.3390/ani12233248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
Vitamin K (VK) is a fat-soluble vitamin necessary for fish metabolism and health. VK stability as dietary component during aquafeed storage and its potential effect on intestinal microbiome in fish have not yet been completely elucidated. The convenient storage conditions of aquafeeds when supplemented with phylloquinone (VK1), as well as its potential effects on the gut microbiota of Senegalese sole (Solea senegalensis) juveniles, have been explored. Experimental feeds were formulated to contain 0, 250 and 1250 mg kg-1 of VK1 and were stored at different temperatures (4, -20 or -80 °C). VK stability was superior at -20 °C for short-term (7 days) storage, while storing at -80 °C was best suited for long-term storage (up to 3 months). A comparison of bacterial communities from Senegalese sole fed diets containing 0 or 1250 mg kg-1 of VK1 showed that VK1 supplementation decreased the abundance of the Vibrio, Pseudoalteromonas, and Rhodobacterace families. All these microorganisms were previously associated with poor health status in aquatic organisms. These results contribute not only to a greater understanding of the physiological effects of vitamin K, particularly through fish intestinal microbiome, but also establish practical guidelines in the industry for proper aquafeed storage when supplemented with VK1.
Collapse
Affiliation(s)
- Marcos Acosta
- Centro de Investigaciones Biológicas del Noroeste, Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico
| | - Eduardo Quiroz
- CONACYT-CIBNOR, Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, Baja California Sur, La Paz 23096, BCS, Mexico
| | - Dariel Tovar-Ramírez
- Centro de Investigaciones Biológicas del Noroeste, Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico
| | - Vânia Palma Roberto
- ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735 Loulé, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), Campus Gambelas, Bld.2, 8005-139 Faro, Portugal
| | - Jorge Dias
- SPAROS Ltd., Área Empresarial de Marim, Lote C, 8700-221 Olhão, Portugal
| | - Paulo J. Gavaia
- Centro de Ciências do Mar (CCMAR), Campus de Gambelas, University of Algarve, 8005-139 Faro, Portugal
- Associação Oceano Verde–GreenCoLab, Campus de Gambelas, University of Algarve, 8005-139 Faro, Portugal
| | - Ignacio Fernández
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), CSIC, 36390 Vigo, Spain
- Correspondence: or
| |
Collapse
|
4
|
Cardona E, Guyomar C, Desvignes T, Montfort J, Guendouz S, Postlethwait JH, Skiba-Cassy S, Bobe J. Circulating miRNA repertoire as a biomarker of metabolic and reproductive states in rainbow trout. BMC Biol 2021; 19:235. [PMID: 34781956 PMCID: PMC8594080 DOI: 10.1186/s12915-021-01163-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022] Open
Abstract
Background Circulating miRNAs (c-miRNAs) are found in most, if not all, biological fluids and are becoming well-established non-invasive biomarkers of many human pathologies. However, their features in non-pathological contexts and whether their expression profiles reflect normal life history events have received little attention, especially in non-mammalian species. The aim of the present study was to investigate the potential of c-miRNAs to serve as biomarkers of reproductive and metabolic states in fish. Results The blood plasma was sampled throughout the reproductive cycle of female rainbow trout subjected to two different feeding regimes that triggered contrasting metabolic states. In addition, ovarian fluid was sampled at ovulation, and all samples were subjected to small RNA-seq analysis, leading to the establishment of a comprehensive miRNA repertoire (i.e., miRNAome) and enabling subsequent comparative analyses to a panel of RNA-seq libraries from a wide variety of tissues and organs. We showed that biological fluid miRNAomes are complex and encompass a high proportion of the overall rainbow trout miRNAome. While sharing a high proportion of common miRNAs, the blood plasma and ovarian fluid miRNAomes exhibited strong fluid-specific signatures. We further revealed that the blood plasma miRNAome significantly changed depending on metabolic and reproductive states. We subsequently identified three evolutionarily conserved muscle-specific miRNAs or myomiRs (miR-1-1/2-3p, miR-133a-1/2-3p, and miR-206-3p) that accumulated in the blood plasma in response to high feeding rates, making these myomiRs strong candidate biomarkers of active myogenesis. We also identified miR-202-5p as a candidate biomarker for reproductive success that could be used to predict ovulation and/or egg quality. Conclusions Together, these promising results reveal the high potential of c-miRNAs, including evolutionarily conserved myomiRs, as physiologically relevant biomarker candidates and pave the way for the use of c-miRNAs for non-invasive phenotyping in various fish species. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01163-5.
Collapse
Affiliation(s)
- Emilie Cardona
- INRAE, LPGP, Fish Physiology and Genomics, F-35000, Rennes, France.,INRAE, Univ. Pau & Pays Adour, E2S UPPA, NUMEA, 64310, Saint-Pée-sur-Nivelle, France
| | - Cervin Guyomar
- INRAE, LPGP, Fish Physiology and Genomics, F-35000, Rennes, France.,GenPhySE, University of Toulouse, INRAE, ENVT, F-31326, Castanet-Tolosan, France
| | - Thomas Desvignes
- Institute of Neurosciences, University of Oregon, Eugene, OR, 97403, USA
| | - Jérôme Montfort
- INRAE, LPGP, Fish Physiology and Genomics, F-35000, Rennes, France
| | - Samia Guendouz
- Institute of Functional Genomics, MGX, UMR 5203 CNRS - U1191 INSERM, F-34094, Montpellier, France
| | | | - Sandrine Skiba-Cassy
- INRAE, Univ. Pau & Pays Adour, E2S UPPA, NUMEA, 64310, Saint-Pée-sur-Nivelle, France
| | - Julien Bobe
- INRAE, LPGP, Fish Physiology and Genomics, F-35000, Rennes, France.
| |
Collapse
|
5
|
Zhao W, Hussain Solangi T, Wu Y, Yang X, Xu C, Wang H, Zheng X, Cai X, Zhu J. Comparative rna-seq analysis of region-specific miRNA expression in the epididymis of cattleyak. Reprod Domest Anim 2021; 56:555-576. [PMID: 33438262 DOI: 10.1111/rda.13893] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 02/06/2023]
Abstract
The epididymis is the site of post-testicular sperm maturation, which constitutes the acquisition of sperm motility and the ability to recognize and fertilize oocytes. The role of miRNA in male reproductive system, including the control of different steps leading to proper fertilization such as gametogenesis, sperm maturation and maintenance of male fertility where the deletion of Dicer in mouse germ cells led to infertility, has been demonstrated. The identification of miRNA expression in a region-specific manner will therefore provide valuable insight into the functional differences between the regions of the epididymis. In this study, we employed RNA-seq technology to explore the expression pattern of miRNAs and establish some miRNAs of significant interest with regard to epididymal sperm maturation in the CY epididymis. We identified a total of 431 DE known miRNAs; 119, 185 and 127 DE miRNAs were detected for caput versus corpus, corpus versus cauda and caput versus cauda region pairs, respectively. Our results demonstrate region-specific miRNA expression in the CY epididymis. The GO and KEGG enrichment for the predicted target genes indicated the functional values of miRNAs. Furthermore, we observed that the expression of miR-200a was downregulated in the caput, compared with cauda. Since the family of miR-200 has previously been suggested to contribute to the distinct physiological function of sperm maturation in epididymis of adult rat, we speculate that the downregulation of miR-200a in CY caput epididymis may play an important role of sperm maturation in the epididymis of CY. Therefore, our findings may not only increase our understanding of the molecular mechanisms regulated by the miRNA functions in region-specific miRNA expression in the CY epididymis, it could provide a valuable information to understand the mechanism of male infertility of CY.
Collapse
Affiliation(s)
- Wangsheng Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Tajmal Hussain Solangi
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Yitao Wu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Xiankang Yang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Chuanfei Xu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Hongmei Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Xuxin Zheng
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Xin Cai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, China.,Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Chengdu, China
| | - Jiangjiang Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, China.,Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
6
|
Oliveira CCV, Fatsini E, Fernández I, Anjos C, Chauvigné F, Cerdà J, Mjelle R, Fernandes JMO, Cabrita E. Kisspeptin Influences the Reproductive Axis and Circulating Levels of microRNAs in Senegalese Sole. Int J Mol Sci 2020; 21:E9051. [PMID: 33260781 PMCID: PMC7730343 DOI: 10.3390/ijms21239051] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022] Open
Abstract
Kisspeptin regulates puberty and reproduction onset, acting upstream of the brain-pituitary-gonad (HPG) axis. This study aimed to test a kisspeptin-based hormonal therapy on cultured Senegalese sole (G1) breeders, known to have reproductive dysfunctions. A single intramuscular injection of KISS2-10 decapeptide (250 µg/kg) was tested in females and males during the reproductive season, and gonad maturation, sperm motility, plasma levels of gonadotropins (Fsh and Lh) and sex steroids (11-ketotestosterone, testosterone and estradiol), as well as changes in small non-coding RNAs (sncRNAs) in plasma, were investigated. Fsh, Lh, and testosterone levels increased after kisspeptin injection in both sexes, while sperm analysis did not show differences between groups. Let7e, miR-199a-3p and miR-100-5p were differentially expressed in females, while miR-1-3p miRNA was up-regulated in kisspeptin-treated males. In silico prediction of mRNAs targeted by miRNAs revealed that kisspeptin treatment might affect paracellular transporters, regulate structural and functional polarity of cells, neural networks and intracellular trafficking in Senegalese sole females; also, DNA methylation and sphingolipid metabolism might be altered in kisspeptin-treated males. Results demonstrated that kisspeptin stimulated gonadotropin and testosterone secretion in both sexes and induced an unanticipated alteration of plasma miRNAs, opening new research venues to understand how this neuropeptide impacts in fish HPG axis.
Collapse
Affiliation(s)
- Catarina C. V. Oliveira
- Center of Marine Sciences-CCMAR, University of Algarve, 8005-139 Faro, Portugal; (E.F.); (C.A.)
| | - Elvira Fatsini
- Center of Marine Sciences-CCMAR, University of Algarve, 8005-139 Faro, Portugal; (E.F.); (C.A.)
| | - Ignacio Fernández
- Aquaculture Research Center, Agrarian Technological Institute of Castile and Leon, Ctra. Arévalo, s/n, 40196 Segovia, Spain;
| | - Catarina Anjos
- Center of Marine Sciences-CCMAR, University of Algarve, 8005-139 Faro, Portugal; (E.F.); (C.A.)
| | - François Chauvigné
- IRTA-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (F.C.); (J.C.)
| | - Joan Cerdà
- IRTA-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (F.C.); (J.C.)
| | - Robin Mjelle
- Faculty of Bioscience and Aquaculture, Nord University, 8049 Bodø, Norway; (R.M.); (J.M.O.F.)
| | - Jorge M. O. Fernandes
- Faculty of Bioscience and Aquaculture, Nord University, 8049 Bodø, Norway; (R.M.); (J.M.O.F.)
| | - Elsa Cabrita
- Center of Marine Sciences-CCMAR, University of Algarve, 8005-139 Faro, Portugal; (E.F.); (C.A.)
| |
Collapse
|
7
|
Beato S, Toledo-Solís FJ, Fernández I. Vitamin K in Vertebrates' Reproduction: Further Puzzling Pieces of Evidence from Teleost Fish Species. Biomolecules 2020; 10:E1303. [PMID: 32917043 PMCID: PMC7564532 DOI: 10.3390/biom10091303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
Vitamin K (VK) is a fat-soluble vitamin that vertebrates have to acquire from the diet, since they are not able to de novo synthesize it. VK has been historically known to be required for the control of blood coagulation, and more recently, bone development and homeostasis. Our understanding of the VK metabolism and the VK-related molecular pathways has been also increased, and the two main VK-related pathways-the pregnane X receptor (PXR) transactivation and the co-factor role on the γ-glutamyl carboxylation of the VK dependent proteins-have been thoroughly investigated during the last decades. Although several studies evidenced how VK may have a broader VK biological function than previously thought, including the reproduction, little is known about the specific molecular pathways. In vertebrates, sex differentiation and gametogenesis are tightly regulated processes through a highly complex molecular, cellular and tissue crosstalk. Here, VK metabolism and related pathways, as well as how gametogenesis might be impacted by VK nutritional status, will be reviewed. Critical knowledge gaps and future perspectives on how the different VK-related pathways come into play on vertebrate's reproduction will be identified and proposed. The present review will pave the research progress to warrant a successful reproductive status through VK nutritional interventions as well as towards the establishment of reliable biomarkers for determining proper nutritional VK status in vertebrates.
Collapse
Affiliation(s)
- Silvia Beato
- Campus de Vegazana, s/n, Universidad de León (ULE), 24071 León, Spain;
| | - Francisco Javier Toledo-Solís
- Consejo Nacional de Ciencia y Tecnología (CONACYT, México), Av. Insurgentes Sur 1582, Col. Crédito Constructor, Alcaldía Benito Juárez, C.P. 03940 Ciudad de Mexico, Mexico;
- Department of Biology and Geology, University of Almería, 04120 Almería, Spain
| | - Ignacio Fernández
- Center for Aquaculture Research, Agrarian Technological Institute of Castile and Leon, Ctra. Arévalo, s/n, 40196 Zamarramala, Segovia, Spain
| |
Collapse
|
8
|
DNA methyltransferase mediates the hypermethylation of the microRNA 34a promoter and enhances the resistance of patient-derived pancreatic cancer cells to molecular targeting agents. Pharmacol Res 2020; 160:105071. [PMID: 32659427 DOI: 10.1016/j.phrs.2020.105071] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/05/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023]
Abstract
DNA methyltransferase (DNMT) participates in the transformation or progression of human cancers by mediating the hypermethylation of cancer suppressors. However, the regulatory role of DNMT in pancreatic cancer cells remains poorly understood. In the present study, we demonstrated that DNMT1 repressed the expression of microRNA 34a (miR-34a) and enhanced the activation of the Notch pathway by mediating the hypermethylation of the miR-34a promoter. In patients with pancreatic cancer, the expression levels of DNMT1 were negatively related with those of miR-34a. Mechanistically, knockdown of DNMT1 decreased the methylation of the miR-34a promoter and enhanced the expression of miR-34a to inhibit the activation of the Notch pathway. Downregulation of the Notch pathway via the DNMT1/miR-34a axis significantly enhanced the sensitivity of pancreatic cells to molecular targeting agents. Therefore, the results of our study suggest that downregulation of DNMT enhances the expression of miR-34a and may be a potential therapeutic target for pancreatic cancer.
Collapse
|
9
|
Beato S, Marques C, Laizé V, Gavaia PJ, Fernández I. New Insights on Vitamin K Metabolism in Senegalese sole ( Solea senegalensis) Based on Ontogenetic and Tissue-Specific Vitamin K Epoxide Reductase Molecular Data. Int J Mol Sci 2020; 21:E3489. [PMID: 32429051 PMCID: PMC7278968 DOI: 10.3390/ijms21103489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022] Open
Abstract
Vitamin K (VK) is a key nutrient for several biological processes (e.g., blood clotting and bone metabolism). To fulfill VK nutritional requirements, VK action as an activator of pregnane X receptor (Pxr) signaling pathway, and as a co-factor of γ-glutamyl carboxylase enzyme, should be considered. In this regard, VK recycling through vitamin K epoxide reductases (Vkors) is essential and should be better understood. Here, the expression patterns of vitamin K epoxide reductase complex subunit 1 (vkorc1) and vkorc1 like 1 (vkorc1l1) were determined during the larval ontogeny of Senegalese sole (Solea senegalensis), and in early juveniles cultured under different physiological conditions. Full-length transcripts for ssvkorc1 and ssvkorc1l1 were determined and peptide sequences were found to be evolutionarily conserved. During larval development, expression of ssvkorc1 showed a slight increase during absence or low feed intake. Expression of ssvkorc1l1 continuously decreased until 24 h post-fertilization, and remained constant afterwards. Both ssvkors were ubiquitously expressed in adult tissues, and highest expression was found in liver for ssvkorc1, and ovary and brain for ssvkorc1l1. Expression of ssvkorc1 and ssvkorc1l1 was differentially regulated under physiological conditions related to fasting and re-feeding, but also under VK dietary supplementation and induced deficiency. The present work provides new and basic molecular clues evidencing how VK metabolism in marine fish is sensitive to nutritional and environmental conditions.
Collapse
Affiliation(s)
- Silvia Beato
- Campus de Vegazana, Universidad de León (ULE), s/n, 24071 León, Spain;
| | - Carlos Marques
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (C.M.); (V.L.); (P.J.G.)
| | - Vincent Laizé
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (C.M.); (V.L.); (P.J.G.)
| | - Paulo J. Gavaia
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (C.M.); (V.L.); (P.J.G.)
- Departamento de Ciências Biomédicas e Medicina (DCBM), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Ignacio Fernández
- Center for Aquaculture Research, Agrarian Technological Institute of Castile and Leon, Ctra. Arévalo, S/n. Zamarramala, 40196 Segovia, Spain
| |
Collapse
|
10
|
Martínez-Vázquez JM, Valcarce DG, Riesco MF, Marco VS, Matsuoka M, Robles V. Artificial Neural Network (ANN) as a Tool to Reduce Human-Animal Interaction Improves Senegalese Sole Production. Biomolecules 2019; 9:biom9120778. [PMID: 31775393 PMCID: PMC6995621 DOI: 10.3390/biom9120778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 12/17/2022] Open
Abstract
Manipulation is usually required for biomass calculation and food estimation for optimal fish growth in production facilities. However, the advances in computer-based systems have opened a new range of applied possibilities. In this study we used image analysis and a neural network algorithm that allowed us to successfully provide highly accurate biomass data. This developed system allowed us to compare the effects of reduced levels of human-animal interaction on the culture of adult Senegalese sole (Solea senegalensis) in terms of body weight gain. For this purpose, 30 adult fish were split into two homogeneous groups formed by three replicates (n=5) each: a control group (CTRL), which was standard manipulated and an experimental group (EXP), which was maintained under a lower human-animal interaction culture using our system for biomass calculation. Visible implant elastomer was, for the first time, applied as tagging technology for tracking soles during the experiment (four months). The experimental group achieved a statistically significant weight gain (p<0.0100) while CTRL animals did not report a statistical before-after weight increase. Individual body weight increment was lower (p<0.0100) in standard-handled animals. In conclusion, our experimental approach provides evidence that our developed system for biomass calculation, which implies lower human-animal interaction, improves biomass gain in Senegalese sole individuals in a short period of time.
Collapse
Affiliation(s)
- Juan M. Martínez-Vázquez
- IEO, Spanish Institute of Oceanography, Planta de Cultivos El Bocal, Barrio Corbanera, 39012 Monte, Santander, Spain; (J.M.M.-V.); (D.G.V.); (M.F.R.)
| | - David G. Valcarce
- IEO, Spanish Institute of Oceanography, Planta de Cultivos El Bocal, Barrio Corbanera, 39012 Monte, Santander, Spain; (J.M.M.-V.); (D.G.V.); (M.F.R.)
| | - Marta F. Riesco
- IEO, Spanish Institute of Oceanography, Planta de Cultivos El Bocal, Barrio Corbanera, 39012 Monte, Santander, Spain; (J.M.M.-V.); (D.G.V.); (M.F.R.)
| | - Vicent Sanz Marco
- Cybermedia Center, Osaka University 1-32 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; (V.S.M.); (M.M.)
| | - Morito Matsuoka
- Cybermedia Center, Osaka University 1-32 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; (V.S.M.); (M.M.)
| | - Vanesa Robles
- IEO, Spanish Institute of Oceanography, Planta de Cultivos El Bocal, Barrio Corbanera, 39012 Monte, Santander, Spain; (J.M.M.-V.); (D.G.V.); (M.F.R.)
- Department of Molecular Biology, Universidad de León, 24071 León, Spain
- Correspondence: ; Tel.: +34-987-291-487
| |
Collapse
|
11
|
Riesco MF, Valcarce DG, Martínez-Vázquez JM, Robles V. Effect of low sperm quality on progeny: a study on zebrafish as model species. Sci Rep 2019; 9:11192. [PMID: 31371755 PMCID: PMC6671952 DOI: 10.1038/s41598-019-47702-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/22/2019] [Indexed: 12/23/2022] Open
Abstract
Nowadays a decrease tendency in human sperm quality has been reported mainly in developed countries. Reproductive technologies have been very valuable in achieving successful pregnancies with low quality sperm samples. However, considering that spermatozoa molecular contribution is increasingly important in recent studies, it is crucial to study whether fertilization with low sperm quality could leave a molecular mark on progeny. This study explores the consequences that fertilization with low sperm quality may have on progeny, using zebrafish as a model. Good and bad breeders were established attending to sperm quality analyses and were individually tracked. Significant differences in fertilization and malformation rates were obtained in progenies between high and low quality sperm samples. Moreover an altered miR profile was found in the progenies of bad zebrafish breeders (upregulation of miR-141 and miR -122 in 24 hpf embryos) and as a consequence, some of their targets involved in male sex development such as dmrt1, suffered downregulation. Our results indicate that fertilizing with high sperm quality samples becomes relevant from a new perspective: to avoid molecular alterations in the progeny that could remain masked and therefore produce unexpected consequences in it.
Collapse
Affiliation(s)
- Marta F Riesco
- IEO, Spanish Institute of Oceanography, Planta de Cultivos el Bocal, Santander, 39012, Spain
| | - David G Valcarce
- IEO, Spanish Institute of Oceanography, Planta de Cultivos el Bocal, Santander, 39012, Spain
| | | | - Vanesa Robles
- IEO, Spanish Institute of Oceanography, Planta de Cultivos el Bocal, Santander, 39012, Spain.
- MODCELL GROUP, Department of Molecular Biology, Universidad de León, 24071, León, Spain.
| |
Collapse
|