1
|
Ebrahimnezhad M, Asl SH, Rezaie M, Molavand M, Yousefi B, Majidinia M. lncRNAs: New players of cancer drug resistance via targeting ABC transporters. IUBMB Life 2024; 76:883-921. [PMID: 39091106 DOI: 10.1002/iub.2888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/30/2024] [Indexed: 08/04/2024]
Abstract
Cancer drug resistance poses a significant obstacle to successful chemotherapy, primarily driven by the activity of ATP-binding cassette (ABC) transporters, which actively efflux chemotherapeutic agents from cancer cells, reducing their intracellular concentrations and therapeutic efficacy. Recent studies have highlighted the pivotal role of long noncoding RNAs (lncRNAs) in regulating this resistance, positioning them as crucial modulators of ABC transporter function. lncRNAs, once considered transcriptional noise, are now recognized for their complex regulatory capabilities at various cellular levels, including chromatin modification, transcription, and post-transcriptional processing. This review synthesizes current research demonstrating how lncRNAs influence cancer drug resistance by modulating the expression and activity of ABC transporters. lncRNAs can act as molecular sponges, sequestering microRNAs that would otherwise downregulate ABC transporter genes. Additionally, they can alter the epigenetic landscape of these genes, affecting their transcriptional activity. Mechanistic insights reveal that lncRNAs contribute to the activity of ABC transporters, thereby altering the efflux of chemotherapeutic drugs and promoting drug resistance. Understanding these interactions provides a new perspective on the molecular basis of chemoresistance, emphasizing the regulatory network of lncRNAs and ABC transporters. This knowledge not only deepens our understanding of the biological mechanisms underlying drug resistance but also suggests novel therapeutic strategies. In conclusion, the intricate interplay between lncRNAs and ABC transporters is crucial for developing innovative solutions to combat cancer drug resistance, underscoring the importance of continued research in this field.
Collapse
Affiliation(s)
- Mohammad Ebrahimnezhad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanaz Hassanzadeh Asl
- Student Research Committee, Faculty of Medicine, Tabriz Azad University of Medical Sciences, Tabriz, Iran
| | - Maede Rezaie
- Immunology research center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehran Molavand
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular research center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
2
|
Hamdy NM, El-Sisi MG, Ibrahim SM, ElNokoudy H, Hady AA, Abd-Ellatef GEF, Sallam AAM, Barakat BM. In silico analysis and comprehensive review of circular-RNA regulatory roles in breast diseases; a step-toward non-coding RNA precision. Pathol Res Pract 2024; 263:155651. [PMID: 39454476 DOI: 10.1016/j.prp.2024.155651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
In the current comprehensive review, we first highlighted circRNAs, which are key ncRNAs. Next, we discussed the relationships among circRNAs and breast cancer subtypes via in silico databases analysis and extensive literature search. CircRNAs, that sponge miRNA axes or act as silencers of oncogenic mRNAs, have been extensively addressed in the context of this review. During BC pathogenesis, the circRNA/microRNA/messenger RNA (mRNA) axis plays a major role in disease growth, progression, and survival/resistance and could be targeted for improved treatment options. This review also aimed to address oncogenic and tumor suppressor mRNAs, which are regulated by various circRNAs in BC. Moreover, we mentioned the relation of different circRNAs with cancer hallmarks, patient survival together with drug resistance. Additionally, we discussed circRNAs as vaccines and biomarkers in BC. Finally, we studied exosomal circRNAs as a hot interesting area in the research. REVIEW SIGNIFICANCE: Via using in silico databases, bioinformatics analysis, and a thorough literature search to first highlight circRNA as a crucial ncRNA and its biogenesis, and then we explored the connection between circRNA and breast illnesses. In the framework of the review, circRNA sponged-miRNAs axis or as silencers to oncogenic mRNAs were extensively discussed. In the pathophysiology of BC, the circular RNA/microRNA/messenger RNA axis is crucial for the propagation of the disease and resistance that may be targeted for more effective treatment options, in order to confront tumor suppressor and oncogenic mRNAs that are presently regulated by circRNAs in BC. For better patient results, we advised further mechanistic research to elucidate additional ncRNA axis that may be targeted for the therapy of BC and for prognosis/ or early diagnosis.
Collapse
Affiliation(s)
- Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt.
| | - Mona G El-Sisi
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt
| | - Sherine M Ibrahim
- Biochemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Heba ElNokoudy
- Medication Management & Pharmacy Affairs, Egypt Healthcare Authority, Cairo, Egypt
| | - Ahmad A Hady
- Clinical Oncology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Gamal Eldein Fathy Abd-Ellatef
- Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt
| | - Al-Aliaa M Sallam
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt; Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Bassant Mohamed Barakat
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al Baha University, Al Baha 1988, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11651, Egypt
| |
Collapse
|
3
|
Hosseini FS, Ahmadi A, Kesharwani P, Hosseini H, Sahebkar A. Regulatory effects of statins on Akt signaling for prevention of cancers. Cell Signal 2024; 120:111213. [PMID: 38729324 DOI: 10.1016/j.cellsig.2024.111213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Statins, which are primarily used as lipid-lowering drugs, have been found to exhibit anti-tumor effects through modulating and interfering with various signaling pathways. In observational studies, statin use has been associated with a significant reduction in the progression of various cancers, including colon, lung, prostate, pancreas, and esophagus cancer, as well as melanoma and B and T cell lymphoma. The mevalonate pathway, which is affected by statins, plays a crucial role in activating Rho, Ras, and Rab proteins, thereby impacting the proliferation and apoptosis of tumor cells. Statins block this pathway, leading to the inhibition of isoprenoid units, which are critical for the activation of these key proteins, thereby affecting cancer cell behavior. Additionally, statins affect MAPK and Cdk2, which in turn reduce the expression of p21 and p27 cyclin-dependent kinase inhibitors. Akt signaling plays a crucial role in key cancer cell features like proliferation, invasion, and apoptosis by activating multiple effectors in downstream pathways such as FOXO, PTEN, NF-κB, GSK3β, and mTOR. The PI3K/Akt signaling is necessary for many events in the metastatic pathway and has been implicated in the resistance to cytostatic drugs. The Akt/PTEN axis is currently attracting great interest for its role in carcinogenesis. Statins have been shown to activate the purinergic receptor P2X7 and affect Akt signaling, which may have important anti-cancer effects. Hence, targeting Akt shows promise as an effective approach to cancer prevention and therapy. This review aims to provide a comprehensive discussion on the specific impact of statins through Akt signaling in different types of cancer.
Collapse
Affiliation(s)
- Fatemeh Sadat Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abdolreza Ahmadi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Hossein Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
You HS, Park JY, Seo H, Kim BJ, Kim JG. Increasing correlation between oral and gastric microbiota during gastric carcinogenesis. Korean J Intern Med 2024; 39:590-602. [PMID: 38910513 PMCID: PMC11236816 DOI: 10.3904/kjim.2023.490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND/AIMS Recent research has increasingly focused on the role of the gastric microbiome in the development of gastric cancer. We aimed to investigate the changes in the microbiome during gastric carcinogenesis in structural and functional aspects, with a specific focus on the association between oral and gastric microbiomes. METHODS We collected saliva, gastric juice, and gastric tissue samples from 141 patients at different stages of gastric carcinogenesis and processed them for microbiome analysis using 16S rRNA gene profiling. The alpha and beta diversities were analyzed, and the differences in microbiome composition and function profiles were analyzed among the groups, as well as the correlation between changes in the oral and gastric microbiomes during carcinogenesis. RESULTS We observed significant differences in microbial diversity and composition between the disease and control groups, primarily in the gastric juice. Specific bacterial strains, including Schaalia odontolytica, Streptococcus cristatus, and Peptostreptococcus stomatis, showed a significant increase in abundance in the gastric juice in the low-grade dysplasia and gastric cancer groups. Notably, the correlation between the oral and gastric microbiota compositions, increased as the disease progressed. Predictive analysis of the metagenomic functional profiles revealed changes in functional pathways that may be associated with carcinogenesis (ABC transport and two-component systems). CONCLUSION During gastric carcinogenesis, the abundance of oral commensals associated with cancer increased in the stomach. The similarity in microbial composition between the stomach and oral cavity also increased, implying a potential role of oral-gastric bacterial interactions in gastric cancer development.
Collapse
Affiliation(s)
- Hee Sang You
- Laboratory of Gastrointestinal Mucosal Immunology, Chung-Ang University College of Medicine, Seoul,
Korea
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul,
Korea
| | - Jae Yong Park
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul,
Korea
| | - Hochan Seo
- Laboratory of Gastrointestinal Mucosal Immunology, Chung-Ang University College of Medicine, Seoul,
Korea
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul,
Korea
| | - Beom Jin Kim
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul,
Korea
| | - Jae Gyu Kim
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul,
Korea
| |
Collapse
|
5
|
Zhang N, Huang Y, Wang G, Xiang Y, Jing Z, Zeng J, Yu F, Pan X, Zhou W, Zeng X. Metabolomics assisted by transcriptomics analysis to reveal metabolic characteristics and potential biomarkers associated with treatment response of neoadjuvant therapy with TCbHP regimen in HER2 + breast cancer. Breast Cancer Res 2024; 26:64. [PMID: 38610016 PMCID: PMC11010353 DOI: 10.1186/s13058-024-01813-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND This study aimed to explore potential indicators associated with the neoadjuvant efficacy of TCbHP regimen (taxane, carboplatin, trastuzumab, and pertuzumab) in HER2 + breast cancer (BrCa) patients. METHODS A total of 120 plasma samples from 40 patients with HER2 + BrCa were prospectively collected at three treatment times of neoadjuvant therapy (NAT) with TCbHP regimen. Serum metabolites were analyzed based on LC-MS and GC-MS data. Random forest was used to establish predictive models based on pre-therapeutic differentially expressed metabolites. Time series analysis was used to obtain potential monitors for treatment response. Transcriptome analysis was performed in nine available pre‑therapeutic specimens of core needle biopsies. Integrated analyses of metabolomics and transcriptomics were also performed in these nine patients. qRT-PCR was used to detect altered genes in trastuzumab-sensitive and trastuzumab-resistant cell lines. RESULTS Twenty-one patients achieved pCR, and 19 patients achieved non-pCR. There were significant differences in plasma metabolic profiles before and during treatment. A total of 100 differential metabolites were identified between pCR patients and non-pCR patients at baseline; these metabolites were markedly enriched in 40 metabolic pathways. The area under the curve (AUC) values for discriminating the pCR and non-PCR groups from the NAT of the single potential metabolite [sophorose, N-(2-acetamido) iminodiacetic acid, taurine and 6-hydroxy-2-aminohexanoic acid] or combined panel of these metabolites were greater than 0.910. Eighteen metabolites exhibited potential for monitoring efficacy. Several validated genes might be associated with trastuzumab resistance. Thirty-nine altered pathways were found to be abnormally expressed at both the transcriptional and metabolic levels. CONCLUSION Serum-metabolomics could be used as a powerful tool for exploring informative biomarkers for predicting or monitoring treatment efficacy. Metabolomics integrated with transcriptomics analysis could assist in obtaining new insights into biochemical pathophysiology and might facilitate the development of new treatment targets for insensitive patients.
Collapse
Affiliation(s)
- Ningning Zhang
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Yuxin Huang
- Department of Breast Cancer Center, School of Medicine, Chongqing University Cancer Hospital, Chongqing University, Chongqing, China
| | - Guanwen Wang
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Yimei Xiang
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Zhouhong Jing
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Junjie Zeng
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Feng Yu
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Xianjun Pan
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Wenqi Zhou
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiaohua Zeng
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, China.
- Department of Breast Cancer Center, School of Medicine, Chongqing University Cancer Hospital, Chongqing University, Chongqing, China.
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing University Cancer Hospital, Chongqing, China.
| |
Collapse
|
6
|
Lettnin AP, Wagner EF, Salgado MTSF, Cañedo AD, Rumjanek VM, Trindade GS, Votto APDS. Multidrug resistance phenotype and its relation to stem cell characteristics in chronic myeloid leukemia. Gene 2024; 892:147848. [PMID: 37774806 DOI: 10.1016/j.gene.2023.147848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/03/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
The present work aimed to evaluate the expression profile of genes related to stem cells (SC) characteristics during the acquisition of the multidrug resistance (MDR) phenotype in the chronic myeloid leukemia (CML). For this, the K562 (non MDR) and FEPS (MDR) cell lines were used. K562 cells had resistance induced by exposure to daunorubicin (DNR), and induction was confirmed by flow cytometry with an increase in ABCB1 expression in K562 cells treated at the highest concentration. Real-time PCR gene expression analysis showed a direct relationship in the expression of OCT4 and ABCB1 genes, with an increase in ABCB1 expression after exposure to DNR, followed by an increase in OCT4 gene expression. This direct relationship was confirmed in the MDR FEPS cells that had the ABCB1 gene silenced. For the ALOX5 gene, we observed an inverse relationship with ABCB1, with a decrease in the expression of ALOX5 in the DNR-transformed K562 cells, and an increase in the expression of this gene when ABCB1 was silenced in the FEPS cells. Thus, during the acquisition of the MDR phenotype by the K562 cells, it was possible to observe that there is an increase in the expression of ABCB1, accompanied by the expression of OCT4, while the expression of ALOX5 is decreased.
Collapse
Affiliation(s)
- Aline Portantiolo Lettnin
- Post-Graduate Program in Physiological Sciences - PPGCF, Federal University of Rio Grande - FURG, Rio Grande, RS, Brazil; Laboratory of Cell Culture, Institute of Biological Sciences - ICB, Federal University of Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Eduardo Felipe Wagner
- Laboratory of Cell Culture, Institute of Biological Sciences - ICB, Federal University of Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Mariana Teixeira Santos Figueiredo Salgado
- Post-Graduate Program in Physiological Sciences - PPGCF, Federal University of Rio Grande - FURG, Rio Grande, RS, Brazil; Laboratory of Cell Culture, Institute of Biological Sciences - ICB, Federal University of Rio Grande - FURG, Rio Grande, RS, Brazil
| | | | - Vivian Mary Rumjanek
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gilma Santos Trindade
- Post-Graduate Program in Physiological Sciences - PPGCF, Federal University of Rio Grande - FURG, Rio Grande, RS, Brazil; Laboratory of Cell Culture, Institute of Biological Sciences - ICB, Federal University of Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Ana Paula de Souza Votto
- Post-Graduate Program in Physiological Sciences - PPGCF, Federal University of Rio Grande - FURG, Rio Grande, RS, Brazil; Laboratory of Cell Culture, Institute of Biological Sciences - ICB, Federal University of Rio Grande - FURG, Rio Grande, RS, Brazil.
| |
Collapse
|
7
|
Rastogi SK, Ciliberto VC, Trevino MZ, Campbell BA, Brittain WJ. Green Approach Toward Triazole Forming Reactions for Developing Anticancer Drugs. Curr Org Synth 2024; 21:380-420. [PMID: 37157212 DOI: 10.2174/1570179420666230508125144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 05/10/2023]
Abstract
Compounds containing triazole have many significant applications in the dye and ink industry, corrosion inhibitors, polymers, and pharmaceutical industries. These compounds possess many antimicrobial, antioxidant, anticancer, antiviral, anti-HIV, antitubercular, and anticancer activities. Several synthetic methods have been reported for reducing time, minimizing synthetic steps, and utilizing less hazardous and toxic solvents and reagents to improve the yield of triazoles and their analogues synthesis. Among the improvement in methods, green approaches towards triazole forming biologically active compounds, especially anticancer compounds, would be very important for pharmaceutical industries as well as global research community. In this article, we have reviewed the last five years of green chemistry approaches on click reaction between alkyl azide and alkynes to install 1,2,3-triazole moiety in natural products and synthetic drug-like molecules, such as in colchicine, flavanone cardanol, bisphosphonates, thiabendazoles, piperazine, prostanoid, flavonoid, quinoxalines, C-azanucleoside, dibenzylamine, and aryl-azotriazole. The cytotoxicity of triazole hybrid analogues was evaluated against a panel of cancer cell lines, including multidrug-resistant cell lines.
Collapse
Affiliation(s)
- Shiva K Rastogi
- Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - Veronica C Ciliberto
- Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - Monica Z Trevino
- Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - Brooke A Campbell
- Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - William J Brittain
- Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| |
Collapse
|
8
|
Khalaf BH, Suleiman AA, Suwaid MA. Exploring the Regulatory Roles of miR-21, miR-15, and miR-let-7 in ABC Transporter-Mediated Chemoresistance: Implications for Breast Cancer Etiology and Treatment. Mol Biotechnol 2023:10.1007/s12033-023-00990-x. [PMID: 38133750 DOI: 10.1007/s12033-023-00990-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023]
Abstract
Breast cancer, a prevalent and aggressive malignancy among females worldwide, poses a significant challenge due to resistance to chemotherapy and tyrosine kinase inhibitors. In breast cancer, ABC transporters play a pivotal role by contributing to chemoresistance and drug efflux, a phenomenon observed also in various cancers. This study aims to elucidate the role of oncomiRs miR-15, miR-21, and miR-let-7 in breast cancer etiology and their impact on chemotherapy-resistant oncogenes ABCA1, ABCB1, and ABCC1. Blood samples from female breast cancer patients were analyzed to assess the expression levels of miRNAs and oncogenes by qPCR. Significantly, miR-21 exhibited a positive correlation with ABCA1 in newly diagnosed patients, while miR-15 and miR-let-7 displayed a positive correlation with ABCA1 in the metastasis group. Additionally, miR-let-7 demonstrated a negative correlation with ABCC1 in newly diagnosed patients. This study's findings provide valuable insights into the cancer etiology of these miRNAs and their interactions with ABCA1, ABCB1, and ABCC1. Targeting these interactions holds promise for mitigating drug efflux and chemoresistance in breast cancer, potentially enhancing current treatments and improving patient outcomes.
Collapse
|
9
|
Nimisha, Saluja SS, Sharma AK, Nekarakanti PK, Apurva, Kumar A, Sattar RSA, Anjum H, Batra VV, Husain SA. Molecular aspects of ABCB1 and ABCG2 in Gallbladder cancer and its clinical relevance. Mol Cell Biochem 2023; 478:2379-2394. [PMID: 36720839 DOI: 10.1007/s11010-023-04667-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/12/2023] [Indexed: 02/02/2023]
Abstract
The function of ABC transporters in the body is manifold; such as maintenance of homeostasis, effect on multi-drug resistance and their role in tumor initiation & progression. Evidence pointing towards the direct or indirect role of ABC transporter genes in particular; ABCB1 and ABCG2 in cancer genesis is increasing. However, their role in gallbladder cancer is unexplored. Therefore, we investigated the methylation status and expression pattern of ABCB1 and ABCG2in gallbladder carcinogenesis. The methylation and expression study of ABCB1/MDR1 and ABCG2/BCRP was performed in tumour and normal fresh tissue samples collected from 61 histopathologically diagnosed gallbladder cancer patients. The methylation status was analysed by Methylation-Specific PCR and expression was determined by Real-Time PCR and Immunohistochemistry. Hypomethylation of ABCB1 and ABCG2 was found in 44 (72.13%) and 48 (78.6%) cases, respectively. ABCB1 hypomethylation pattern showed association with female patients (p = 0.040) and GradeII tumors (p = 0.036) while, ABCG2 hypomethylation was more frequent in early tumors (T1-T2). The mRNA expression ofABCB1 and ABCG2 was up-regulated in 33 (54.10%) and 41 (67.21%) patients with fold change of 4.7 and 5.5, respectively. The mRNA expression of both genes showed association with Grade II tumours and the increased fold change of ABCG2 was higher in (T1-T2) depth of invasion (p = 0.02) and Stage I-II disease (p = 0.08). The protein expression on IHC was strongly positive for ABCB1/MDR1and ABCG2/BCRP in 32 (52.46%) and 45 (73.77%) patients, respectively. The protein expression in ABCG2 showed association with patients age > 50 years (p = 0.04) and GradeII differentiation (p = 0.07). Interestingly, the hypomethylation of both the genes showed significant correlation with increased expression. ABCB1/MDR1 and ABCG2/BCRP hypomethylation and overexpression could have a potential role in gallbladder cancer tumorigenesis especially in early stages. The epigenetic change might be a plausible factor for altered gene expression of ABCB1 and ABCG2 in gallbladder cancer.
Collapse
Affiliation(s)
- Nimisha
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
- Central Molecular Lab, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Sundeep Singh Saluja
- Central Molecular Lab, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
- Department of Gastrointestinal Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Abhay Kumar Sharma
- Central Molecular Lab, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Phani Kumar Nekarakanti
- Department of Gastrointestinal Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Apurva
- Central Molecular Lab, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Arun Kumar
- Central Molecular Lab, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Real Sumayya Abdul Sattar
- Central Molecular Lab, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Hasib Anjum
- Department of Pathology, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Vineeta Vijay Batra
- Department of Pathology, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | | |
Collapse
|
10
|
Huang M, Guo J, Jia Y, Liao C, He L, Li J, Wei Y, Chen S, Chen J, Shang K, Guo R, Ding K, Yu Z. A Bacillus subtilis Strain ZJ20 with AFB1 Detoxification Ability: A Comprehensive Analysis. BIOLOGY 2023; 12:1195. [PMID: 37759594 PMCID: PMC10525747 DOI: 10.3390/biology12091195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023]
Abstract
As a class I carcinogen, aflatoxin can cause serious damage to various tissues and organs through oxidative stress injuries. The liver, as the target organ of AFB1, is the most seriously damaged. Biological methods are commonly used to degrade AFB1. In our study, the aflatoxin B1-degrading strain ZJ20 was screened from AFB1-contaminated feed and soil, and the degradation of AFB1 by ZJ20 was investigated. The whole genome of strain ZJ20 was analyzed, revealing the genomic complexity of strain ZJ20. The 16S rRNA analysis of strain ZJ20 showed 100% identity to Bacillus subtilis IAM 12118. Through whole gene functional annotation, it was determined that ZJ20 has high antioxidant activity and enzymatic activity; more than 100 CAZymes and 11 gene clusters are involved in the production of secondary metabolites with antimicrobial properties. In addition, B. subtilis ZJ20 was predicted to contain a cluster of genes encoding AFB1-degrading enzymes, including chitinase, laccase, lactonase, and manganese oxidase. The comprehensive analysis of B. subtilis provides a theoretical basis for the subsequent development of the biological functions of ZJ20 and the combinatorial enzyme degradation of AFB1.
Collapse
Affiliation(s)
- Meixue Huang
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (J.G.); (Y.J.); (C.L.); (L.H.); (J.L.); (Y.W.); (S.C.); (J.C.); (K.S.); (R.G.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Jing Guo
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (J.G.); (Y.J.); (C.L.); (L.H.); (J.L.); (Y.W.); (S.C.); (J.C.); (K.S.); (R.G.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Yanyan Jia
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (J.G.); (Y.J.); (C.L.); (L.H.); (J.L.); (Y.W.); (S.C.); (J.C.); (K.S.); (R.G.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Chengshui Liao
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (J.G.); (Y.J.); (C.L.); (L.H.); (J.L.); (Y.W.); (S.C.); (J.C.); (K.S.); (R.G.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Lei He
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (J.G.); (Y.J.); (C.L.); (L.H.); (J.L.); (Y.W.); (S.C.); (J.C.); (K.S.); (R.G.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Jing Li
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (J.G.); (Y.J.); (C.L.); (L.H.); (J.L.); (Y.W.); (S.C.); (J.C.); (K.S.); (R.G.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Ying Wei
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (J.G.); (Y.J.); (C.L.); (L.H.); (J.L.); (Y.W.); (S.C.); (J.C.); (K.S.); (R.G.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Songbiao Chen
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (J.G.); (Y.J.); (C.L.); (L.H.); (J.L.); (Y.W.); (S.C.); (J.C.); (K.S.); (R.G.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Jian Chen
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (J.G.); (Y.J.); (C.L.); (L.H.); (J.L.); (Y.W.); (S.C.); (J.C.); (K.S.); (R.G.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Ke Shang
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (J.G.); (Y.J.); (C.L.); (L.H.); (J.L.); (Y.W.); (S.C.); (J.C.); (K.S.); (R.G.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Rongxian Guo
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (J.G.); (Y.J.); (C.L.); (L.H.); (J.L.); (Y.W.); (S.C.); (J.C.); (K.S.); (R.G.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Ke Ding
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (J.G.); (Y.J.); (C.L.); (L.H.); (J.L.); (Y.W.); (S.C.); (J.C.); (K.S.); (R.G.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Zuhua Yu
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (M.H.); (J.G.); (Y.J.); (C.L.); (L.H.); (J.L.); (Y.W.); (S.C.); (J.C.); (K.S.); (R.G.)
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| |
Collapse
|
11
|
Li Y, Shen X. Cadmium Exposure Affects Serum Metabolites and Proteins in the Male Guizhou Black Goat. Animals (Basel) 2023; 13:2705. [PMID: 37684969 PMCID: PMC10487163 DOI: 10.3390/ani13172705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Food safety and environmental pollution are the hotspots of general concern globally. Notably, long-term accumulation of trace toxic heavy metals, such as cadmium (Cd), in animals may endanger human health via the food chain. The mechanism of Cd toxicity in the goat, a popular farmed animal, has not been extensively investigated to date. Therefore, in this study, ten male goats (Nubian black goat × native black goat) were exposed to Cd via drinking water containing CdCl2 (20 mg Cd·kg-1·BW) for 30 days (five male goats per group). In this study, we used an integrated approach combining proteomics and metabolomics to profile proteins and metabolites in the serum of Cd-exposed goats. It was found that Cd exposure impacted the levels of 30 serum metabolites and 108 proteins. The combined proteomic and metabolomic analysis revealed that Cd exposure affected arginine and proline metabolism, beta-alanine metabolism, and glutathione metabolism. Further, antioxidant capacity in the serum of goats exposed to Cd was reduced. We identified CKM and spermidine as potential protein and metabolic markers, respectively, of early Cd toxicity in the goat. This study details approaches for the early diagnosis and prevention of Cd-poisoned goats.
Collapse
Affiliation(s)
- Yuanfeng Li
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
| | - Xiaoyun Shen
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| |
Collapse
|
12
|
Cao S, Yang Y, He L, Hang Y, Yan X, Shi H, Wu J, Ouyang Z. Cryo-EM structures of mitochondrial ABC transporter ABCB10 in apo and biliverdin-bound form. Nat Commun 2023; 14:2030. [PMID: 37041204 PMCID: PMC10090120 DOI: 10.1038/s41467-023-37851-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 04/03/2023] [Indexed: 04/13/2023] Open
Abstract
ABCB10, a member of ABC transporter superfamily that locates in the inner membrane of mitochondria, plays crucial roles in hemoglobin synthesis, antioxidative stress and stabilization of the iron transporter mitoferrin-1. Recently, it was found that ABCB10 is a mitochondrial biliverdin exporter. However, the molecular mechanism of biliverdin export by ABCB10 remains elusive. Here we report the cryo-EM structures of ABCB10 in apo (ABCB10-apo) and biliverdin-bound form (ABCB10-BV) at 3.67 Å and 2.85 Å resolution, respectively. ABCB10-apo adopts a wide-open conformation and may thus represent the apo form structure. ABCB10-BV forms a closed conformation and biliverdin situates in a hydrophobic pocket in one protomer and bridges the interaction through hydrogen bonds with the opposing one. We also identify cholesterols sandwiched by BVs and discuss the export dynamics based on these structural and biochemical observations.
Collapse
Affiliation(s)
- Sheng Cao
- Wuxi Biortus Biosciences Co. Ltd., 6 Dongsheng Western Road, 214437, Jiangyin, Jiangsu, China
| | - Yihu Yang
- Wuxi Biortus Biosciences Co. Ltd., 6 Dongsheng Western Road, 214437, Jiangyin, Jiangsu, China
| | - Lili He
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, 430030, Wuhan, Hubei Province, China
| | - Yumo Hang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, 430030, Wuhan, Hubei Province, China
| | - Xiaodong Yan
- Wuxi Biortus Biosciences Co. Ltd., 6 Dongsheng Western Road, 214437, Jiangyin, Jiangsu, China
| | - Hui Shi
- Wuxi Biortus Biosciences Co. Ltd., 6 Dongsheng Western Road, 214437, Jiangyin, Jiangsu, China
| | - Jiaquan Wu
- Wuxi Biortus Biosciences Co. Ltd., 6 Dongsheng Western Road, 214437, Jiangyin, Jiangsu, China
| | - Zhuqing Ouyang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, 430030, Wuhan, Hubei Province, China.
| |
Collapse
|
13
|
Bo L, Wang Y, Li Y, Wurpel JND, Huang Z, Chen ZS. The Battlefield of Chemotherapy in Pediatric Cancers. Cancers (Basel) 2023; 15:cancers15071963. [PMID: 37046624 PMCID: PMC10093214 DOI: 10.3390/cancers15071963] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
The survival rate for pediatric cancers has remarkably improved in recent years. Conventional chemotherapy plays a crucial role in treating pediatric cancers, especially in low- and middle-income countries where access to advanced treatments may be limited. The Food and Drug Administration (FDA) approved chemotherapy drugs that can be used in children have expanded, but patients still face numerous side effects from the treatment. In addition, multidrug resistance (MDR) continues to pose a major challenge in improving the survival rates for a significant number of patients. This review focuses on the severe side effects of pediatric chemotherapy, including doxorubicin-induced cardiotoxicity (DIC) and vincristine-induced peripheral neuropathy (VIPN). We also delve into the mechanisms of MDR in chemotherapy to the improve survival and reduce the toxicity of treatment. Additionally, the review focuses on various drug transporters found in common types of pediatric tumors, which could offer different therapeutic options.
Collapse
Affiliation(s)
- Letao Bo
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
| | - Youyou Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
| | - Yidong Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
| | - John N. D. Wurpel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
| | - Zoufang Huang
- Ganzhou Key Laboratory of Hematology, Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Correspondence: (Z.H.); (Z.-S.C.); Tel.: +86-138-797-27439 (Z.H.); +1-718-990-1432 (Z.-S.C.); Fax: +1-718-990-1877 (Z.-S.C.)
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
- Institute for Biotechnology, St. John’s University, Queens, NY 11439, USA
- Correspondence: (Z.H.); (Z.-S.C.); Tel.: +86-138-797-27439 (Z.H.); +1-718-990-1432 (Z.-S.C.); Fax: +1-718-990-1877 (Z.-S.C.)
| |
Collapse
|
14
|
Silva JA, Colquhoun A. Effect of Polyunsaturated Fatty Acids on Temozolomide Drug-Sensitive and Drug-Resistant Glioblastoma Cells. Biomedicines 2023; 11:biomedicines11030779. [PMID: 36979758 PMCID: PMC10045395 DOI: 10.3390/biomedicines11030779] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Glioblastomas (GBMs) are notoriously difficult to treat, and the development of multiple drug resistance (MDR) is common during the course of the disease. The polyunsaturated fatty acids (PUFAs) gamma-linolenic acid (GLA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) have been reported to improve MDR in several tumors including breast, bladder, and leukaemia. However, the effects of PUFAs on GBM cell MDR are poorly understood. The present study investigated the effects of PUFAs on cellular responses to temozolomide (TMZ) in U87MG cells and the TMZ-resistant (TMZR) cells derived from U87MG. Cells were treated with PUFAs in the absence or presence of TMZ and dose–response, viable cell counting, gene expression, Western blotting, flow cytometry, gas chromatography-mass spectrometry (GCMS), and drug efflux studies were performed. The development of TMZ resistance caused an increase in ABC transporter ABCB1 and ABCC1 expression. GLA-, EPA-, and DHA-treated cells had altered fatty acid composition and accumulated lipid droplets in the cytoplasm. The most significant reduction in cell growth was seen for the U87MG and TMZR cells in the presence of EPA. GLA and EPA caused more significant effects on ABC transporter expression than DHA. GLA and EPA in combination with TMZ caused significant reductions in rhodamine 123 efflux from U87MG cells but not from TMZR cells. Overall, these findings support the notion that PUFAs can modulate ABC transporters in GBM cells.
Collapse
|
15
|
Moore JM, Bell EL, Hughes RO, Garfield AS. ABC transporters: human disease and pharmacotherapeutic potential. Trends Mol Med 2023; 29:152-172. [PMID: 36503994 DOI: 10.1016/j.molmed.2022.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are a 48-member superfamily of membrane proteins that actively transport a variety of biological substrates across lipid membranes. Their functional diversity defines an expansive involvement in myriad aspects of human biology. At least 21 ABC transporters underlie rare monogenic disorders, with even more implicated in the predisposition to and symptomology of common and complex diseases. Such broad (patho)physiological relevance places this class of proteins at the intersection of disease causation and therapeutic potential, underlining them as promising targets for drug discovery, as exemplified by the transformative CFTR (ABCC7) modulator therapies for cystic fibrosis. This review will explore the growing relevance of ABC transporters to human disease and their potential as small-molecule drug targets.
Collapse
|
16
|
Li A, Wang Y, Kulyar MFEA, Iqbal M, Lai R, Zhu H, Li K. Environmental microplastics exposure decreases antioxidant ability, perturbs gut microbial homeostasis and metabolism in chicken. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159089. [PMID: 36174690 DOI: 10.1016/j.scitotenv.2022.159089] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
The widespread presence and accumulation of microplastics (MPs) in organisms has led to their recognition as a major global ecological issue. There is a lot of data on how MPs affect the physiology and behavior of aquatic species, but the effects of MPs on poultry are less understood. Therefore, we aimed to explore the adverse effects and mechanisms of MPs exposure to chicken health. Results indicated that MPs exposure decreased growth performance and antioxidant ability and impaired chickens' intestine, liver, kidney, and spleen. Additionally, the gut microbiota in chickens exposed to MPs showed a significant decrease in alpha diversity, accompanied by significant alternations in taxonomic compositions. Microbial taxonomic investigation indicated that exposure to MPs resulted in a significant increase in the relative proportions of 11 genera and a distinct decline in the relative percentages of 3 phyla and 52 genera. Among decreased bacterial taxa, 11 genera even couldn't be detected in the gut microbiota of chickens exposed to MPs. Metabolomics analysis indicated that 2561 (1190 up-regulated, 1371 down-regulated) differential metabolites were identified, mainly involved in 5 metabolic pathways, including D-amino acid metabolism, ABC transporters, vitamin digestion and absorption, mineral absorption, and histidine metabolism. Taken together, this study indicated that MPs exposure resulted in adverse health outcomes for chickens by disturbing gut microbial homeostasis and intestinal metabolism. This study also provided motivation for environmental agencies worldwide to regulate the application and disposal of plastic products and decrease environmental contamination.
Collapse
Affiliation(s)
- Aoyun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yingli Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | | | - Mudassar Iqbal
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Renhao Lai
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Huaisen Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
17
|
Osteopontin and Cancer: Insights into Its Role in Drug Resistance. Biomedicines 2023; 11:biomedicines11010197. [PMID: 36672705 PMCID: PMC9855437 DOI: 10.3390/biomedicines11010197] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Cancer is one of the leading causes of mortality worldwide. Currently, drug resistance is the main obstacle in cancer treatments with the underlying mechanisms of drug resistance yet to be fully understood. Osteopontin (OPN) is a member of the integrin binding glycophosphoprotein family that is overexpressed in several tumour types. It is involved in drug transport, apoptosis, stemness, energy metabolism, and autophagy, which may contribute to drug resistance. Thus, understanding the role of OPN in cancer drug resistance could be important. This review describes the OPN-based mechanisms that might contribute to cancer drug resistance, demonstrating that OPN may be a viable target for cancer therapy to reduce drug resistance in sensitive tumours.
Collapse
|
18
|
Li A, Wang M, Zhang Y, Lin Z, Xu M, Wang L, Kulyar MFEA, Li J. Complete genome analysis of Bacillus subtilis derived from yaks and its probiotic characteristics. Front Vet Sci 2023; 9:1099150. [PMID: 36713867 PMCID: PMC9875379 DOI: 10.3389/fvets.2022.1099150] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
Probiotics have attracted attention due to their multiple health benefits to the host. Yaks inhabiting the Tibetan plateau exhibit excellent disease resistance and tolerance, which may be associated with their inner probiotics. Currently, research on probiotics mainly focuses on their positive effects on the host, but information regarding their genome remains unclear. To reveal the potential functional genes of Bacillus subtilis isolated from yaks, we sequenced its whole genome. Results indicated that the genomic length of Bacillus subtilis was 866,044,638 bp, with 4,429 coding genes. The genome of this bacteria was composed of one chromosome and one plasmid with lengths of 4,214,774 and 54,527 bp, respectively. Moreover, Bacillus subtilis contained 86 tRNAs, 27 rRNAs (9 16S_rRNA, 9 23S_rRNA, and 9 5S_rRNA), and 114 other ncRNA. KEGG annotation indicated that most genes in Bacillus subtilis were associated with biosynthesis of amino acids, carbon metabolism, purine metabolism, pyrimidine metabolism, and ABC transporters. GO annotation demonstrated that most genes in Bacillus subtilis were related to nucleic acid binding transcription factor activity, transporter activity, antioxidant activity, and biological adhesion. EggNOG uncovered that most genes in Bacillus subtilis were related to energy production and conversion, amino acid transport and metabolism, carbohydrate transport and metabolism. CAZy annotation found glycoside hydrolases (33.65%), glycosyl transferases (22.11%), polysaccharide lyases (3.84%), carbohydrate esterases (14.42%), auxiliary activities (3.36%), and carbohydrate-binding modules (22.59%). In conclusion, this study investigated the genome and genetic properties of Bacillus subtilis derived from yaks, which contributed to understanding the potential prebiotic mechanism of probiotics from the genetic perspective.
Collapse
Affiliation(s)
- Aoyun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Meng Wang
- College of Animal Science, Wenzhou Vocational College of Science and Technology, Wenzhou, China
| | - Yu Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhengrong Lin
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Mengen Xu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lei Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Fakhar-e-Alam Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi, China,*Correspondence: Jiakui Li ✉
| |
Collapse
|
19
|
Alketbi L, Al-Ali A, Talaat IM, Hamid Q, Bajbouj K. The Role of ATP-Binding Cassette Subfamily A in Colorectal Cancer Progression and Resistance. Int J Mol Sci 2023; 24:ijms24021344. [PMID: 36674859 PMCID: PMC9860967 DOI: 10.3390/ijms24021344] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/29/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies worldwide; it is the fourth leading cause of cancer-related deaths. CRC arises due to mutations that can affect oncogenes, tumour suppressor genes and DNA repair genes. The lack of novel diagnostic and therapeutic targets and the development of chemoresistance are some of the major issues when dealing with CRC. The overexpression of ATP-binding cassette (ABC) transporters is considered one facilitating mechanism for chemoresistance. Furthermore, ABC transporters have additional roles in cancer development beyond multidrug resistance. In CRC, lipid dysregulation has a key role in tumour development and progression, as cancer cells rely on lipids for energy and rapid cell proliferation. ABC subfamily A (ABCA) contains the largest members of ABC proteins, mainly known for their role in lipid transport, mostly membrane lipids such as cholesterol and phospholipids. Although the exact mechanism of action of these members is not confirmed, their expression is usually correlated with tumour progression and therapy resistance, probably due to their role in lipid homeostasis. CRC shows alteration in the expression of ABCA transporters, which is usually linked to poor prognosis and overall survival. Therefore, as lipid transporters, their role in CRC is investigated, and their diagnostic and prognostic potential is evaluated. This minireview presents evidence from various studies suggesting that ABCA transporters might have an active role in CRC and can be utilized as potential diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Latifa Alketbi
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Abeer Al-Ali
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Iman M. Talaat
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Faculty of Medicine, Alexandria University, Alexandria 21544, Egypt
| | - Qutayba Hamid
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Meakins-Christie Laboratories, McGill University, Montreal, QC H3A 0G4, Canada
| | - Khuloud Bajbouj
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Correspondence:
| |
Collapse
|
20
|
Gao Y, Gong Y, Liu Y, Xue Y, Zheng K, Guo Y, Hao L, Peng Q, Shi X. Integrated analysis of transcriptomics and metabolomics in human hepatocellular carcinoma HepG2215 cells after YAP1 knockdown. Acta Histochem 2023; 125:151987. [PMID: 36473310 DOI: 10.1016/j.acthis.2022.151987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/07/2022]
Abstract
Yes-associated protein 1 (YAP1) plays a critical role in hepatocellular carcinoma (HCC). Inhibition of YAP1 expression suppresses HCC progression, but the underlying mechanism is still unclear. In this study, we studied the effects and molecular mechanisms of YAP1 knockdown on the growth and metabolism in human HCC HepG2215 cells. Inhibition of YAP1 expression inhibits the proliferation and metastasis in HepG2215 cells, and differentially expressed genes (DEGs) and metabolites were identified in shYAP1-HepG2215 cells. Further, 805 DEGs, mainly associated with metabolism and particularly lipid metabolism, were identified by transcriptome sequencing analyses in shYAP1-HepG2215 cells. YAP1 knockdown increased albumin (ALB) levels by Protein-protein interaction (PPI) network analyses in HepG2215 cells. Metabolomic profiling identified 37 metabolites with significant differences in the shYAP1 group, and amino acid metabolism generally decreased in the shYAP1 group. Comprehensive analysis of transcriptomics and metabolomics revealed that the ATP-binding cassette (ABC) transporters play a central role after YAP1 knockdown in HepG2215 cells. Therefore, YAP1 knockdown inhibited HCC growth, which affected the metabolism of lipids and amino acids by regulating the expression of ALB and ABC transporters in HepG2215 cells.
Collapse
Affiliation(s)
- Yuting Gao
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; School of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Yi Gong
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yiwei Liu
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yu Xue
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Kangning Zheng
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yinglin Guo
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Liyuan Hao
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Qing Peng
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Xinli Shi
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China.
| |
Collapse
|
21
|
Zhang C, Shang X, Wang H. Untargeted metabolomics and lipidomics identified four subtypes of small cell lung cancer. Metabolomics 2022; 19:3. [PMID: 36574156 DOI: 10.1007/s11306-022-01964-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 12/05/2022] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Small cell lung cancer (SCLC) is a heterogeneous malignancy with dismal prognosis. However, few studies have conducted on the metabolic heterogeneity in SCLC. OBJECTIVE We therefore identify SCLC classifications using untargeted metabolomics and lipidomics. We also compared their survival and the immunotherapy responses. METHODS Liquid Chromatography-Mass Spectrometry/Mass Spectrometry (LC-MS/MS) analysis was performed in 191 SCLC serum samples. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was conducted to identify metabolic pathways. The Kaplan-Meier and log-rank test were used to analyze the survival curves. The univariate and multivariate Cox proportional hazards regression models were used to evaluate prognostic factors for OS in patients with SCLC. RESULTS Distinct subtypes of SCLC were identified by consensus clustering algorithm using partioning around medoids (pam) based on untargeted metabolomics and lipidomics. Four distinct subtypes of SCLC were identified, with distinct metabolic pathways. Subgroup 2 had the longest survival whereas Subgroup 1 had the shortest. Subtype 2 benefited most from immunotherapy in OS, as in contrast to Subtype 3 with shortest survival. CONCLUSION Our study revealed the metabolic heterogeneity in SCLC and identified four subtypes with distinct metabolic features. It indicates promising therapeutic and prognostic value that may guide treatment for SCLC. The subtype-specific clinical trials may be designed and would be instructive for drug development.
Collapse
Affiliation(s)
- Chenyue Zhang
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaoling Shang
- Shandong Cancer Hospital and Institute, Shandong University, Jinan, 250012, China
| | - Haiyong Wang
- Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
| |
Collapse
|
22
|
Pasello M, Giudice AM, Cristalli C, Manara MC, Mancarella C, Parra A, Serra M, Magagnoli G, Cidre-Aranaz F, Grünewald TGP, Bini C, Lollini PL, Longhi A, Donati DM, Scotlandi K. ABCA6 affects the malignancy of Ewing sarcoma cells via cholesterol-guided inhibition of the IGF1R/AKT/MDM2 axis. Cell Oncol (Dordr) 2022; 45:1237-1251. [PMID: 36149602 DOI: 10.1007/s13402-022-00713-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2022] [Indexed: 12/15/2022] Open
Abstract
PURPOSE The relevance of the subfamily A members of ATP-binding cassette (ABCA) transporters as biomarkers of risk and response is emerging in different tumors, but their mechanisms of action have only been partially defined. In this work, we investigated their role in Ewing sarcoma (EWS), a pediatric cancer with unmet clinical issues. METHODS The expression of ABC members was evaluated by RT-qPCR in patients with localized EWS. The correlation with clinical outcome was established in different datasets using univariate and multivariate statistical methods. Functional studies were conducted in cell lines from patient-derived xenografts (PDXs) using gain- or loss-of-function approaches. The impact of intracellular cholesterol levels and cholesterol lowering drugs on malignant parameters was considered. RESULTS We found that ABCA6, which is usually poorly expressed in EWS, when upregulated became a prognostic factor of a favorable outcome in patients. Mechanistically, high expression of ABCA6 impaired cell migration and increased cell chemosensitivity by diminishing the intracellular levels of cholesterol and by constitutive IGF1R/AKT/mTOR expression/activation. Accordingly, while exposure of cells to exogenous cholesterol increased AKT/mTOR activation, the cholesterol lowering drug simvastatin inhibited IGF1R/AKT/mTOR signaling and prevented Ser166 phosphorylation of MDM2. This, in turn, favored p53 activation and enhanced pro-apoptotic effects of doxorubicin. CONCLUSIONS Our study reveals that ABCA6 acts as tumor suppressor in EWS cells via cholesterol-mediated inhibition of IGF1R/AKT/MDM2 signaling, which promotes the pro-apoptotic effects of doxorubicin and reduces cell migration. Our findings also support a role of ABCA6 as biomarker of EWS progression and sustains its assessment for a more rational use of statins as adjuvant drugs.
Collapse
Affiliation(s)
- Michela Pasello
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy.
| | - Anna Maria Giudice
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy.,Alma Mater Institute On Healthy Planet - Alma Healthy Planet, University of Bologna, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Camilla Cristalli
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy
| | - Maria Cristina Manara
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy
| | - Caterina Mancarella
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy
| | - Alessandro Parra
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy
| | - Massimo Serra
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy
| | - Giovanna Magagnoli
- Department of Pathology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Florencia Cidre-Aranaz
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany.,Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany
| | - Thomas G P Grünewald
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany.,Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany.,Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Carla Bini
- Laboratory of Forensic Genetics, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Pier-Luigi Lollini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Alessandra Longhi
- Osteoncologia, Sarcomi dell'osso e dei Tessuti Molli e Terapie Innovative, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Davide Maria Donati
- Unit of 3rd Orthopaedic and Traumatologic Clinic Prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Katia Scotlandi
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy.
| |
Collapse
|
23
|
Chong TC, Wong ILK, Cui J, Law MC, Zhu X, Hu X, Kan JWY, Yan CSW, Chan TH, Chow LMC. Characterization of a Potent, Selective, and Safe Inhibitor, Ac15(Az8) 2, in Reversing Multidrug Resistance Mediated by Breast Cancer Resistance Protein (BCRP/ABCG2). Int J Mol Sci 2022; 23:13261. [PMID: 36362047 PMCID: PMC9653733 DOI: 10.3390/ijms232113261] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 12/31/2023] Open
Abstract
Overexpression of breast cancer resistance transporter (BCRP/ABCG2) in cancers has been explained for the failure of chemotherapy in clinic. Inhibition of the transport activity of BCRP during chemotherapy should reverse multidrug resistance. In this study, a triazole-bridged flavonoid dimer Ac15(Az8)2 was identified as a potent, nontoxic, and selective BCRP inhibitor. Using BCRP-overexpressing cell lines, its EC50 for reversing BCRP-mediated topotecan resistance was 3 nM in MCF7/MX100 and 72 nM in S1M180 in vitro. Mechanistic studies revealed that Ac15(Az8)2 restored intracellular drug accumulation by inhibiting BCRP-ATPase activity and drug efflux. It did not down-regulate the cell surface BCRP level to enhance drug retention. It was not a transport substrate of BCRP and showed a non-competitive relationship with DOX in binding to BCRP. A pharmacokinetic study revealed that I.P. administration of 45 mg/kg of Ac15(Az8)2 resulted in plasma concentration above its EC50 (72 nM) for longer than 24 h. It increased the AUC of topotecan by 2-fold. In an in vivo model of BCRP-overexpressing S1M180 xenograft in Balb/c nude mice, it significantly reversed BCRP-mediated topotecan resistance and inhibited tumor growth by 40% with no serious body weight loss or death incidence. Moreover, it also increased the topotecan level in the S1M180 xenograft by 2-fold. Our results suggest that Ac15(Az8)2 is a promising candidate for further investigation into combination therapy for treating BCRP-overexpressing cancers.
Collapse
Affiliation(s)
- Tsz Cheung Chong
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
| | - Iris L. K. Wong
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
| | - Jiahua Cui
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Man Chun Law
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
| | - Xuezhen Zhu
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
| | - Xuesen Hu
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
| | - Jason W. Y. Kan
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
| | - Clare S. W. Yan
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
| | - Tak Hang Chan
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
- Department of Chemistry, McGill University, Montreal, QC H3A 2K6, Canada
| | - Larry M. C. Chow
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
24
|
Mikaeili Namini A, Jahangir M, Mohseni M, Kolahi AA, Hassanian-Moghaddam H, Mazloumi Z, Motallebi M, Sheikhpour M, Movafagh A. An in silico comparative transcriptome analysis identifying hub lncRNAs and mRNAs in brain metastatic small cell lung cancer (SCLC). Sci Rep 2022; 12:18063. [PMID: 36302939 PMCID: PMC9613661 DOI: 10.1038/s41598-022-22252-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 10/12/2022] [Indexed: 01/24/2023] Open
Abstract
Small cell lung cancer (SCLC) is a particularly lethal subtype of lung cancer. Metastatic lung tumours lead to most deaths from lung cancer. Predicting and preventing tumour metastasis is crucially essential for patient survivability. Hence, in the current study, we focused on a comprehensive analysis of lung cancer patients' differentially expressed genes (DEGs) on brain metastasis cell lines. DEGs are analysed through KEGG and GO databases for the most critical biological processes and pathways for enriched DEGs. Additionally, we performed protein-protein interaction (PPI), GeneMANIA, and Kaplan-Meier survival analyses on our DEGs. This article focused on mRNA and lncRNA DEGs for LC patients with brain metastasis and underlying molecular mechanisms. The expression data was gathered from the Gene Expression Omnibus database (GSE161968). We demonstrate that 30 distinct genes are up-expressed in brain metastatic SCLC patients, and 31 genes are down-expressed. All our analyses show that these genes are involved in metastatic SCLC. PPI analysis revealed two hub genes (CAT and APP). The results of this article present three lncRNAs, Including XLOC_l2_000941, LOC100507481, and XLOC_l2_007062, also notable mRNAs, have a close relation with brain metastasis in lung cancer and may have a role in the epithelial-mesenchymal transition (EMT) in tumour cells.
Collapse
Affiliation(s)
- Arsham Mikaeili Namini
- grid.412265.60000 0004 0406 5813Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Motahareh Jahangir
- grid.412502.00000 0001 0686 4748Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Maryam Mohseni
- grid.411600.2Department of Social Medicine, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Asghar Kolahi
- grid.411600.2Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Hassanian-Moghaddam
- grid.411600.2Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Mazloumi
- grid.449262.fDepartment of Biology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Marzieh Motallebi
- grid.411600.2Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Sheikhpour
- grid.420169.80000 0000 9562 2611Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Movafagh
- grid.411600.2Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Du X, Ding L, Huang S, Li F, Yan Y, Tang R, Ding X, Zhu Z, Wang W. Cathepsin L promotes chemresistance to neuroblastoma by modulating serglycin. Front Pharmacol 2022; 13:920022. [PMID: 36133820 PMCID: PMC9484481 DOI: 10.3389/fphar.2022.920022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/21/2022] [Indexed: 11/26/2022] Open
Abstract
Cathepsin L (CTSL), a lysosomal acid cysteine protease, is found to play a critical role in chemosencitivity and tumor progression. However, the potential roles and molecular mechanisms of CTSL in chemoresistance in neuroblastoma (NB) are still unclear. In this study, the correlation between clinical characteristics, survival and CTSL expression were assessed in Versteeg dataset. The chemoresistant to cisplatin or doxorubicin was detected using CCK-8 assay. Western blot was employed to detect the expression of CTSL, multi-drug resistance proteins, autophagy-related proteins and apoptosis-related proteins in NB cells while knocking down CTSL. Lysosome staining was analyzed to access the expression levels of lysosomes in NB cells. The expression of apoptosis markers was analyzed with immunofluorescence. Various datasets were analyzed to find the potential protein related to CTSL. In addition, a subcutaneous tumor xenografts model in M-NSG mice was used to assess tumor response to CTSL inhibition in vivo. Based on the validation dataset (Versteeg), we confirmed that CTSL served as a prognostic marker for poor clinical outcome in NB patients. We further found that the expression level of CTSL was higher in SK-N-BE (2) cells than in IMR-32 cells. Knocking down CTSL reversed the chemoresistance in SK-N-BE (2) cells. Furthermore, combination of CTSL inhibition and chemotherapy potently blocked tumor growth in vivo. Mechanistically, CTSL promoted chemoresistance in NB cells by up-regulating multi-drug resistance protein ABCB1 and ABCG2, inhibiting the autophagy level and cell apoptpsis. Furthermore, we observed six datasets and found that Serglycin (SRGN) expression was positively associated with CTSL expresssion. CTSL could mediate chemoresistance by up-regulating SRGN expression in NB cells and SRGN expression was positively correlated with poor prognosis of NB patients. Taken together, our findings indicate that the CTSL promotes chemoresistance to cisplatin and doxorubicin by up-regulating the expression of multi-drug resistance proteins and inhibiting the autophagy level and cell apoptosis in NB cells. Thus, CTSL may be a therapeutic target for overcoming chemoresistant to cisplatin and doxorubicin in NB patients.
Collapse
Affiliation(s)
- Xiaohuan Du
- Department of Pharmacy, Children’s Hospital of Soochow University, Suzhou, China
| | - Leyun Ding
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Shungen Huang
- Department of Oncology, Children’s Hospital of Soochow University, Suzhou, China
| | - Fang Li
- Department of Pharmacy, Children’s Hospital of Soochow University, Suzhou, China
| | - Yinghui Yan
- Department of Pharmacy, Children’s Hospital of Soochow University, Suzhou, China
| | - Ruze Tang
- Department of Oncology, Children’s Hospital of Soochow University, Suzhou, China
| | - Xinyuan Ding
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- *Correspondence: Wenjuan Wang, ; Xinyuan Ding, ; Zengyan Zhu,
| | - Zengyan Zhu
- Department of Pharmacy, Children’s Hospital of Soochow University, Suzhou, China
- *Correspondence: Wenjuan Wang, ; Xinyuan Ding, ; Zengyan Zhu,
| | - Wenjuan Wang
- Department of Pharmacy, Children’s Hospital of Soochow University, Suzhou, China
- *Correspondence: Wenjuan Wang, ; Xinyuan Ding, ; Zengyan Zhu,
| |
Collapse
|
26
|
Mohi-Ud-Din R, Mir RH, Mir PA, Banday N, Shah AJ, Sawhney G, Bhat MM, Batiha GE, Pottoo FH, Pottoo FH. Dysfunction of ABC Transporters at the Surface of BBB: Potential Implications in Intractable Epilepsy and Applications of Nanotechnology Enabled Drug Delivery. Curr Drug Metab 2022; 23:735-756. [PMID: 35980054 DOI: 10.2174/1389200223666220817115003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/10/2022] [Accepted: 05/31/2022] [Indexed: 01/05/2023]
Abstract
Epilepsy is a chronic neurological disorder affecting 70 million people globally. One of the fascinating attributes of brain microvasculature is the (BBB), which controls a chain of distinct features that securely regulate the molecules, ions, and cells movement between the blood and the parenchyma. The barrier's integrity is of paramount importance and essential for maintaining brain homeostasis, as it offers both physical and chemical barriers to counter pathogens and xenobiotics. Dysfunction of various transporters in the (BBB), mainly ATP binding cassette (ABC), is considered to play a vital role in hampering the availability of antiepileptic drugs into the brain. ABC (ATP-binding cassette) transporters constitute a most diverse protein superfamily, which plays an essential part in various biological processes, including cell homeostasis, cell signaling, uptake of nutrients, and drug metabolism. Moreover, it plays a crucial role in neuroprotection by out-flowing various internal and external toxic substances from the interior of a cell, thus decreasing their buildup inside the cell. In humans, forty-eight ABC transporters have been acknowledged and categorized into subfamilies A to G based on their phylogenetic analysis. ABC subfamilies B, C, and G, impart a vital role at the BBB in guarding the brain against the entrance of various xenobiotic and their buildup. The illnesses of the central nervous system have received a lot of attention lately Owing to the existence of the BBB, the penetration effectiveness of most CNS medicines into the brain parenchyma is very limited (BBB). In the development of neurological therapies, BBB crossing for medication delivery to the CNS continues to be a major barrier. Nanomaterials with BBB cross ability have indeed been extensively developed for the treatment of CNS diseases due to their advantageous properties. This review will focus on multiple possible factors like inflammation, oxidative stress, uncontrolled recurrent seizures, and genetic polymorphisms that result in the deregulation of ABC transporters in epilepsy and nanotechnology-enabled delivery across BBB in epilepsy.
Collapse
Affiliation(s)
- Roohi Mohi-Ud-Din
- Department of General Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu & Kashmir, 190011, India.,Department of Pharmaceutical Sciences, School of Applied Sciences & Technology, University of Kashmir, Hazratbal, Srinagar-190006, Jammu & Kashmir, India
| | - Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Chandigarh College of Pharmacy, Landran, Punjab-140301, India.,Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Prince Ahad Mir
- Department of Pharmaceutical Sciences, Khalsa College of Pharmacy, G.T. Road, Amritsar-143002, Punjab, India
| | - Nazia Banday
- Department of Pharmaceutical Sciences, School of Applied Sciences & Technology, University of Kashmir, Hazratbal, Srinagar-190006, Jammu & Kashmir, India
| | - Abdul Jalil Shah
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Gifty Sawhney
- Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, Jammu 180001, India
| | - Mudasir Maqbool Bhat
- Department of Pharmaceutical Sciences, Pharmacy Practice Division, University of Kashmir, Hazratbal, Srinagar-190006, Jammu & Kashmir, India
| | - Gaber E Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| |
Collapse
|
27
|
Zhang B, Li D, Wang R. Transcriptome Profiling of N7-Methylguanosine Modification of Messenger RNA in Drug-Resistant Acute Myeloid Leukemia. Front Oncol 2022; 12:926296. [PMID: 35865472 PMCID: PMC9294171 DOI: 10.3389/fonc.2022.926296] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematological tumor caused by the malignant transformation of myeloid progenitor cells. Although intensive chemotherapy leads to an initial therapeutic response, relapse due to drug resistance remains a significant challenge. In recent years, accumulating evidence has suggested that post-transcriptional methylation modifications are strongly associated with tumorigenesis. However, the mRNA profile of m7G modification in AML and its role in drug-resistant AML are unknown. In this study, we used MeRIP-seq technology to establish the first transcriptome-wide m7G methylome profile for AML and drug-resistant AML cells, and differences in m7G between the two groups were analyzed. In addition, bioinformatics analysis was conducted to explore the function of m7G-specific methylated transcripts. We found significant differences in m7G mRNA modification between AML and drug-resistant AML cells. Furthermore, bioinformatics analysis revealed that differential m7G-modified mRNAs were associated with a wide range of cellular functions. Importantly, down-methylated m7G modification was significantly enriched in ABC transporter-related mRNAs, which are widely recognized to play a key role in multidrug resistance. Our results provide new insights into a novel function of m7G methylation in drug resistance progression of AML.
Collapse
Affiliation(s)
- Bing Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, Shandong, China
| | - Dong Li
- Department of Pediatrics, Qilu Hospital of Shandong University, Shandong, China
| | - Ran Wang
- Department of Hematology, Qilu Hospital of Shandong University, Shandong, China
- *Correspondence: Ran Wang,
| |
Collapse
|
28
|
Ijaz M, Zhang D, Hou C, Mahmood M, Hussain Z, Zheng X, Li X. Changes in postmortem metabolite profile of atypical and typical DFD beef. Meat Sci 2022; 193:108922. [DOI: 10.1016/j.meatsci.2022.108922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 06/20/2022] [Accepted: 07/18/2022] [Indexed: 12/01/2022]
|
29
|
Li B, Feng Y, Hou Q, Fu Y, Luo Y. Antigen Peptide Transporter 1 (TAP1) Promotes Resistance to MEK Inhibitors in Pancreatic Cancers. Int J Mol Sci 2022; 23:7168. [PMID: 35806187 PMCID: PMC9266799 DOI: 10.3390/ijms23137168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 12/14/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitors show limited benefit in Kirsten rat sarcoma (KRAS) mutant pancreatic cancer due to drug resistance. To identify mechanisms of resistance to MEK inhibitor (MEKi), we employed a differential expression analysis of MEKi-sensitive versus MEKi-resistant KRAS-mutant pancreatic cancer cell lines. Here, we report that the antigen peptide transporter 1 (TAP1) expression levels of MEKi-resistant cell lines were notably higher than those of MEKi-sensitive cell lines. Suppression of TAP1 significantly sensitized the MEKi-resistant pancreatic ductal adenocarcinoma (PDAC) cells to MEKi and induced higher apoptotic rate in vitro. Moreover, knockdown of TAP1 in MEKi-resistant tumor significantly decreased tumor growth in vivo. Consistently, overexpression of TAP1 in sensitive PDAC cells resulted in increased resistance to MEKi, both in vitro and in vivo. Mechanistic studies demonstrated that TAP1 promoted chemoresistance by enhancing the transport of MEKi out of PDAC cells, leading to reduced intracellular MEKi concentration and attenuated inhibition of KRAS signaling pathways. Moreover, TAP1 expression increased spheroid formation abilities of PDAC cells. These findings suggest that TAP1 could serve as a potential marker for predicting the response of patients to MEKi. Combination of TAP1 suppression and MEKi may provide a novel therapeutic strategy for PDAC treatment.
Collapse
Affiliation(s)
- Boya Li
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; (B.L.); (Y.F.); (Q.H.)
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, Beijing 100084, China
| | - Yu Feng
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; (B.L.); (Y.F.); (Q.H.)
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, Beijing 100084, China
| | - Qiaoyun Hou
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; (B.L.); (Y.F.); (Q.H.)
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, Beijing 100084, China
| | - Yan Fu
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; (B.L.); (Y.F.); (Q.H.)
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, Beijing 100084, China
| | - Yongzhang Luo
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; (B.L.); (Y.F.); (Q.H.)
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
30
|
Sorafenib Chemosensitization by Caryophyllane Sesquiterpenes in Liver, Biliary, and Pancreatic Cancer Cells: The Role of STAT3/ABC Transporter Axis. Pharmaceutics 2022; 14:pharmaceutics14061264. [PMID: 35745837 PMCID: PMC9231089 DOI: 10.3390/pharmaceutics14061264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/12/2022] Open
Abstract
A combination of anticancer drugs and chemosensitizing agents has been approached as a promising strategy to potentiate chemotherapy and reduce toxicity in aggressive and chemoresistant cancers, like hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), and pancreatic ductal adenocarcinoma (PDAC). In the present study, the ability of caryophyllane sesquiterpenes to potentiate sorafenib efficacy was studied in HCC, CCA, and PDAC cell models, focusing on the modulation of STAT3 signaling and ABC transporters; tolerability studies in normal cells were also performed. Results showed that the combination of sorafenib and caryophyllane sesquiterpenes synergized the anticancer drug, especially in pancreatic Bx-PC3 adenocarcinoma cells; a similar trend, although with lower efficacy, was found for the standard ABC transporter inhibitors. Synergistic effects were associated with a modulation of MDR1 (or Pgp) and MRP transporters, both at gene and protein level; moreover, activation of STAT3 cascade and cell migration appeared significantly affected, suggesting that the STAT3/ABC-transporters axis finely regulated efficacy and chemoresistance to sorafenib, thus appearing as a suitable target to overcome drawbacks of sorafenib-based chemotherapy in hepato-biliary-pancreatic cancers. Present findings strengthen the interest in caryophyllane sesquiterpenes as chemosensitizing and chemopreventive agents and contribute to clarifying drug resistance mechanisms in HCC, CCA, and PDAC cancers and to developing possible novel therapeutic strategies.
Collapse
|
31
|
Yellapu NK, Ly T, Sardiu ME, Pei D, Welch DR, Thompson JA, Koestler DC. Synergistic anti-proliferative activity of JQ1 and GSK2801 in triple-negative breast cancer. BMC Cancer 2022; 22:627. [PMID: 35672711 PMCID: PMC9173973 DOI: 10.1186/s12885-022-09690-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) constitutes 10-20% of breast cancers and is challenging to treat due to a lack of effective targeted therapies. Previous studies in TNBC cell lines showed in vitro growth inhibition when JQ1 or GSK2801 were administered alone, and enhanced activity when co-administered. Given their respective mechanisms of actions, we hypothesized the combinatorial effect could be due to the target genes affected. Hence the target genes were characterized for their expression in the TNBC cell lines to prove the combinatorial effect of JQ1 and GSK2801. METHODS RNASeq data sets of TNBC cell lines (MDA-MB-231, HCC-1806 and SUM-159) were analyzed to identify the differentially expressed genes in single and combined treatments. The topmost downregulated genes were characterized for their downregulated expression in the TNBC cell lines treated with JQ1 and GSK2801 under different dose concentrations and combinations. The optimal lethal doses were determined by cytotoxicity assays. The inhibitory activity of the drugs was further characterized by molecular modelling studies. RESULTS Global expression profiling of TNBC cell lines using RNASeq revealed different expression patterns when JQ1 and GSK2801 were co-administered. Functional enrichment analyses identified several metabolic pathways (i.e., systemic lupus erythematosus, PI3K-Akt, TNF, JAK-STAT, IL-17, MAPK, Rap1 and signaling pathways) enriched with upregulated and downregulated genes when combined JQ1 and GSK2801 treatment was administered. RNASeq identified downregulation of PTPRC, MUC19, RNA5-8S5, KCNB1, RMRP, KISS1 and TAGLN (validated by RT-qPCR) and upregulation of GPR146, SCARA5, HIST2H4A, CDRT4, AQP3, MSH5-SAPCD1, SENP3-EIF4A1, CTAGE4 and RNASEK-C17orf49 when cells received both drugs. In addition to differential gene regulation, molecular modelling predicted binding of JQ1 and GSK2801 with PTPRC, MUC19, KCNB1, TAGLN and KISS1 proteins, adding another mechanism by which JQ1 and GSK2801 could elicit changes in metabolism and proliferation. CONCLUSION JQ1-GSK2801 synergistically inhibits proliferation and results in selective gene regulation. Besides suggesting that combinatorial use could be useful therapeutics for the treatment of TNBC, the findings provide a glimpse into potential mechanisms of action for this combination therapy approach.
Collapse
Affiliation(s)
- Nanda Kumar Yellapu
- Department of Biostatistics & Data Science, University of Kansas, Medical Center, KS, Kansas City, USA
- The University of Kansas Cancer Center, Kansas City, KS, USA
| | - Thuc Ly
- The University of Kansas Cancer Center, Kansas City, KS, USA
- Department of Cancer Biology, University of Kansas, Medical Center, KS, Kansas City, USA
| | - Mihaela E Sardiu
- Department of Biostatistics & Data Science, University of Kansas, Medical Center, KS, Kansas City, USA
- The University of Kansas Cancer Center, Kansas City, KS, USA
| | - Dong Pei
- Department of Biostatistics & Data Science, University of Kansas, Medical Center, KS, Kansas City, USA
- The University of Kansas Cancer Center, Kansas City, KS, USA
| | - Danny R Welch
- The University of Kansas Cancer Center, Kansas City, KS, USA
- Department of Cancer Biology, University of Kansas, Medical Center, KS, Kansas City, USA
- Departments of Molecular & Integrative Physiology and Internal Medicine, University of Kansas, Medical Center, KS, Kansas City, USA
| | - Jeffery A Thompson
- Department of Biostatistics & Data Science, University of Kansas, Medical Center, KS, Kansas City, USA.
- The University of Kansas Cancer Center, Kansas City, KS, USA.
| | - Devin C Koestler
- Department of Biostatistics & Data Science, University of Kansas, Medical Center, KS, Kansas City, USA.
- The University of Kansas Cancer Center, Kansas City, KS, USA.
| |
Collapse
|
32
|
Dobiasová S, Szemerédi N, Kučerová D, Koucká K, Václavíková R, Gbelcová H, Ruml T, Domínguez-Álvarez E, Spengler G, Viktorová J. Ketone-selenoesters as potential anticancer and multidrug resistance modulation agents in 2D and 3D ovarian and breast cancer in vitro models. Sci Rep 2022; 12:6548. [PMID: 35449387 PMCID: PMC9023544 DOI: 10.1038/s41598-022-10311-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/11/2022] [Indexed: 12/13/2022] Open
Abstract
Long-term treatment of cancer with chemotherapeutics leads to the development of resistant forms that reduce treatment options. The main associated mechanism is the overexpression of transport proteins, particularly P-glycoprotein (P-gp, ABCB1). In this study, we have tested the anticancer and multidrug resistance (MDR) modulation activity of 15 selenocompounds. Out of the tested compounds, K3, K4, and K7 achieved the highest sensitization rate in ovarian carcinoma cells (HOC/ADR) that are resistant to the action of the Adriamycin. These compounds induced oxidation stress, inhibited P-gp transport activity and altered ABC gene expression. To verify the effect of compounds, 3D cell models were used to better mimic in vivo conditions. K4 and K7 triggered the most significant ROS release. All selected selenoesters inhibited P-gp efflux in a dose-dependent manner while simultaneously altering the expression of the ABC genes, especially P-gp in paclitaxel-resistant breast carcinoma cells (MCF-7/PAX). K4, and K7 demonstrated sensitization potential in resistant ovarian spheroids. Additionally, all selected selenoesters achieved a high cytotoxic effect in 3D breast and ovarian models, which was comparable to that in 2D cultures. K7 was the only non-competitive P-gp inhibitor, and therefore appears to have considerable potential for the treatment of drug-resistant cancer.
Collapse
Affiliation(s)
- Simona Dobiasová
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 3, 166 28, Prague 6, Czechia
| | - Nikoletta Szemerédi
- Department of Medical Microbiology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis utca 6, Szeged, 6725, Hungary
| | - Denisa Kučerová
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 3, 166 28, Prague 6, Czechia
| | - Kamila Koucká
- Toxicogenomics Unit, National Institute of Public Health, Šrobárova 49, 100 00, Prague, Czechia.,Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655, 323 00, Pilsen, Czechia
| | - Radka Václavíková
- Toxicogenomics Unit, National Institute of Public Health, Šrobárova 49, 100 00, Prague, Czechia.,Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655, 323 00, Pilsen, Czechia
| | - Helena Gbelcová
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08, Bratislava, Slovakia
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 3, 166 28, Prague 6, Czechia
| | - Enrique Domínguez-Álvarez
- Instituto de Química Orgánica General (IQOG-CSIC), Consejo Superior de Investigaciones Científicas, Juan de la Cierva 3, 28006, Madrid, Spain.
| | - Gabriella Spengler
- Department of Medical Microbiology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis utca 6, Szeged, 6725, Hungary.
| | - Jitka Viktorová
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 3, 166 28, Prague 6, Czechia.
| |
Collapse
|
33
|
Xavier CP, Belisario DC, Rebelo R, Assaraf YG, Giovannetti E, Kopecka J, Vasconcelos MH. The role of extracellular vesicles in the transfer of drug resistance competences to cancer cells. Drug Resist Updat 2022; 62:100833. [PMID: 35429792 DOI: 10.1016/j.drup.2022.100833] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/20/2022] [Accepted: 03/13/2022] [Indexed: 02/07/2023]
|
34
|
Song P, Xu H, He Y, Sun J, Xu Z, Huang P, Ge M, Zhang X, Ke Y, Cheng H. GAB1 is upregulated to promote anaplastic thyroid cancer cell migration through AKT-MDR1. Biochem Biophys Res Commun 2022; 607:36-43. [PMID: 35366541 DOI: 10.1016/j.bbrc.2022.03.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 11/02/2022]
Abstract
Anaplastic thyroid carcinoma (ATC) represents an undifferentiated, aggressive and highly metastatic form of thyroid cancer with high mortality. GAB1, through direct interaction with the kinase PI3K and phosphatase SHP2, is tightly involved in the activation of oncogenic signals; however, the role of GAB1 in ATC remains unclear. GAB1 was significantly increased in ATC, accompanied with AKT activation. Cell proliferation, migration and invasion were impaired or enhanced by GAB1 knockdown in ATC cells or overexpression in PTC cells. Moreover, GAB1 knockdown in ATC cells inhibited and overexpression in PTC cells promoted the growth of thyroid cancer in nude mice. GAB1 mutation disrupting the interaction between GAB1 and PI3K failed to restore cell migration and invasion in GAB1-knockdown ATC cells. RNA sequencing data showed GAB1-knockdown partially reprogramed gene expression in ATC cells back to that in normal thyroid cells. MDR1 was transcriptionally regulated by GAB1, which was mediated by AKT. MDR1 was upregulated in ATC cells and MDR1 knockdown in ATC cells decreased migration and invasion. In addition, MDR1 overexpression restored cell migration and invasion and lung metastasis of GAB1-knockdown ATC cells. Collectively, GAB1 is upregulated in ATC to promote AKT activation and cellular migration and invasion through regulating MDR1 expression.
Collapse
Affiliation(s)
- Ping Song
- Department of Pathology and Pathophysiology and Department of Cardiology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hanzhi Xu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying He
- Key Laboratory for Translational Medicine, First Affiliated Hospital, Huzhou University, Huzhou, China
| | - Jiao Sun
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Zhiyong Xu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Ping Huang
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang, China; Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Minghua Ge
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang, China; ENT-Head and Neck Surgery Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xue Zhang
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuehai Ke
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China.
| | - Hongqiang Cheng
- Department of Pathology and Pathophysiology and Department of Cardiology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
35
|
Zhao Z, Zhao Z, Wang J, Zhang H, Xi Z, Xia Q. ABCC6 Knockdown Fuels Cell Proliferation by Regulating PPARα in Hepatocellular Carcinoma. Front Oncol 2022; 12:840287. [PMID: 35280774 PMCID: PMC8907651 DOI: 10.3389/fonc.2022.840287] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/28/2022] [Indexed: 11/18/2022] Open
Abstract
The ATP binding cassette (ABC) transporter family is ubiquitous in eukaryotes, specifically in vertebrates, and plays a crucial role in energy homeostasis, cell signaling, and drug resistance. Accumulating evidence indicates that some ABC transporters contribute to cancer cell proliferation and tumor progression; however, relatively little is known about the behavior of the ABC transporter family in hepatocellular carcinoma (HCC). By analyzing two public transcriptomic databases, we evaluated the effect of genes in the ABC transporter family on HCC prognostic prediction; ABCC6 was selected for further study. Notably, ABCC6 was found to be downregulated in HCC tissues and correlated with favorable outcomes in patients with HCC. Moreover, ABCC6 knockdown not only significantly promoted cell proliferation in vitro and in vivo, but also inhibited cell cycle arrest and cell apoptosis. Transcriptome analysis revealed that ABCC6 depletion enhanced the “mitotic cell cycle” and “DNA replication” pathways, and suppressed the “PPAR signaling pathway”. Further investigation demonstrated that PPARα, one of the key regulators in peroxisome metabolism, is located downstream of ABCC6. In summary, our study provides profound insights into the behavior of ABC transporter family genes in various HCC cohorts, identifies ABCC6 as a biomarker for early-stage HCC diagnosis, and offers experimental basis for further investigations of targeting ABCC6 in the treatment of patients with HCC.
Collapse
Affiliation(s)
- Zhicong Zhao
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Zhenjun Zhao
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianye Wang
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| | - He Zhang
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Surgery, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Zhifeng Xi
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China.,Shanghai Institute of Transplantation, Shanghai, China
| |
Collapse
|
36
|
Targeting glioblastoma stem cells: The first step of photodynamic therapy. Photodiagnosis Photodyn Ther 2021; 36:102585. [PMID: 34687963 DOI: 10.1016/j.pdpdt.2021.102585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/22/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023]
Abstract
Glioblastoma is one of the most malignant types of brain cancer. Evidence suggests that within gliomas there is a small subpopulation of cells with the capacity for self-renewal, called glioma stem cells. These cells could be responsible for tumorigenesis, chemo and radioresistance, and finally for the recurrence of the tumor. Fluorescence-guided resection have improved the results of treatment against this disease, prolonging the survival of patients by a few months. Also, clinical trials have reported potential improvements in the therapeutic response after photodynamic therapy. Thus far, there are few published works that show the response of glioblastoma stem-like cells to photodynamic therapy. Here, we present a brief review exclusively commenting on the therapeutic approaches to eliminate glioblastoma stem cells and on the research publications about this topic of glioblastoma stem cells in relation to photodynamic therapy. It is our hope that this review will be useful to provide an overview about what is known to date on the topic and to promote the generation of new ideas for the eradication of glioblastoma stem cells by photodynamic treatment.
Collapse
|
37
|
Zhang H, Han X, Wang Z, Wang Z, Cui Y, Tian R, Zhu Y, Han B, Liu H, Zuo X, Ren S, Tian J, Niu R, Zhang F. Mitochondrial Breast Cancer Resistant Protein Sustains the Proliferation and Survival of Drug-Resistant Breast Cancer Cells by Regulating Intracellular Reactive Oxygen Species. Front Cell Dev Biol 2021; 9:719209. [PMID: 34650973 PMCID: PMC8505676 DOI: 10.3389/fcell.2021.719209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
ATP-binding cassette (ABC) transporter family are major contributors to the drug resistance establishment of breast cancer cells. Breast cancer resistant protein (BCRP), one of the ABC transporters, has long been recognized as a pump that effluxes the therapeutic drugs against the concentration gradient. However, recent studies suggest that the biological function of BCRP is not limited in its drug pump activity. Herein, the role of BCRP in the proliferation and survival of drug-resistant breast cancer cells was investigated. We found that BCRP is not the major drug pump to efflux epirubicin in the resistant cells that express multiple ABC transporters. Silencing of BCRP significantly impairs cell proliferation and induces apoptosis of the resistant cells in vitro and in vivo. RNA-sequencing and high-throughput proteomics suggest that BCRP is an inhibitory factor of oxidative phosphorylation (OXPHOS). Further research suggests that BCRP is localized in the mitochondria of the resistant cells. Knockdown of BCRP elevated the intracellular reactive oxygen species level and eventually promotes the cell to undergo apoptosis. This study demonstrated that BCRP exerts important onco-promoting functions in the drug-resistant breast cancer cells independent of its well-recognized drug efflux activity, which shed new light on understanding the complex functional role of ABC transporters in drug-resistant cells.
Collapse
Affiliation(s)
- He Zhang
- Public Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Xingxing Han
- Public Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Zhaosong Wang
- Public Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Zhiyong Wang
- Public Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Yanfen Cui
- Public Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Ran Tian
- Public Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Yuying Zhu
- Public Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Baoai Han
- Public Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Hui Liu
- Public Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Xiaoyan Zuo
- Public Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Sixin Ren
- Public Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Jianfei Tian
- Public Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Ruifang Niu
- Public Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Fei Zhang
- Public Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| |
Collapse
|
38
|
Wong ILK, Zhu X, Chan KF, Liu Z, Chan CF, Chow TS, Chong TC, Law MC, Cui J, Chow LMC, Chan TH. Flavonoid Monomers as Potent, Nontoxic, and Selective Modulators of the Breast Cancer Resistance Protein (ABCG2). J Med Chem 2021; 64:14311-14331. [PMID: 34606270 DOI: 10.1021/acs.jmedchem.1c00779] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We synthesize various substituted triazole-containing flavonoids and identify potent, nontoxic, and highly selective BCRP inhibitors. Ac18Az8, Ac32Az19, and Ac36Az9 possess m-methoxycarbonylbenzyloxy substitution at C-3 of the flavone moiety and substituted triazole at C-4' of the B-ring. They show low toxicity (IC50 toward L929 > 100 μM), potent BCRP-inhibitory activity (EC50 = 1-15 nM), and high BCRP selectivity (BCRP selectivity over MRP1 and P-gp > 67-714). They inhibit the efflux activity of BCRP, elevate the intracellular drug accumulation, and restore the drug sensitivity of BCRP-overexpressing cells. Like Ko143, Ac32Az19 remarkably exhibits a 100% 5D3 shift, indicating that it can bind and cause a conformational change of BCRP. Moreover, it significantly reduces the abundance of functional BCRP dimers/oligomers by half to retain more mitoxantrone in the BCRP-overexpressing cell line and that may account for its inhibitory activity. They are promising candidates to be developed into combination therapy to overcome MDR cancers with BCRP overexpression.
Collapse
Affiliation(s)
- Iris L K Wong
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Xuezhen Zhu
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Kin-Fai Chan
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Zhen Liu
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Chin-Fung Chan
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Tsun Sing Chow
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Tsz Cheung Chong
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Man Chun Law
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Jiahua Cui
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Larry M C Chow
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Tak Hang Chan
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong SAR 999077, China.,Department of Chemistry, McGill University, Montreal, Quebec H3A 2K6, Canada
| |
Collapse
|
39
|
Tikhonov D, Kulikova L, Rudnev V, Kopylov AT, Taldaev A, Stepanov A, Malsagova K, Izotov A, Enikeev D, Potoldykova N, Kaysheva A. Changes in Protein Structural Motifs upon Post-Translational Modification in Kidney Cancer. Diagnostics (Basel) 2021; 11:diagnostics11101836. [PMID: 34679534 PMCID: PMC8534394 DOI: 10.3390/diagnostics11101836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/20/2021] [Accepted: 10/01/2021] [Indexed: 11/28/2022] Open
Abstract
Post-translational modification (PTM) leads to conformational changes in protein structure, modulates the biological function of proteins, and, consequently, changes the signature of metabolic transformations and the immune response in the body. Common PTMs are reversible and serve as a mechanism for modulating metabolic trans-formations in cells. It is likely that dysregulation of post-translational cellular signaling leads to abnormal proliferation and oncogenesis. We examined protein PTMs in the blood samples from patients with kidney cancer. Conformational changes in proteins after modification were analyzed. The proteins were analyzed using ultra-high resolution HPLC-MS/MS and structural analysis was performed with the AMBER and GROMACS software packages. Fifteen proteins containing PTMs were identified in blood samples from patients with kidney cancer. For proteins with PDB structures, a comparative analysis of the structural changes accompanying the modifications was performed. Results revealed that PTMs are localized in stable and compact space protein globule motifs that are exposed to a solvent. The phenomenon of modification is accompanied, as a rule, by an increase in the area available for the solvent of the modified amino acid residue and its active environment.
Collapse
Affiliation(s)
- Dmitry Tikhonov
- Institute of Mathematical Problems of Biology RAS—The Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, 142290 Pushchino, Russia; (D.T.); (L.K.)
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Liudmila Kulikova
- Institute of Mathematical Problems of Biology RAS—The Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, 142290 Pushchino, Russia; (D.T.); (L.K.)
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Vladimir Rudnev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia;
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.T.K.); (A.T.); (A.S.); (A.I.); (A.K.)
| | - Arthur T. Kopylov
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.T.K.); (A.T.); (A.S.); (A.I.); (A.K.)
| | - Amir Taldaev
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.T.K.); (A.T.); (A.S.); (A.I.); (A.K.)
- Institute of Urology and Reproductive Health, Sechenov University, 119121 Moscow, Russia; (D.E.); (N.P.)
| | - Alexander Stepanov
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.T.K.); (A.T.); (A.S.); (A.I.); (A.K.)
| | - Kristina Malsagova
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.T.K.); (A.T.); (A.S.); (A.I.); (A.K.)
- Correspondence: ; Tel.: +7-499-764-9878
| | - Alexander Izotov
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.T.K.); (A.T.); (A.S.); (A.I.); (A.K.)
| | - Dmitry Enikeev
- Institute of Urology and Reproductive Health, Sechenov University, 119121 Moscow, Russia; (D.E.); (N.P.)
| | - Natalia Potoldykova
- Institute of Urology and Reproductive Health, Sechenov University, 119121 Moscow, Russia; (D.E.); (N.P.)
| | - Anna Kaysheva
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.T.K.); (A.T.); (A.S.); (A.I.); (A.K.)
| |
Collapse
|
40
|
Wang JQ, Wu ZX, Yang Y, Teng QX, Li YD, Lei ZN, Jani KA, Kaushal N, Chen ZS. ATP-binding cassette (ABC) transporters in cancer: A review of recent updates. J Evid Based Med 2021; 14:232-256. [PMID: 34388310 DOI: 10.1111/jebm.12434] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023]
Abstract
The ATP-binding cassette (ABC) transporter superfamily is one of the largest membrane protein families existing in wide spectrum of organisms from prokaryotes to human. ABC transporters are also known as efflux pumps because they mediate the cross-membrane transportation of various endo- and xenobiotic molecules energized by ATP hydrolysis. Therefore, ABC transporters have been considered closely to multidrug resistance (MDR) in cancer, where the efflux of structurally distinct chemotherapeutic drugs causes reduced itherapeutic efficacy. Besides, ABC transporters also play other critical biological roles in cancer such as signal transduction. During the past decades, extensive efforts have been made in understanding the structure-function relationship, transportation profile of ABC transporters, as well as the possibility to overcome MDR via targeting these transporters. In this review, we discuss the most recent knowledge regarding ABC transporters and cancer drug resistance in order to provide insights for the development of more effective therapies.
Collapse
Affiliation(s)
- Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Yi-Dong Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
- School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Khushboo A Jani
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Neeraj Kaushal
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| |
Collapse
|
41
|
Valente A, Podolski-Renić A, Poetsch I, Filipović N, López Ó, Turel I, Heffeter P. Metal- and metalloid-based compounds to target and reverse cancer multidrug resistance. Drug Resist Updat 2021; 58:100778. [PMID: 34403910 DOI: 10.1016/j.drup.2021.100778] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022]
Abstract
Drug resistance remains the major cause of cancer treatment failure especially at the late stage of the disease. However, based on their versatile chemistry, metal and metalloid compounds offer the possibility to design fine-tuned drugs to circumvent and even specifically target drug-resistant cancer cells. Based on the paramount importance of platinum drugs in the clinics, two main areas of drug resistance reversal strategies exist: overcoming resistance to platinum drugs as well as multidrug resistance based on ABC efflux pumps. The current review provides an overview of both aspects of drug design and discusses the open questions in the field. The areas of drug resistance covered in this article involve: 1) Altered expression of proteins involved in metal uptake, efflux or intracellular distribution, 2) Enhanced drug efflux via ABC transporters, 3) Altered metabolism in drug-resistant cancer cells, 4) Altered thiol or redox homeostasis, 5) Altered DNA damage recognition and enhanced DNA damage repair, 6) Impaired induction of apoptosis and 7) Altered interaction with the immune system. This review represents the first collection of metal (including platinum, ruthenium, iridium, gold, and copper) and metalloid drugs (e.g. arsenic and selenium) which demonstrated drug resistance reversal activity. A special focus is on compounds characterized by collateral sensitivity of ABC transporter-overexpressing cancer cells. Through this approach, we wish to draw the attention to open research questions in the field. Future investigations are warranted to obtain more insights into the mechanisms of action of the most potent compounds which target specific modalities of drug resistance.
Collapse
Affiliation(s)
- Andreia Valente
- Centro de Química Estrutural and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Isabella Poetsch
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Nenad Filipović
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
42
|
Salgado MTSF, Lopes AC, Fernandes E Silva E, Cardoso JQ, Vidal RS, Cavalcante-Silva LHA, Carvalho DCM, Machado KDS, Rodrigues-Mascarenhas S, Rumjanek VM, Votto APDS. Relation between ABCB1 overexpression and COX2 and ALOX5 genes in human erythroleukemia cell lines. Prostaglandins Other Lipid Mediat 2021; 155:106553. [PMID: 33975019 DOI: 10.1016/j.prostaglandins.2021.106553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/23/2021] [Accepted: 05/05/2021] [Indexed: 10/21/2022]
Abstract
This study aimed to characterize the relationship between the COX2 and ALOX5 genes, as well as their link with the multidrug resistance (MDR) phenotype in sensitive (K562) and MDR (K562-Lucena and FEPS) erythroleukemia cells. For this, the inhibitors of 5-LOX (zileuton) and COX-2 (acetylsalicylic acid-ASA) and cells with the silenced ABCB1 gene were used. The treatment with ASA caused an increase in the gene expression of COX2 and ABCB1 in both MDR cell lines, and a decrease in the expression of ALOX5 in the FEPS cells. Silencing the ABCB1 gene induced a decrease in COX2 expression and an increase in the ALOX5 gene. Treatment with zileuton did not alter the expression of COX2 and ABCB1. Cytometry data showed that there was an increase in ABCB1 protein expression after exposure to ASA. In addition, the increased activity of ABCB1 in the K562-Lucena cell line indicates that ASA may be a substrate for this efflux pump, corroborating the molecular docking that showed that ASA can bind to ABCB1. Regardless of the genetic alteration in COX2 and ABCB1, the direct relationship between these genes and the inverse relationship with ALOX5 remained in the MDR cell lines. We assume that ABCB1 can play a regulatory role in COX2 and ALOX5 during the transformation of the parental cell line K562, explaining the increased gene expression of COX2 and decreased ALOX5 in the MDR cell lines.
Collapse
MESH Headings
- Humans
- Cyclooxygenase 2/genetics
- Cyclooxygenase 2/metabolism
- Arachidonate 5-Lipoxygenase/metabolism
- Arachidonate 5-Lipoxygenase/genetics
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- Leukemia, Erythroblastic, Acute/genetics
- Leukemia, Erythroblastic, Acute/pathology
- Leukemia, Erythroblastic, Acute/metabolism
- Hydroxyurea/pharmacology
- Hydroxyurea/analogs & derivatives
- Cell Line, Tumor
- K562 Cells
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
Collapse
Affiliation(s)
| | - Alessandra Costa Lopes
- Laboratório de Cultura Celular, ICB, FURG, RS, Brazil; Escola de Química e Alimentos, EQA, FURG, RS, Brazil
| | | | | | | | | | | | | | | | | | - Ana Paula de Souza Votto
- Laboratório de Cultura Celular, ICB, FURG, RS, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas, ICB, FURG, RS, Brazil.
| |
Collapse
|
43
|
Kumari M, Krishnamurthy PT, Sola P. Targeted Drug Therapy to Overcome Chemoresistance in Triple-negative Breast Cancer. Curr Cancer Drug Targets 2021; 20:559-572. [PMID: 32370716 DOI: 10.2174/1568009620666200506110850] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/09/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023]
Abstract
Triple-negative Breast Cancer (TNBC) is the most aggressive and prevailing breast cancer subtype. The chemotherapeutics used in the treatment of TNBC suffer from chemoresistance, dose-limiting toxicities and off-target side effects. As a result, conventional chemotherapeutics are unable to prevent tumor growth, metastasis and result in failure of therapy. Various new targets such as BCSCs surface markers (CD44, CD133, ALDH1), signaling pathways (IL-6/JAK/STAT3, notch), pro and anti-apoptotic proteins (Bcl-2, Bcl-xL, DR4, DR5), hypoxic factors (HIF-1α, HIF-2α) and drug efflux transporters (ABCC1, ABCG2 and ABCB1) have been exploited to treat TNBC. Further, to improve the efficacy and safety of conventional chemotherapeutics, researchers have tried to deliver anticancer agents specifically to the TNBCs using nanocarrier based drug delivery. In this review, an effort has been made to highlight the various factors responsible for the chemoresistance in TNBC, novel molecular targets of TNBC and nano-delivery systems employed to achieve sitespecific drug delivery to improve efficacy and reduce off-target side effects.
Collapse
Affiliation(s)
- Mamta Kumari
- Department of Pharmacology, JSS College of Pharmacy, (A Constituent College of JSS Academy of Higher Education & Research), Ooty, Tamilnadu, India
| | - Praveen Thaggikuppe Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, (A Constituent College of JSS Academy of Higher Education & Research), Ooty, Tamilnadu, India
| | - Piyong Sola
- Department of Pharmacology, JSS College of Pharmacy, (A Constituent College of JSS Academy of Higher Education & Research), Ooty, Tamilnadu, India
| |
Collapse
|
44
|
Cao J, Zhang M, Wang B, Zhang L, Fang M, Zhou F. Chemoresistance and Metastasis in Breast Cancer Molecular Mechanisms and Novel Clinical Strategies. Front Oncol 2021; 11:658552. [PMID: 34277408 PMCID: PMC8281885 DOI: 10.3389/fonc.2021.658552] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/23/2021] [Indexed: 01/16/2023] Open
Abstract
Breast cancer is the most common malignant tumor in females worldwide. Chemotherapy is the standard breast cancer treatment; however, chemoresistance is often seen in patients with metastatic breast cancer. Owing to high heterogeneity, the mechanisms of breast cancer chemoresistance and metastasis have not been fully investigated. The possible molecular mechanisms of chemoresistance in breast cancer include efflux transporters, signaling pathways, non-coding RNAs, and cancer stem cells. However, to overcome this hurdle, the use of novel clinical strategies such as drug carriers, immunotherapy, and autophagy regulation, are being investigated. The goal of this review is to summarize the current data about the molecular mechanisms of breast cancer chemoresistance and the novel clinical strategies; thus, providing a useful clinical tool to explore optimal treatment for breast cancer.
Collapse
Affiliation(s)
- Jun Cao
- Department of Rare and Head and Neck Oncology, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Mengdi Zhang
- Ministry of Education (MOE) Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Bin Wang
- Ministry of Education (MOE) Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Long Zhang
- Ministry of Education (MOE) Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Meiyu Fang
- Department of Rare and Head and Neck Oncology, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou, China
| |
Collapse
|
45
|
Fan R, Cui Q. Toward comprehensive functional analysis of gene lists weighted by gene essentiality scores. Bioinformatics 2021; 37:4399-4404. [PMID: 34170294 DOI: 10.1093/bioinformatics/btab475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
MOTIVATION Gene functional enrichment analysis represents one of the most popular bioinformatics methods for annotating the pathways and function categories of a given gene list. Current algorithms for enrichment computation such as Fisher's exact test and hypergeometric test totally depend on the category count numbers of the gene list and one gene set. In this case, whatever the genes are, they were treated equally. However, actually genes show different scores in their essentiality in a gene list and in a gene set. It is thus hypothesized that the essentiality scores could be important and should be considered in gene functional analysis. RESULTS For this purpose, here we proposed WEAT (https://www.cuilab.cn/weat/), a weighted gene set enrichment algorithm and online tool by weighting genes using essentiality scores. We confirmed the usefulness of WEAT using three case studies, the functional analysis of one aging-related gene list, one gene list involved in Lung Squamous Cell Carcinoma (LUSC), and one cardiomyopathy gene list from Drosophila model. Finally, we believe that the WEAT method and tool could provide more possibilities for further exploring the functions of given gene lists. AVAILABILITY The datasets generated and analyzed during the current study are available on our website at https://www.cuilab.cn/weat/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Rui Fan
- Department of Biomedical Informatics, Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, 38 Xueyuan Rd, Beijing, 100191, China
| | - Qinghua Cui
- Department of Biomedical Informatics, Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, 38 Xueyuan Rd, Beijing, 100191, China
| |
Collapse
|
46
|
Hepatic drug-metabolizing enzymes and drug transporters in Wilson's disease patients with liver failure. Pharmacol Rep 2021; 73:1427-1438. [PMID: 34117631 PMCID: PMC8460590 DOI: 10.1007/s43440-021-00290-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/22/2022]
Abstract
Background Wilson’s disease is a genetic disorder inherited in a recessive manner, caused by mutations in the copper-transporter ATP7B. Although it is a well-known disease, currently available treatments are far from satisfactory and their efficacy varies in individual patients. Due to the lack of information about drug-metabolizing enzymes and drug transporters profile in Wilson’s disease livers, we aimed to evaluate the mRNA expression and protein abundance of selected enzymes and drug transporters in this liver disorder. Methods We analyzed gene expression (qPCR) and protein abundance (LC–MS/MS) of 14 drug-metabolizing enzymes and 16 drug transporters in hepatic tissue from Wilson’s disease patients with liver failure (n = 7, Child–Pugh class B and C) and metastatic control livers (n = 20). Results In presented work, we demonstrated a downregulation of majority of CYP450 and UGT enzymes. Gene expression of analyzed enzymes ranged between 18 and 65% compared to control group and significantly lower protein content of CYP1A1, CYP1A2, CYP2C8, CYP2C9, CYP3A4 and CYP3A5 enzymes was observed in Wilson’s disease. Moreover, a general decrease in hepatocellular uptake carriers from SLC superfamily (significant at protein level for NTCP and OATP2B1) was observed. As for ABC transporters, the protein abundance of BSEP and MRP2 was significantly lower, while levels of P-gp and MRP4 transporters were significantly higher in Wilson’s disease. Conclusions Altered hepatic expression of drug‐metabolizing enzymes and drug transporters in Wilson’s disease patients with liver failure may result in changes of drug pharmacokinetics in that group of patients. Supplementary Information The online version contains supplementary material available at 10.1007/s43440-021-00290-8.
Collapse
|
47
|
Wang JQ, Wang B, Teng QX, Lei ZN, Li YD, Shi Z, Ma LY, Liu HM, Liu Z, Chen ZS. CMP25, a synthetic new agent, targets multidrug resistance-associated protein 7 (MRP7/ABCC10). Biochem Pharmacol 2021; 190:114652. [PMID: 34126072 DOI: 10.1016/j.bcp.2021.114652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022]
Abstract
Multidrug resistance-associated protein 7 (MRP7) is an important member of ABC transporter superfamily and has been revealed to mediate the cross-membrane translocation of a wide range of chemotherapeutic agents including taxanes, epothilones, Vinca alkaloids, Anthracyclines and Epipodophyllotoxins.In our previous study, a 1,2,3-triazole-pyrimidine hybridCMP25was synthesized and found able to efficiently reverse multidrug resistance (MDR) mediated by P-glycoprotein. In this study, we evaluated the efficacy of compound CMP25in reversing MDR mediated by MRP7in vitro. The results showed that CMP25significantly sensitized MRP7-overexpressing cells to anticancer drugs that are MRP7 substrates. Mechanistic study showed that CMP25reversed MRP7-mediated MDR by increasing the intracellular accumulation of anticancer drugs and decreasing drug efflux, without altering protein expression level or subcellular localization. Currently, very few studies on synthetic MRP7 modulators have been published. Our findings provide a valuable prototype for designing drugs to combine with conventional anticancer drugs to overcome MDR-mediated by MRP7.
Collapse
Affiliation(s)
- Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Bo Wang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, PR China; Key Laboratory of Henan Province for Drug Quality and Evaluation, PR China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Yi-Dong Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Zhi Shi
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Li-Ying Ma
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, PR China; Key Laboratory of Henan Province for Drug Quality and Evaluation, PR China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Hong-Min Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, PR China; Key Laboratory of Henan Province for Drug Quality and Evaluation, PR China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Zhijun Liu
- Department of Medical Microbiology, Weifang Medical University, Weifang 261053, PR China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
48
|
Dzobo K, Dandara C. Architecture of Cancer-Associated Fibroblasts in Tumor Microenvironment: Mapping Their Origins, Heterogeneity, and Role in Cancer Therapy Resistance. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 24:314-339. [PMID: 32496970 DOI: 10.1089/omi.2020.0023] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The tumor stroma, a key component of the tumor microenvironment (TME), is a key determinant of response and resistance to cancer treatment. The stromal cells, extracellular matrix (ECM), and blood vessels influence cancer cell response to therapy and play key roles in tumor relapse and therapeutic outcomes. Of the stromal cells present in the TME, much attention has been given to cancer-associated fibroblasts (CAFs) as they are the most abundant and important in cancer initiation, progression, and therapy resistance. Besides releasing several factors, CAFs also synthesize the ECM, a key component of the tumor stroma. In this expert review, we examine the role of CAFs in the regulation of tumor cell behavior and reveal how CAF-derived factors and signaling influence tumor cell heterogeneity and development of novel strategies to combat cancer. Importantly, CAFs display both phenotypic and functional heterogeneity, with significant ramifications on CAF-directed therapies. Principal anti-cancer therapies targeting CAFs take the form of: (1) CAFs' ablation through use of immunotherapies, (2) re-education of CAFs to normalize the cells, (3) cellular therapies involving CAFs delivering drugs such as oncolytic adenoviruses, and (4) stromal depletion via targeting the ECM and its related signaling. The CAFs' heterogeneity could be a result of different cellular origins and the cancer-specific tumor microenvironmental effects, underscoring the need for further multiomics and biochemical studies on CAFs and the subsets. Lastly, we present recent advances in therapeutic targeting of CAFs and the success of such endeavors or their lack thereof. We recommend that to advance global public health and personalized medicine, treatments in the oncology clinic should be combinatorial in nature, strategically targeting both cancer cells and stromal cells, and their interactions.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa.,Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
49
|
Role of the Abcg2 transporter in plasma levels and tissue accumulation of the anti-inflammatory tolfenamic acid in mice. Chem Biol Interact 2021; 345:109537. [PMID: 34062171 DOI: 10.1016/j.cbi.2021.109537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/10/2021] [Accepted: 05/27/2021] [Indexed: 01/16/2023]
Abstract
The Breast Cancer Resistance Protein (BCRP/ABCG2) is an ATP-binding cassette efflux transporter that is expressed in the apical membrane of cells from relevant tissues involved in drug pharmacokinetics such as liver, intestine, kidney, testis, brain and mammary gland, among others. Tolfenamic acid is an anti-inflammatory drug used as an analgesic and antipyretic in humans and animals. Recently, tolfenamic acid has been repurposed as an antitumoral drug and for use in chronic human diseases such as Alzheimer. The aim of this work was to study whether tolfenamic acid is an in vitro Abcg2 substrate, and to investigate the potential role of Abcg2 in plasma exposure, secretion into milk and tissue accumulation of this drug. Using in vitro transepithelial assays with cells transduced with Abcg2, we showed that tolfenamic acid is an in vitro substrate of Abcg2. The in vivo effect of this transporter was tested using wild-type and Abcg2-/- mice, showing that after oral and intravenous administration of tolfenamic acid, its area under the plasma concentration-time curve in Abcg2-/- mice was between 1.7 and 1.8-fold higher compared to wild-type mice. Abcg2-/- mice also showed higher liver and testis accumulation of tolfenamic acid after intravenous administration. In this study, we demonstrate that tolfenamic acid is transported in vitro by Abcg2 and that its plasma levels as well as its tissue distribution are affected by Abcg2, with potential pharmacological and toxicological consequences.
Collapse
|
50
|
Shahmoradi Ghahe S, Kosicki K, Wojewódzka M, Majchrzak BA, Fogtman A, Iwanicka-Nowicka R, Ciuba A, Koblowska M, Kruszewski M, Tudek B, Speina E. Increased DNA repair capacity augments resistance of glioblastoma cells to photodynamic therapy. DNA Repair (Amst) 2021; 104:103136. [PMID: 34044336 DOI: 10.1016/j.dnarep.2021.103136] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/15/2021] [Indexed: 12/21/2022]
Abstract
Photodynamic therapy (PDT) is a clinically approved cancer therapy of low invasiveness. The therapeutic procedure involves administering a photosensitizing drug (PS), which is then activated with monochromatic light of a specific wavelength. The photochemical reaction produces highly toxic oxygen species. The development of resistance to PDT in some cancer cells is its main limitation. Several mechanisms are known to be involved in the development of cellular defense against cytotoxic effects of PDT, including activation of antioxidant enzymes, drug efflux pumps, degradation of PS, and overexpression of protein chaperons. Another putative factor that plays an important role in the development of resistance of cancer cells to PDT seems to be DNA repair; however, it has not been well studied so far. To explore the role of DNA repair and other potential novel mechanisms associated with the resistance to PDT in the glioblastoma cells, cells stably resistant to PDT were isolated from PDT sensitive cells following repetitive PDT cycles. Duly characterization of isolated PDT-resistant glioblastoma revealed that the resistance to PDT might be a consequence of several mechanisms, including higher repair efficiency of oxidative DNA damage and repair of DNA breaks. Higher activity of APE1 endonuclease and increased expression and activation of DNA damage kinase ATM was demonstrated in the U-87 MGR cell line, suggesting and proving that they are good targets for sensitization of resistant cells to PDT.
Collapse
Affiliation(s)
- Somayeh Shahmoradi Ghahe
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland; Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Konrad Kosicki
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Maria Wojewódzka
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195, Warsaw, Poland
| | - Bartosz A Majchrzak
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Anna Fogtman
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland; Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Roksana Iwanicka-Nowicka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland; Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Agata Ciuba
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Marta Koblowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland; Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195, Warsaw, Poland; Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, 20-090, Lublin, Poland
| | - Barbara Tudek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland; Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Elżbieta Speina
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland.
| |
Collapse
|