1
|
Malý P, Strachotová D, Holoubek A, Heřman P. Interferometric excitation fluorescence lifetime imaging microscopy. Nat Commun 2024; 15:8019. [PMID: 39271727 PMCID: PMC11399241 DOI: 10.1038/s41467-024-52333-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Fluorescence lifetime imaging microscopy (FLIM) is a well-established technique with numerous imaging applications. Yet, one of the limitations of FLIM is that it only provides information about the emitting state. Here, we present an extension of FLIM by interferometric measurement of fluorescence excitation spectra. Interferometric Excitation Fluorescence Lifetime Imaging Microscopy (ixFLIM) reports on the correlation of the excitation spectra and emission lifetime, providing the correlation between the ground-state absorption and excited-state emission. As such, it extends the applicability of FLIM and removes some of its limitations. We introduce ixFLIM on progressively more complex systems, directly compare it to standard FLIM, and apply it to quantitative resonance energy transfer imaging from a single measurement.
Collapse
Affiliation(s)
- Pavel Malý
- Faculty of Mathematics and Physics, Institute of Physics, Charles University, Prague, Czech Republic.
| | - Dita Strachotová
- Faculty of Mathematics and Physics, Institute of Physics, Charles University, Prague, Czech Republic
| | - Aleš Holoubek
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Petr Heřman
- Faculty of Mathematics and Physics, Institute of Physics, Charles University, Prague, Czech Republic
| |
Collapse
|
2
|
Fan Q, Xia C, Zeng X, Wu Z, Guo Y, Du Q, Tu M, Liu X, Pan D. Effect and potential mechanism of nitrite reductase B on nitrite degradation by Limosilactobacillus fermentum RC4. Curr Res Food Sci 2024; 8:100749. [PMID: 38694558 PMCID: PMC11061237 DOI: 10.1016/j.crfs.2024.100749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/04/2024] Open
Abstract
Nitrite has the potential risk of hypoxic poisoning or cancer in pickled food. In our previous study, Limosilactobacillus fermentum (L. fermentum) RC4 is effective in nitrite degradation by producing nitrite reductase B (NirB). To investigate the detailed mechanism from the genome, response, and regulation of NirB, the whole-genome sequence of L. fermentum RC4 was analyzed, the L. fermentum-EGFP-nirB with enhanced green fluorescent protein (EGFP) labeled the nitrite reductase large subunit nirB, and the recombined L. fermentum-NirB with overexpression NirB strain was conducted. The key genes within the dominant metabolism pathways may be involved in stress tolerance to regulate the degrading process. The green fluorescence density of EGFP indicated that NirB activity has a threshold and peaked under 300 mg/L nitrite concentration. NirB overexpressed in L. fermentum RC4 boosted the enzyme activity by 39.6% and the degradation rate by 10.5%, when fermented in 300 mg/L for 40 h, compared to the control group. RNA-seq detected 248 differential genes mainly enriched in carbohydrate, amino acid, and energy metabolism. The ackA gene for pyruvate metabolism and the mtnN gene for cysteine metabolism were up-regulated. NirB regulates these genes to produce acid and improve stress resistance for L. fermentum RC4 to accelerate nitrite degradation.
Collapse
Affiliation(s)
- Qing Fan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Chaoran Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Yuxing Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Xinanbei Liu
- College of Resources and Environment, Baoshan University, Baoshan, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| |
Collapse
|
3
|
Strachotová D, Holoubek A, Wolfová K, Brodská B, Heřman P. Cytoplasmic localization of Mdm2 in cells expressing mutated NPM is mediated by p53. FEBS J 2023; 290:4281-4299. [PMID: 37119456 DOI: 10.1111/febs.16810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/02/2023] [Accepted: 04/28/2023] [Indexed: 05/01/2023]
Abstract
Specific C-terminal nucleophosmin (NPM) mutations are related to the acute myeloid leukaemia and cause mistargeting of mutated NPM (NPMmut) to the cytoplasm. Consequently, multiple NPM-interacting partners, e.g., the tumour suppressor p53, become also mislocalized. We found that ubiquitin ligase Mdm2 mislocalizes to the cytoplasm in the presence of NPMmut as well. Since p53 interacts with Mdm2, we searched for the NPMmut-p53-Mdm2 complex and interactions of its constituents in live cells and cell lysates using fluorescently tagged proteins, fluorescence lifetime imaging and immunoprecipitation. We proved existence of the ternary complex, which likely adopts a chain-like configuration. Interaction between Mdm2 and NPMmut was not detected, even under conditions of upregulated Mdm2 and p53 induced by Actinomycin D. We assume that p53 serves in the complex as a bridging link between Mdm2 and NPMmut. This conclusion was supported by disruption of the Mdm2-p53 interaction by Nutlin-3A, which resulted in relocalization of Mdm2 to the nucleus, while both NPMmut and p53 remained in the cytoplasm. Importantly, silencing of p53 also prevented mislocalization of Mdm2 in the presence of NPMmut.
Collapse
Affiliation(s)
- Dita Strachotová
- Faculty of Mathematics and Physics, Institute of Physics, Charles University, Prague 2, Czech Republic
| | - Aleš Holoubek
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague 2, Czech Republic
| | - Kateřina Wolfová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague 2, Czech Republic
| | - Barbora Brodská
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague 2, Czech Republic
| | - Petr Heřman
- Faculty of Mathematics and Physics, Institute of Physics, Charles University, Prague 2, Czech Republic
| |
Collapse
|
4
|
Holoubek A, Strachotová D, Otevřelová P, Röselová P, Heřman P, Brodská B. AML-Related NPM Mutations Drive p53 Delocalization into the Cytoplasm with Possible Impact on p53-Dependent Stress Response. Cancers (Basel) 2021; 13:cancers13133266. [PMID: 34209894 PMCID: PMC8269334 DOI: 10.3390/cancers13133266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Nucleophosmin (NPM) is one of the most abundant nucleolar proteins and its mutations frequently occur in acute myeloid leukemia (AML). The mutations cause aberrant cytoplasmic localization of mutated protein (NPMmut) and often mediate dislocation of NPM interaction partners. Tumor suppressor p53 is known to interact with NPM in response to genotoxic stress and its cytoplasmic localization is an unfavorable prognostic factor in cancers. This study aims to characterize the NPM-p53 interaction and to elucidate the effect of the NPM mutations on p53 localization and expression in live cells. In addition, the cellular dynamics of NPMmut and p53 after treatment with nuclear export inhibitor Selinexor is described and the mechanism of the Selinexor action proposed. Our results contribute to a better understanding of the oncogenic potential of NPM mutations. Abstract Nucleophosmin (NPM) interaction with tumor suppressor p53 is a part of a complex interaction network and considerably affects cellular stress response. The impact of NPM1 mutations on its interaction with p53 has not been investigated yet, although consequences of NPMmut-induced p53 export to the cytoplasm are important for understanding the oncogenic potential of these mutations. We investigated p53-NPM interaction in live HEK-293T cells by FLIM-FRET and in cell lysates by immunoprecipitation. eGFP lifetime-photoconversion was used to follow redistribution dynamics of NPMmut and p53 in Selinexor-treated cells. We confirmed the p53-NPMwt interaction in intact cells and newly documented that this interaction is not compromised by the NPM mutation causing displacement of p53 to the cytoplasm. Moreover, the interaction was not abolished for non-oligomerizing NPM variants with truncated oligomerization domain, suggesting that oligomerization is not essential for interaction of NPM forms with p53. Inhibition of the nuclear exporter XPO1 by Selinexor caused expected nuclear relocalization of both NPMmut and p53. However, significantly different return rates of these proteins indicate nontrivial mechanism of p53 and NPMmut cellular trafficking. The altered p53 regulation in cells expressing NPMmut offers improved understanding to help investigational strategies targeting these mutations.
Collapse
Affiliation(s)
- Aleš Holoubek
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague, Czech Republic; (A.H.); (P.O.); (P.R.)
| | - Dita Strachotová
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague, Czech Republic;
| | - Petra Otevřelová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague, Czech Republic; (A.H.); (P.O.); (P.R.)
| | - Pavla Röselová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague, Czech Republic; (A.H.); (P.O.); (P.R.)
| | - Petr Heřman
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague, Czech Republic;
- Correspondence: (P.H.); (B.B.); Tel.: +420-951-551-461 (P.H.); +420-221-977-354 (B.B.)
| | - Barbora Brodská
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague, Czech Republic; (A.H.); (P.O.); (P.R.)
- Correspondence: (P.H.); (B.B.); Tel.: +420-951-551-461 (P.H.); +420-221-977-354 (B.B.)
| |
Collapse
|
5
|
Protasova EA, Mishin AS, Lukyanov KA, Maksimov EG, Bogdanov AM. Chromophore reduction plus reversible photobleaching: how the mKate2 "photoconversion" works. Photochem Photobiol Sci 2021; 20:791-803. [PMID: 34085171 DOI: 10.1007/s43630-021-00060-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
mKate red-to-green photoconversion is a non-canonical type of phototransformation in fluorescent proteins, with a poorly understood mechanism. We have hypothesized that the daughter mKate2 protein may also be photoconvertible, and that this phenomenon would be connected with mKate(2) chromophore photoreduction. Indeed, upon the intense irradiation of the protein sample supplemented by sodium dithionite, the accumulation of green as well as blue spectral forms is enhanced. The reaction was shown to be reversible upon the reductant's removal. However, an analysis of the fluorescence microscopy data, absorption spectra, kinetics and time-resolved fluorescence spectroscopy revealed that the short-wavelength spectral forms of mKate(2) exist before photoactivation, that their fractions increase light-independently after dithionite addition, and that the conversion is facilitated by the photobleaching of the red chromophore form.
Collapse
Affiliation(s)
- Elena A Protasova
- Faculty of Biology, Lomonosov Moscow State University, 119992, Moscow, Russia
| | - Alexander S Mishin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997, Moscow, Russia
| | | | - Eugene G Maksimov
- Faculty of Biology, Lomonosov Moscow State University, 119992, Moscow, Russia
| | - Alexey M Bogdanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997, Moscow, Russia.
| |
Collapse
|
6
|
Dhamija S, De AK. Elucidating Contributions from Multiple Species during Photoconversion of Enhanced Green Fluorescent Protein (EGFP) under Ultraviolet Illumination. Photochem Photobiol 2021; 97:980-990. [PMID: 33624317 DOI: 10.1111/php.13409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 11/30/2022]
Abstract
Photocycle in wild-type green fluorescent protein (wt-GFP) involves generation of a bright fluorescent deprotonated chromophore from feebly fluorescent protonated form via excited-state proton transfer. In addition to this usual photocycle, wt-GFP is also known to exhibit irreversible photoconversion upon illumination with ultraviolet and visible radiation. However, a detailed understanding of photoconversion in enhanced GFP (EGFP: S65T/F64L mutant of wt-GFP), which predominantly exists in deprotonated form, is yet to be explored. Using 254 nm irradiation, we study how photoconversion proceeds in EGFP. The key findings are observation of spreading out of an isosbestic point and existence of an initial lag phase in spectral kinetics of absorbance, indicative of sequential photoconversion through an intermediate. Fluorescence kinetics of EGFP and its photoproduct are estimated by assigning two unique fluorescence lifetimes which is further complicated by the fact that their fluorescence are spectrally inseparable, as evident from global analysis of fluorescence lifetime. Time-resolved fluorescence anisotropy studies further suggest minimal structural changes in protein scaffold upon photoconversion. Based on these findings, an analytic model is developed to account for the overall decay in fluorescence (as photoconversion proceeds) that inherently incorporates the initial lag phase and a summary of energetics and processes involved is provided.
Collapse
Affiliation(s)
- Shaina Dhamija
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar, Punjab, India
| | - Arijit K De
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar, Punjab, India
| |
Collapse
|
7
|
Šašinková M, Heřman P, Holoubek A, Strachotová D, Otevřelová P, Grebeňová D, Kuželová K, Brodská B. NSC348884 cytotoxicity is not mediated by inhibition of nucleophosmin oligomerization. Sci Rep 2021; 11:1084. [PMID: 33441774 PMCID: PMC7806638 DOI: 10.1038/s41598-020-80224-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022] Open
Abstract
Nucleophosmin (NPM) mutations causing its export from the nucleoli to the cytoplasm are frequent in acute myeloid leukemia (AML). Due to heterooligomerization of wild type NPM with the AML-related mutant, the wild-type becomes misplaced from the nucleoli and its functions are significantly altered. Dissociation of NPM heterooligomers may thus restore the proper localization and function of wild-type NPM. NSC348884 is supposed to act as a potent inhibitor of NPM oligomerization. The effect of NSC348884 on the NPM oligomerization was thoroughly examined by fluorescence lifetime imaging with utilization of FRET and by a set of immunoprecipitation and electrophoretic methods. Leukemia-derived cell lines and primary AML cells as well as cells transfected with fluorescently labeled NPM forms were investigated. Our results clearly demonstrate that NSC348884 does not inhibit formation of NPM oligomers neither in vivo nor in vitro. Instead, we document that NSC348884 cytotoxicity is rather associated with modified cell adhesion signaling. The cytotoxic mechanism of NSC348884 has therefore to be reconsidered.
Collapse
Affiliation(s)
- Markéta Šašinková
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague 2, Czech Republic
| | - Petr Heřman
- Faculty of Mathematics and Physics, Institute of Physics, Charles University, Ke Karlovu 5, 121 16, Prague 2, Czech Republic.
| | - Aleš Holoubek
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague 2, Czech Republic
| | - Dita Strachotová
- Faculty of Mathematics and Physics, Institute of Physics, Charles University, Ke Karlovu 5, 121 16, Prague 2, Czech Republic
| | - Petra Otevřelová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague 2, Czech Republic
| | - Dana Grebeňová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague 2, Czech Republic
| | - Kateřina Kuželová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague 2, Czech Republic
| | - Barbora Brodská
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague 2, Czech Republic.
| |
Collapse
|
8
|
Chen YT, Lee YC, Lai YH, Lim JC, Huang NT, Lin CT, Huang JJ. Review of Integrated Optical Biosensors for Point-Of-Care Applications. BIOSENSORS-BASEL 2020; 10:bios10120209. [PMID: 33353033 PMCID: PMC7766912 DOI: 10.3390/bios10120209] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 12/25/2022]
Abstract
This article reviews optical biosensors and their integration with microfluidic channels. The integrated biosensors have the advantages of higher accuracy and sensitivity because they can simultaneously monitor two or more parameters. They can further incorporate many functionalities such as electrical control and signal readout monolithically in a single semiconductor chip, making them ideal candidates for point-of-care testing. In this article, we discuss the applications by specifically looking into point-of-care testing (POCT) using integrated optical sensors. The requirement and future perspective of integrated optical biosensors for POC is addressed.
Collapse
Affiliation(s)
- Yung-Tsan Chen
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan; (Y.-T.C.); (Y.-C.L.); (Y.-H.L.); (J.-C.L.)
| | - Ya-Chu Lee
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan; (Y.-T.C.); (Y.-C.L.); (Y.-H.L.); (J.-C.L.)
| | - Yao-Hsuan Lai
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan; (Y.-T.C.); (Y.-C.L.); (Y.-H.L.); (J.-C.L.)
| | - Jin-Chun Lim
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan; (Y.-T.C.); (Y.-C.L.); (Y.-H.L.); (J.-C.L.)
| | - Nien-Tsu Huang
- Department of Electrical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan; (N.-T.H.); (C.-T.L.)
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan
| | - Chih-Ting Lin
- Department of Electrical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan; (N.-T.H.); (C.-T.L.)
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan
- Graduate Institute of Electronics Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan
| | - Jian-Jang Huang
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan; (Y.-T.C.); (Y.-C.L.); (Y.-H.L.); (J.-C.L.)
- Department of Electrical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan; (N.-T.H.); (C.-T.L.)
- Correspondence:
| |
Collapse
|
9
|
Influence of the First Chromophore-Forming Residue on Photobleaching and Oxidative Photoconversion of EGFP and EYFP. Int J Mol Sci 2019; 20:ijms20205229. [PMID: 31652505 PMCID: PMC6829896 DOI: 10.3390/ijms20205229] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 12/21/2022] Open
Abstract
Enhanced green fluorescent protein (EGFP)—one of the most widely applied genetically encoded fluorescent probes—carries the threonine-tyrosine-glycine (TYG) chromophore. EGFP efficiently undergoes green-to-red oxidative photoconversion (“redding”) with electron acceptors. Enhanced yellow fluorescent protein (EYFP), a close EGFP homologue (five amino acid substitutions), has a glycine-tyrosine-glycine (GYG) chromophore and is much less susceptible to redding, requiring halide ions in addition to the oxidants. In this contribution we aim to clarify the role of the first chromophore-forming amino acid in photoinduced behavior of these fluorescent proteins. To that end, we compared photobleaching and redding kinetics of EGFP, EYFP, and their mutants with reciprocally substituted chromophore residues, EGFP-T65G and EYFP-G65T. Measurements showed that T65G mutation significantly increases EGFP photostability and inhibits its excited-state oxidation efficiency. Remarkably, while EYFP-G65T demonstrated highly increased spectral sensitivity to chloride, it is also able to undergo redding chloride-independently. Atomistic calculations reveal that the GYG chromophore has an increased flexibility, which facilitates radiationless relaxation leading to the reduced fluorescence quantum yield in the T65G mutant. The GYG chromophore also has larger oscillator strength as compared to TYG, which leads to a shorter radiative lifetime (i.e., a faster rate of fluorescence). The faster fluorescence rate partially compensates for the loss of quantum efficiency due to radiationless relaxation. The shorter excited-state lifetime of the GYG chromophore is responsible for its increased photostability and resistance to redding. In EYFP and EYFP-G65T, the chromophore is stabilized by π-stacking with Tyr203, which suppresses its twisting motions relative to EGFP.
Collapse
|