1
|
Stark GF, Martin RM, Smith LE, Wei B, Hellweger FL, Bullerjahn GS, McKay RML, Boyer GL, Wilhelm SW. Cool temperature acclimation in toxigenic Microcystis aeruginosa PCC 7806 and its non-toxigenic mutant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555099. [PMID: 37693631 PMCID: PMC10491114 DOI: 10.1101/2023.08.28.555099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
For Microcystis aeruginosa PCC 7806, temperature decreases from 26° C to 19° C double the microcystin quota per cell during growth in continuous culture. Here we tested whether this increase in microcystin provided M. aeruginosa PCC 7806 with a fitness advantage during colder-temperature growth by comparing cell concentration, cellular physiology, and the transcriptomics-inferred metabolism to a non-toxigenic mutant strain M. aeruginosa PCC 7806 ΔmcyB. Photo-physiological data combined with transcriptomic data revealed metabolic changes in the mutant strain during growth at 19° C, which included increased electron sinks and non-photochemical quenching. Increased gene expression was observed for a glutathione-dependent peroxiredoxin during cold treatment, suggesting compensatory mechanisms to defend against reactive oxygen species are employed in the absence of microcystin in the mutant. Our observations highlight the potential selective advantages of a longer-term defensive strategy in management of oxidative stress (i.e., making microcystin) vs the shorter-term proactive strategy of producing cellular components to actively dissipate or degrade oxidative stress agents.
Collapse
Affiliation(s)
- Gwendolyn F Stark
- Department of Microbiology, The University of Tennessee, Knoxville, TN, USA
| | - Robbie M Martin
- Department of Microbiology, The University of Tennessee, Knoxville, TN, USA
| | - Laura E Smith
- Department of Microbiology, The University of Tennessee, Knoxville, TN, USA
| | - Bofan Wei
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, NY, USA
| | - Ferdi L Hellweger
- Water Quality Engineering, Technical University of Berlin, Berlin, Germany
| | - George S Bullerjahn
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, USA
| | - R Michael L McKay
- Great Lakes Institute for Environmental Research, The University of Windsor, Windsor, ON, Canada
| | - Gregory L Boyer
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, NY, USA
| | - Steven W Wilhelm
- Department of Microbiology, The University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
2
|
Whitman BT, Wang Y, Murray CRA, Glover MJN, Owttrim GW. Liquid-Liquid Phase Separation of the DEAD-Box Cyanobacterial RNA Helicase Redox (CrhR) into Dynamic Membraneless Organelles in Synechocystis sp. Strain PCC 6803. Appl Environ Microbiol 2023; 89:e0001523. [PMID: 36920190 PMCID: PMC10132119 DOI: 10.1128/aem.00015-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/17/2023] [Indexed: 03/16/2023] Open
Abstract
Compartmentalization of macromolecules into discrete non-lipid-bound bodies by liquid-liquid phase separation (LLPS) is a well-characterized regulatory mechanism frequently associated with the cellular stress response in eukaryotes. In contrast, the formation and importance of similar complexes is just becoming evident in bacteria. Here, we identify LLPS as the mechanism by which the DEAD-box RNA helicase, cyanobacterial RNA helicase redox (CrhR), compartmentalizes into dynamic membraneless organelles in a temporal and spatial manner in response to abiotic stress in the cyanobacterium Synechocystis sp. strain PCC 6803. Stress conditions induced CrhR to form a single crescent localized exterior to the thylakoid membrane, indicating that this region is a crucial domain in the cyanobacterial stress response. These crescents rapidly dissipate upon alleviation of the stress conditions. Furthermore, CrhR aggregation was mediated by LLPS in an RNA-dependent reaction. We propose that dynamic CrhR condensation performs crucial roles in RNA metabolism, enabling rapid adaptation of the photosynthetic apparatus to environmental stresses. These results expand our understanding of the role that functional compartmentalization of RNA helicases and thus RNA processing in membraneless organelles by LLPS-mediated protein condensation performs in the bacterial response to environmental stress. IMPORTANCE Oxygen-evolving photosynthetic cyanobacteria evolved ~3 billion years ago, performing fundamental roles in the biogeochemical evolution of the early Earth and continue to perform fundamental roles in nutrient cycling and primary productivity today. The phylum consists of diverse species that flourish in heterogeneous environments. A prime driver for survival is the ability to alter photosynthetic performance in response to the shifting environmental conditions these organisms continuously encounter. This study demonstrated that diverse abiotic stresses elicit dramatic changes in localization and structural organization of the RNA helicase CrhR associated with the photosynthetic thylakoid membrane. These dynamic changes, mediated by a liquid-liquid phase separation (LLPS)-mediated mechanism, reveal a novel mechanism by which cyanobacteria can compartmentalize the activity of ribonucleoprotein complexes in membraneless organelles. The results have significant consequences for understanding bacterial adaptation and survival in response to changing environmental conditions.
Collapse
Affiliation(s)
- Brendan T. Whitman
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Yixiong Wang
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Cameron R. A. Murray
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Mark J. N. Glover
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - George W. Owttrim
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Ritter SPA, Brand LA, Vincent SL, Rosana ARR, Lewis AC, Whitford DS, Owttrim GW. Multiple Light-Dark Signals Regulate Expression of the DEAD-Box RNA Helicase CrhR in Synechocystis PCC 6803. Cells 2022; 11:3397. [PMID: 36359793 PMCID: PMC9655292 DOI: 10.3390/cells11213397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 09/08/2024] Open
Abstract
Since oxygenic photosynthesis evolved in the common ancestor of cyanobacteria during the Archean, a range of sensing and response strategies evolved to allow efficient acclimation to the fluctuating light conditions experienced in the diverse environments they inhabit. However, how these regulatory mechanisms are assimilated at the molecular level to coordinate individual gene expression is still being elucidated. Here, we demonstrate that integration of a series of three distinct light signals generate an unexpectedly complex network regulating expression of the sole DEAD-box RNA helicase, CrhR, encoded in Synechocystis sp. PCC 6803. The mechanisms function at the transcriptional, translational and post-translation levels, fine-tuning CrhR abundance to permit rapid acclimation to fluctuating light and temperature regimes. CrhR abundance is enhanced 15-fold by low temperature stress. We initially confirmed that the primary mechanism controlling crhR transcript accumulation at 20 °C requires a light quantity-driven reduction of the redox poise in the vicinity of the plastoquinone pool. Once transcribed, a specific light quality cue, a red light signal, was required for crhR translation, far-red reversal of which indicates a phytochrome-mediated mechanism. Examination of CrhR repression at 30 °C revealed that a redox- and light quality-independent light signal was required to initiate CrhR degradation. The crucial role of light was further revealed by the observation that dark conditions superseded the light signals required to initiate each of these regulatory processes. The findings reveal an unexpected complexity of light-dark sensing and signaling that regulate expression of an individual gene in cyanobacteria, an integrated mechanism of environmental perception not previously reported.
Collapse
Affiliation(s)
- Sean P. A. Ritter
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver, BC V6T 1Z4, Canada
| | - Logan A. Brand
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Shelby L. Vincent
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | | | - Allison C. Lewis
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Denise S. Whitford
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - George W. Owttrim
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
4
|
Whitman BT, Murray CRA, Whitford DS, Paul SS, Fahlman RP, Glover MJN, Owttrim GW. Degron-mediated proteolysis of CrhR-like DEAD-box RNA helicases in cyanobacteria. J Biol Chem 2022; 298:101925. [PMID: 35413287 PMCID: PMC9117542 DOI: 10.1016/j.jbc.2022.101925] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 11/18/2022] Open
Abstract
Conditional proteolytic degradation is an irreversible and highly regulated process that fulfills crucial regulatory functions in all organisms. As proteolytic targets tend to be critical metabolic or regulatory proteins, substrates are targeted for degradation only under appropriate conditions through the recognition of an amino acid sequence referred to as a “degron”. DEAD-box RNA helicases mediate all aspects of RNA metabolism, contributing to cellular fitness. However, the mechanism by which abiotic-stress modulation of protein stability regulates bacterial helicase abundance has not been extensively characterized. Here, we provide in vivo evidence that proteolytic degradation of the cyanobacterial DEAD-box RNA helicase CrhR is conditional, being initiated by a temperature upshift from 20 to 30 °C in the model cyanobacterium, Synechocystis sp. PCC 6803. We show degradation requires a unique, highly conserved, inherently bipartite degron located in the C-terminal extension found only in CrhR-related RNA helicases in the phylum Cyanobacteria. However, although necessary, the degron is not sufficient for proteolysis, as disruption of RNA helicase activity and/or translation inhibits degradation. These results suggest a positive feedback mechanism involving a role for CrhR in expression of a crucial factor required for degradation. Furthermore, AlphaFold structural prediction indicated the C-terminal extension is a homodimerization domain with homology to other bacterial RNA helicases, and mass photometry data confirmed that CrhR exists as a dimer in solution at 22 °C. These structural data suggest a model wherein the CrhR degron is occluded at the dimerization interface but could be exposed if dimerization was disrupted by nonpermissive conditions.
Collapse
Affiliation(s)
- Brendan T Whitman
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Cameron R A Murray
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Denise S Whitford
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Simanta S Paul
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Richard P Fahlman
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Mark J N Glover
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - George W Owttrim
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
5
|
Klähn S, Mikkat S, Riediger M, Georg J, Hess WR, Hagemann M. Integrative analysis of the salt stress response in cyanobacteria. Biol Direct 2021; 16:26. [PMID: 34906211 PMCID: PMC8670252 DOI: 10.1186/s13062-021-00316-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022] Open
Abstract
Microorganisms evolved specific acclimation strategies to thrive in environments of high or fluctuating salinities. Here, salt acclimation in the model cyanobacterium Synechocystis sp. PCC 6803 was analyzed by integrating transcriptomic, proteomic and metabolomic data. A dynamic reorganization of the transcriptome occurred during the first hours after salt shock, e.g. involving the upregulation of genes to activate compatible solute biochemistry balancing osmotic pressure. The massive accumulation of glucosylglycerol then had a measurable impact on the overall carbon and nitrogen metabolism. In addition, we observed the coordinated induction of putative regulatory RNAs and of several proteins known for their involvement in other stress responses. Overall, salt-induced changes in the proteome and transcriptome showed good correlations, especially among the stably up-regulated proteins and their transcripts. We define an extended salt stimulon comprising proteins directly or indirectly related to compatible solute metabolism, ion and water movements, and a distinct set of regulatory RNAs involved in post-transcriptional regulation. Our comprehensive data set provides the basis for engineering cyanobacterial salt tolerance and to further understand its regulation.
Collapse
Affiliation(s)
- Stephan Klähn
- Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
| | - Stefan Mikkat
- Core Facility Proteome Analysis, Rostock University Medical Center, Rostock, Germany
| | - Matthias Riediger
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
| | - Jens Georg
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
| | - Wolfgang R. Hess
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
| | - Martin Hagemann
- Department of Plant Physiology, Institute of Biosciences, University of Rostock, A.-Einstein-Str. 3, 18059 Rostock, Germany
- Department Life, Light and Matter, University of Rostock, Rostock, Germany
| |
Collapse
|
6
|
Migur A, Heyl F, Fuss J, Srikumar A, Huettel B, Steglich C, Prakash JSS, Reinhardt R, Backofen R, Owttrim GW, Hess WR. The temperature-regulated DEAD-box RNA helicase CrhR interactome: Autoregulation and photosynthesis-related transcripts. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab416. [PMID: 34499142 DOI: 10.1093/jxb/erab416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Indexed: 06/13/2023]
Abstract
RNA helicases play crucial functions in RNA biology. In plants, RNA helicases are encoded by large gene families, performing roles in abiotic stress responses, development, the post-transcriptional regulation of gene expression as well as house-keeping functions. Several of these RNA helicases are targeted to the organelles, mitochondria and chloroplasts. Cyanobacteria are the direct evolutionary ancestors of plant chloroplasts. The cyanobacterium Synechocystis 6803 encodes a single DEAD-box RNA helicase, CrhR, that is induced by a range of abiotic stresses, including low temperature. Though the ΔcrhR mutant exhibits a severe cold-sensitive phenotype, the physiological function(s) performed by CrhR have not been described. To identify transcripts interacting with CrhR, we performed RNA co-immunoprecipitation with extracts from a Synechocystis crhR deletion mutant expressing the FLAG-tagged native CrhR or a K57A mutated version with an anticipated enhanced RNA binding. The composition of the interactome was strikingly biased towards photosynthesis-associated and redox-controlled transcripts. A transcript highly enriched in all experiments was the crhR mRNA, suggesting an auto-regulatory molecular mechanism. The identified interactome explains the described physiological role of CrhR in response to the redox poise of the photosynthetic electron transport chain and characterizes CrhR as an enzyme with a diverse range of transcripts as molecular targets.
Collapse
Affiliation(s)
- Anzhela Migur
- Faculty of Biology, University of Freiburg, Schänzlestr., Freiburg, Germany
| | - Florian Heyl
- Department of Computer Science, University of Freiburg, Georges-Koehler-Allee, Freiburg, Germany
| | - Janina Fuss
- Max Planck-Genome-Centre Cologne, Carl-von-Linné-Weg, Köln, Germany
| | - Afshan Srikumar
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Bruno Huettel
- Max Planck-Genome-Centre Cologne, Carl-von-Linné-Weg, Köln, Germany
| | - Claudia Steglich
- Faculty of Biology, University of Freiburg, Schänzlestr., Freiburg, Germany
| | - Jogadhenu S S Prakash
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | | - Rolf Backofen
- Department of Computer Science, University of Freiburg, Georges-Koehler-Allee, Freiburg, Germany
| | - George W Owttrim
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Wolfgang R Hess
- Faculty of Biology, University of Freiburg, Schänzlestr., Freiburg, Germany
| |
Collapse
|
7
|
Whitford DS, Whitman BT, Owttrim GW. Genera specific distribution of DEAD-box RNA helicases in cyanobacteria. Microb Genom 2021; 7. [PMID: 33539277 PMCID: PMC8190605 DOI: 10.1099/mgen.0.000517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although RNA helicases are essentially ubiquitous and perform roles in all stages of RNA metabolism, phylogenetic analysis of the DEAD (Asp-Glu-Ala-Asp)-box RNA helicase family in a single phylum has not been performed. Here, we performed a phylogenetic analysis on DEAD-box helicases from all currently available cyanobacterial genomes, comprising a total of 362 helicase protein sequences from 280 strains. DEAD-box helicases belonging to three distinct clades were observed. Two clades, the CsdA (cold shock DEAD-box A)-like and RhlE (RNA helicase E)-like helicases, cluster with the homologous proteins from Escherichia coli. The third clade, the CrhR (cyanobacterial RNA helicase Redox)-like helicases, is unique to cyanobacteria and characterized by a conserved sequence motif in the C-terminal extension. Restricted distribution is observed across cyanobacterial diversity with respect to both helicase type and strain. CrhR-like and CsdA-like helicases essentially never occur together, while RhlE always occurs with either a CrhR-like or CsdA-like helicase. CrhR-like and RhlE-like proteins occurred in filamentous cyanobacteria of the orders Nostocales, Oscillatoriales and Synechococcales. Similarly, CsdA- and RhlE-like proteins are restricted to unicellular cyanobacteria of the genera Cyanobium and Synechococcus. In addition, the unexpected occurrence of RhlE in two Synechococcus strains suggests recent acquisition and evolutionary divergence. This study, therefore, raises physiological and evolutionary questions as to why DEAD-box RNA helicases encoded in cyanobacterial lineages display restricted distributions, suggesting niches that require either CrhR or CsdA RNA helicase activity but not both. Extensive conservation of gene synteny surrounding the previously described rimO–crhR operon is also observed, indicating a role in the maintenance of photosynthesis. The analysis provides insights into the evolution, origin and dissemination of sequences within a single gene family to yield divergent functional roles.
Collapse
Affiliation(s)
- Denise S Whitford
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Brendan T Whitman
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - George W Owttrim
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
8
|
Rosana ARR, Whitford DS, Migur A, Steglich C, Kujat-Choy SL, Hess WR, Owttrim GW. RNA helicase-regulated processing of the Synechocystis rimO-crhR operon results in differential cistron expression and accumulation of two sRNAs. J Biol Chem 2020; 295:6372-6386. [PMID: 32209657 DOI: 10.1074/jbc.ra120.013148] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/19/2020] [Indexed: 12/21/2022] Open
Abstract
The arrangement of functionally-related genes in operons is a fundamental element of how genetic information is organized in prokaryotes. This organization ensures coordinated gene expression by co-transcription. Often, however, alternative genetic responses to specific stress conditions demand the discoordination of operon expression. During cold temperature stress, accumulation of the gene encoding the sole Asp-Glu-Ala-Asp (DEAD)-box RNA helicase in Synechocystis sp. PCC 6803, crhR (slr0083), increases 15-fold. Here, we show that crhR is expressed from a dicistronic operon with the methylthiotransferase rimO/miaB (slr0082) gene, followed by rapid processing of the operon transcript into two monocistronic mRNAs. This cleavage event is required for and results in destabilization of the rimO transcript. Results from secondary structure modeling and analysis of RNase E cleavage of the rimO-crhR transcript in vitro suggested that CrhR plays a role in enhancing the rate of the processing in an auto-regulatory manner. Moreover, two putative small RNAs are generated from additional processing, degradation, or both of the rimO transcript. These results suggest a role for the bacterial RNA helicase CrhR in RNase E-dependent mRNA processing in Synechocystis and expand the known range of organisms possessing small RNAs derived from processing of mRNA transcripts.
Collapse
Affiliation(s)
- Albert Remus R Rosana
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Denise S Whitford
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Anzhela Migur
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | - Claudia Steglich
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | - Sonya L Kujat-Choy
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Wolfgang R Hess
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany.,Freiburg Institute for Advanced Studies, University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany
| | - George W Owttrim
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|