1
|
Granjo P, Pascoal C, Gallego D, Francisco R, Jaeken J, Moors T, Edmondson AC, Kantautas KA, Serrano M, Videira PA, Dos Reis Ferreira V. Mapping the diagnostic odyssey of congenital disorders of glycosylation (CDG): insights from the community. Orphanet J Rare Dis 2024; 19:407. [PMID: 39482754 PMCID: PMC11529564 DOI: 10.1186/s13023-024-03389-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/03/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Congenital disorders of glycosylation (CDG) are a group of rare metabolic diseases with heterogeneous presentations, leading to substantial diagnostic challenges, which are poorly understood. Therefore, this study aims to elucidate this diagnostic journey by examining families' and professionals' experiences. RESULTS AND DISCUSSION A questionnaire was designed for CDG families and professionals, garnering 160 and 35 responses, respectively. Analysis revealed the lack of seizures as a distinctive feature between PMM2-CDG (11.2%) with Other CDG (57.7%) at symptom onset. Hypotonia and developmental disability were prevalent symptoms across all studied CDG. Feeding problems were identified as an early onset symptom in PMM2-CDG (Cramer's V (V) = 0.30, False Discovery Rate (FDR) = 3.8 × 10- 9), and hypotonia in all studied CDG (V = 0.34, FDR = 7.0 × 10- 3). The average time to diagnosis has decreased in recent years (now ~ 3.9 years), due to advancements namely the increased use of whole genome and exome sequencing. However, misdiagnoses remain prevalent (PMM2-CDG - 44.9%, non-PMM2-CDG - 64.8%). To address these challenges, we propose adapting medical training to increase awareness of CDG and other rare diseases, ongoing education for physicians, the development of educational resources for relevant medical units, and empowerment of families through patient organizations and support networks. CONCLUSION This study emphasizes the crucial role of community-centered research, and the insights families can offer to enhance CDG management. By pinpointing existing gaps and needs, our findings can inform targeted interventions and support systems to improve the lives of those impacted by CDG.
Collapse
Affiliation(s)
- Pedro Granjo
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal
| | - Carlota Pascoal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Lisbon, Portugal
| | - Diana Gallego
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Investigación Sanitaria IdiPaZ, Madrid, Spain
| | - Rita Francisco
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Lisbon, Portugal
| | - Jaak Jaeken
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal
- Center for Metabolic Diseases, Department of Pediatrics, KU Leuven, Leuven, 3000, Belgium
| | - Tristen Moors
- Glycomine, Inc, 733 Industrial Road, San Carlos, CA, 94070, USA
| | - Andrew C Edmondson
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Mercedes Serrano
- Neurology Department, Hospital Sant Joan de Déu, U-703 Centre for Biomedical Research on Rare Diseases (CIBER-ER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Paula A Videira
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal.
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal.
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal.
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Lisbon, Portugal.
| | - Vanessa Dos Reis Ferreira
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal.
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal.
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal.
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Lisbon, Portugal.
| |
Collapse
|
2
|
Interdonato L, Himmelreich N, Garbade SF, Wen D, Morath M, Di Paola R, Calabrese V, Thiel C, Peters V. Assessing carnosinase 1 activity for diagnosing congenital disorders of glycosylation. Mol Genet Metab 2024; 143:108571. [PMID: 39226631 DOI: 10.1016/j.ymgme.2024.108571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024]
Abstract
Diagnosing Congenital Disorders of Glycosylation (CDG) is challenging due to clinical heterogeneity and the limited sensitivity of the classic serum transferrin isoelectric focusing (IEF) or capillary zone electrophoresis test. This study investigates the potential of using the glycoprotein carnosinase 1 (CN1) activity as a diagnostic marker for CDG patients. CN1 activity was measured photometrically in serum from 81 genetically confirmed CDG patients and healthy individuals. While the IEF transferrin method detected 77 patients, four remained undetected. In healthy individuals, serum CN1 activity ranged from 0.1 to 6.4 μmol/ml/h depending on age, with mean CN1 activities up to four-fold higher than in CDG patients. CDG patients´ CN1 activities never exceeded 2,04 μmol/ml/h. Using the 25th percentile to differentiate between groups, the test performance varied by age. For children over 10 years old, the sensitivity and specificity were 96 % and 83 %, respectively. For those under 10, sensitivity and specificity dropped to 71 % and to 64 %. However, CN1 activity successfully identified three of four patients with normal IEF patterns. Although mean CN1 activity in CDG patients is significantly lower than in healthy controls, the test's reliability for classic CDG diagnosis is limited, as the diagnosis is usually made at a young age. Nevertheless, it is a simple, cost-effective assay that can complement classic tests, especially in settings with limited access to complex methods or for patients with normal transferrin patterns but suspicious for CDG.
Collapse
Affiliation(s)
- Livia Interdonato
- Heidelberg University, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, 69120 Heidelberg, Germany; University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Science, Messina, Italy
| | - Nastassja Himmelreich
- Heidelberg University, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, 69120 Heidelberg, Germany
| | - Sven F Garbade
- Heidelberg University, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, 69120 Heidelberg, Germany
| | - Dan Wen
- Heidelberg University, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, 69120 Heidelberg, Germany
| | - Marina Morath
- Heidelberg University, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, 69120 Heidelberg, Germany
| | - Rosanna Di Paola
- University of Messina, Department of Veterinary Science, Messina, Italy
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| | - Christian Thiel
- Heidelberg University, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, 69120 Heidelberg, Germany
| | - Verena Peters
- Heidelberg University, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, 69120 Heidelberg, Germany.
| |
Collapse
|
3
|
Sidpra J, Sudhakar S, Biswas A, Massey F, Turchetti V, Lau T, Cook E, Alvi JR, Elbendary HM, Jewell JL, Riva A, Orsini A, Vignoli A, Federico Z, Rosenblum J, Schoonjans AS, de Wachter M, Delgado Alvarez I, Felipe-Rucián A, Haridy NA, Haider S, Zaman M, Banu S, Anwaar N, Rahman F, Maqbool S, Yadav R, Salpietro V, Maroofian R, Patel R, Radhakrishnan R, Prabhu SP, Lichtenbelt K, Stewart H, Murakami Y, Löbel U, D’Arco F, Wakeling E, Jones W, Hay E, Bhate S, Jacques TS, Mirsky DM, Whitehead MT, Zaki MS, Sultan T, Striano P, Jansen AC, Lequin M, de Vries LS, Severino M, Edmondson AC, Menzies L, Campeau PM, Houlden H, McTague A, Efthymiou S, Mankad K. The clinical and genetic spectrum of inherited glycosylphosphatidylinositol deficiency disorders. Brain 2024; 147:2775-2790. [PMID: 38456468 PMCID: PMC11292905 DOI: 10.1093/brain/awae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/31/2023] [Accepted: 01/26/2024] [Indexed: 03/09/2024] Open
Abstract
Inherited glycosylphosphatidylinositol deficiency disorders (IGDs) are a group of rare multisystem disorders arising from pathogenic variants in glycosylphosphatidylinositol anchor pathway (GPI-AP) genes. Despite associating 24 of at least 31 GPI-AP genes with human neurogenetic disease, prior reports are limited to single genes without consideration of the GPI-AP as a whole and with limited natural history data. In this multinational retrospective observational study, we systematically analyse the molecular spectrum, phenotypic characteristics and natural history of 83 individuals from 75 unique families with IGDs, including 70 newly reported individuals; the largest single cohort to date. Core clinical features were developmental delay or intellectual disability (DD/ID, 90%), seizures (83%), hypotonia (72%) and motor symptoms (64%). Prognostic and biologically significant neuroimaging features included cerebral atrophy (75%), cerebellar atrophy (60%), callosal anomalies (57%) and symmetric restricted diffusion of the central tegmental tracts (60%). Sixty-one individuals had multisystem involvement including gastrointestinal (66%), cardiac (19%) and renal (14%) anomalies. Though dysmorphic features were appreciated in 82%, no single dysmorphic feature had a prevalence >30%, indicating substantial phenotypic heterogeneity. Follow-up data were available for all individuals, 15 of whom were deceased at the time of writing. Median age at seizure onset was 6 months. Individuals with variants in synthesis stage genes of the GPI-AP exhibited a significantly shorter time to seizure onset than individuals with variants in transamidase and remodelling stage genes of the GPI-AP (P = 0.046). Forty individuals had intractable epilepsy. The majority of individuals experienced delayed or absent speech (95%), motor delay with non-ambulance (64%), and severe-to-profound DD/ID (59%). Individuals with a developmental epileptic encephalopathy (51%) were at greater risk of intractable epilepsy (P = 0.003), non-ambulance (P = 0.035), ongoing enteral feeds (P < 0.001) and cortical visual impairment (P = 0.007). Serial neuroimaging showed progressive cerebral volume loss in 87.5% and progressive cerebellar atrophy in 70.8%, indicating a neurodegenerative process. Genetic analyses identified 93 unique variants (106 total), including 22 novel variants. Exploratory analyses of genotype-phenotype correlations using unsupervised hierarchical clustering identified novel genotypic predictors of clinical phenotype and long-term outcome with meaningful implications for management. In summary, we expand both the mild and severe phenotypic extremities of the IGDs, provide insights into their neurological basis, and vitally, enable meaningful genetic counselling for affected individuals and their families.
Collapse
Affiliation(s)
- Jai Sidpra
- Developmental Biology and Cancer Section, University College London Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Sniya Sudhakar
- Department of Neuroradiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Asthik Biswas
- Department of Neuroradiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Flavia Massey
- Unit of Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Valentina Turchetti
- Department of Neuromuscular Disorders, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Tracy Lau
- Department of Neuromuscular Disorders, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Edward Cook
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Javeria Raza Alvi
- Department of Paediatric Neurology, The Children’s Hospital and the University of Child Health Sciences, Lahore, Punjab 54000, Pakistan
| | - Hasnaa M Elbendary
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Jerry L Jewell
- Department of Paediatric Neurology, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Antonella Riva
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova and IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Alessandro Orsini
- Department of Paediatric Neurology, University Hospital of Pisa, 56126 Pisa, Italy
| | - Aglaia Vignoli
- Childhood and Adolescence Neurology and Psychiatry Unit, ASST GOM Niguarda, Health Sciences Department, Università degli Studi di Milano, 20142 Milano, Italy
| | - Zara Federico
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova and IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
- Childhood and Adolescence Neurology and Psychiatry Unit, ASST GOM Niguarda, Health Sciences Department, Università degli Studi di Milano, 20142 Milano, Italy
| | - Jessica Rosenblum
- Department of Clinical Genetics, Antwerp University Hospital, University of Antwerp, 2650 Edegem, Belgium
| | - An-Sofie Schoonjans
- Department of Paediatric Neurology, Antwerp University Hospital, University of Antwerp, 2650 Edegem, Belgium
| | - Matthias de Wachter
- Department of Paediatric Neurology, Antwerp University Hospital, University of Antwerp, 2650 Edegem, Belgium
| | | | - Ana Felipe-Rucián
- Department of Paediatric Neurology, Vall d’Hebron University Hospital, 08035 Barcelona, Spain
| | - Nourelhoda A Haridy
- Department of Neurology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Shahzad Haider
- Department of Paediatrics, Wah Medical College NUMS, Wah Cantonment, Punjab 47000, Pakistan
| | - Mashaya Zaman
- Department of Paediatric Neurology and Development, Dr M.R. Khan Shishu Hospital and Institute of Child Health, Dhaka 1216, Bangladesh
| | - Selina Banu
- Department of Paediatric Neurology and Development, Dr M.R. Khan Shishu Hospital and Institute of Child Health, Dhaka 1216, Bangladesh
| | - Najwa Anwaar
- Department of Paediatrics, The Children’s Hospital and the University of Child Health Sciences, Lahore, Punjab 54000, Pakistan
| | - Fatima Rahman
- Department of Paediatrics, The Children’s Hospital and the University of Child Health Sciences, Lahore, Punjab 54000, Pakistan
| | - Shazia Maqbool
- Department of Paediatrics, The Children’s Hospital and the University of Child Health Sciences, Lahore, Punjab 54000, Pakistan
| | - Rashmi Yadav
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Vincenzo Salpietro
- Department of Neuromuscular Disorders, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Reza Maroofian
- Department of Neuromuscular Disorders, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Rajan Patel
- Department of Paediatric Radiology, Texas Children’s Hospital, Baylor College of Medicine, Houston, Houston, TX 77030, USA
| | - Rupa Radhakrishnan
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sanjay P Prabhu
- Department of Radiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Klaske Lichtenbelt
- Department of Clinical Genetics, University Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands
| | - Helen Stewart
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7HE, UK
| | - Yoshiko Murakami
- Laboratory of Immunoglycobiology, Research Institute for Microbial Diseases, Osaka University, Osaka 565, Japan
| | - Ulrike Löbel
- Department of Neuroradiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Felice D’Arco
- Department of Neuroradiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Emma Wakeling
- Department of Clinical Genetics, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Wendy Jones
- Department of Clinical Genetics, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Eleanor Hay
- Department of Clinical Genetics, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Sanjay Bhate
- Department of Neurology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Thomas S Jacques
- Developmental Biology and Cancer Section, University College London Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - David M Mirsky
- Department of Neuroradiology, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Matthew T Whitehead
- Division of Neuroradiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maha S Zaki
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Tipu Sultan
- Department of Paediatric Neurology, The Children’s Hospital and the University of Child Health Sciences, Lahore, Punjab 54000, Pakistan
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova and IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Anna C Jansen
- Department of Paediatric Neurology, Antwerp University Hospital, University of Antwerp, 2650 Edegem, Belgium
| | - Maarten Lequin
- Department of Radiology and Nuclear Medicine, University Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands
| | - Linda S de Vries
- Department of Neonatology, University Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands
| | | | - Andrew C Edmondson
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lara Menzies
- Department of Clinical Genetics, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Philippe M Campeau
- Department of Paediatrics, CHU Sainte Justine Research Centre, University of Montreal, Montreal QC H3T 1C5, Canada
| | - Henry Houlden
- Department of Neuromuscular Disorders, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Amy McTague
- Department of Neurology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
- Developmental Neurosciences, University College London Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Kshitij Mankad
- Developmental Biology and Cancer Section, University College London Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
- Department of Neuroradiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| |
Collapse
|
4
|
Wilson MP, Kentache T, Althoff CR, Schulz C, de Bettignies G, Mateu Cabrera G, Cimbalistiene L, Burnyte B, Yoon G, Costain G, Vuillaumier-Barrot S, Cheillan D, Rymen D, Rychtarova L, Hansikova H, Bury M, Dewulf JP, Caligiore F, Jaeken J, Cantagrel V, Van Schaftingen E, Matthijs G, Foulquier F, Bommer GT. A pseudoautosomal glycosylation disorder prompts the revision of dolichol biosynthesis. Cell 2024; 187:3585-3601.e22. [PMID: 38821050 PMCID: PMC11250103 DOI: 10.1016/j.cell.2024.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/21/2024] [Accepted: 04/29/2024] [Indexed: 06/02/2024]
Abstract
Dolichol is a lipid critical for N-glycosylation as a carrier for activated sugars and nascent oligosaccharides. It is commonly thought to be directly produced from polyprenol by the enzyme SRD5A3. Instead, we found that dolichol synthesis requires a three-step detour involving additional metabolites, where SRD5A3 catalyzes only the second reaction. The first and third steps are performed by DHRSX, whose gene resides on the pseudoautosomal regions of the X and Y chromosomes. Accordingly, we report a pseudoautosomal-recessive disease presenting as a congenital disorder of glycosylation in patients with missense variants in DHRSX (DHRSX-CDG). Of note, DHRSX has a unique dual substrate and cofactor specificity, allowing it to act as a NAD+-dependent dehydrogenase and as a NADPH-dependent reductase in two non-consecutive steps. Thus, our work reveals unexpected complexity in the terminal steps of dolichol biosynthesis. Furthermore, we provide insights into the mechanism by which dolichol metabolism defects contribute to disease.
Collapse
Affiliation(s)
- Matthew P Wilson
- Laboratory for Molecular Diagnosis, Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Takfarinas Kentache
- Metabolic Research Group, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium; WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Charlotte R Althoff
- Laboratory for Molecular Diagnosis, Center for Human Genetics, KU Leuven, Leuven, Belgium; Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Céline Schulz
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Geoffroy de Bettignies
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Gisèle Mateu Cabrera
- Laboratory for Molecular Diagnosis, Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Loreta Cimbalistiene
- Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Birute Burnyte
- Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Grace Yoon
- Division of Clinical and Metabolic Genetics, Hospital for Sick Children, Toronto, ON, Canada; Division of Neurology, Hospital for Sick Children, Toronto, ON, Canada; Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Gregory Costain
- Division of Clinical and Metabolic Genetics, Hospital for Sick Children, Toronto, ON, Canada; Department of Paediatrics, University of Toronto, Toronto, ON, Canada; Program in Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Sandrine Vuillaumier-Barrot
- AP-HP, Biochimie Métabolique et Cellulaire and Département de Génétique, Hôpital Bichat-Claude Bernard, and Université de Paris, Faculté de Médecine Xavier Bichat, INSERM U1149, CRI, Paris, France
| | - David Cheillan
- Service Biochimie et Biologie Moléculaire - Hospices Civils de Lyon; Laboratoire Carmen - Inserm U1060, INRAE UMR1397, Université Claude Bernard Lyon 1, Lyon, France
| | - Daisy Rymen
- Department of Pediatrics, Center for Metabolic Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Lucie Rychtarova
- Laboratory for Study of Mitochondrial Disorders, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine and General University Hospital in Prague, Charles University, Prague, Czechia
| | - Hana Hansikova
- Laboratory for Study of Mitochondrial Disorders, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine and General University Hospital in Prague, Charles University, Prague, Czechia
| | - Marina Bury
- Metabolic Research Group, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium; WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Joseph P Dewulf
- Metabolic Research Group, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium; WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Francesco Caligiore
- Metabolic Research Group, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium; WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Jaak Jaeken
- Department of Pediatrics, Center for Metabolic Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Vincent Cantagrel
- Developmental Brain Disorders Laboratory, Université Paris Cité, INSERM UMR1163, Imagine Institute, Paris, France
| | - Emile Van Schaftingen
- Metabolic Research Group, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium; WELBIO Department, WEL Research Institute, Wavre, Belgium.
| | - Gert Matthijs
- Laboratory for Molecular Diagnosis, Center for Human Genetics, KU Leuven, Leuven, Belgium.
| | - François Foulquier
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France.
| | - Guido T Bommer
- Metabolic Research Group, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium; WELBIO Department, WEL Research Institute, Wavre, Belgium.
| |
Collapse
|
5
|
Elhassan EA, Kmochová T, Benson KA, Fennelly NK, Barešová V, Kidd K, Doyle B, Dorman A, Morrin MM, Kyne NC, Vyleťal P, Hartmannová H, Hodaňová K, Sovová J, Mušálková D, Vrbacká A, Přistoupilová A, Živný J, Svojšová K, Radina M, Stránecký V, Loginov D, Pompach P, Novák P, Vaníčková Z, Hansíková H, Rajnochová-Bloudíčková S, Viklický O, Hůlková H, Cavalleri GL, Hnízda A, Bleyer AJ, Kmoch S, Conlon PJ, Živná M. A Novel Monoallelic ALG5 Variant Causing Late-Onset ADPKD and Tubulointerstitial Fibrosis. Kidney Int Rep 2024; 9:2209-2226. [PMID: 39081747 PMCID: PMC11284371 DOI: 10.1016/j.ekir.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Monoallelic variants in the ALG5 gene encoding asparagine-linked glycosylation protein 5 homolog (ALG5) have been recently shown to disrupt polycystin-1 (PC1) maturation and trafficking via underglycosylation, causing an autosomal dominant polycystic kidney disease-like (ADPKD-like) phenotype and interstitial fibrosis. In this report, we present clinical, genetic, histopathologic, and protein structure and functional correlates of a new ALG5 variant, p.R79W, that we identified in 2 distant genetically related Irish families displaying an atypical late-onset ADPKD phenotype combined with tubulointerstitial damage. Methods Whole exome and targeted sequencing were used for segregation analysis of available relatives. This was followed by immunohistochemistry examinations of kidney biopsies, and targeted (UMOD, MUC1) and untargeted plasma proteome and N-glycomic studies. Results We identified a monoallelic ALG5 variant [GRCh37 (NM_013338.5): g.37569565G>A, c.235C>T; p.R79W] that cosegregates in 23 individuals, of whom 18 were clinically affected. We detected abnormal localization of ALG5 in the Golgi apparatus of renal tubular cells in patients' kidney specimens. Further, we detected the pathological accumulation of uromodulin, an N-glycosylated glycosylphosphatidylinositol (GPI)-anchored protein, in the endoplasmic reticulum (ER), but not mucin-1, an O- and N-glycosylated protein. Biochemical investigation revealed decreased plasma and urinary uromodulin levels in clinically affected individuals. Proteomic and glycoproteomic profiling revealed the dysregulation of chronic kidney disease (CKD)-associated proteins. Conclusion ALG5 dysfunction adversely affects maturation and trafficking of N-glycosylated and GPI anchored protein uromodulin, leading to structural and functional changes in the kidney. Our findings confirm ALG5 as a cause of late-onset ADPKD and provide additional insight into the molecular mechanisms of ADPKD-ALG5.
Collapse
Affiliation(s)
- Elhussein A.E. Elhassan
- Department of Nephrology and Transplantation, Beaumont Hospital, Dublin, Ireland
- Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Tereza Kmochová
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Katherine A. Benson
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons, Dublin, Ireland
| | | | - Veronika Barešová
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Kendrah Kidd
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
- Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Brendan Doyle
- Department of Pathology, Beaumont Hospital, Dublin, Ireland
| | - Anthony Dorman
- Department of Pathology, Beaumont Hospital, Dublin, Ireland
| | - Martina M. Morrin
- Department of Radiology, Beaumont Hospital and Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Niamh C. Kyne
- Department of Nephrology and Transplantation, Beaumont Hospital, Dublin, Ireland
| | - Petr Vyleťal
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Hana Hartmannová
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Kateřina Hodaňová
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Jana Sovová
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Dita Mušálková
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Alena Vrbacká
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Anna Přistoupilová
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Jan Živný
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Klára Svojšová
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Martin Radina
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Viktor Stránecký
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Dmitry Loginov
- Institute of Microbiology, The Czech Academy of Sciences, Vestec, Czech Republic
| | - Petr Pompach
- Institute of Microbiology, The Czech Academy of Sciences, Vestec, Czech Republic
| | - Petr Novák
- Institute of Microbiology, The Czech Academy of Sciences, Vestec, Czech Republic
| | - Zdislava Vaníčková
- Institute of Medical Biochemistry and Laboratory Diagnostics of the General University Hospital and of The First Faculty of medicine of Charles University in Prague, Prague, Czech Republic
| | - Hana Hansíková
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Silvie Rajnochová-Bloudíčková
- Department of Nephrology, Transplant Center, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Ondřej Viklický
- Department of Nephrology, Transplant Center, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Helena Hůlková
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Gianpiero L. Cavalleri
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons, Dublin, Ireland
| | - Aleš Hnízda
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Anthony J. Bleyer
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
- Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Stanislav Kmoch
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
- Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Peter J. Conlon
- Department of Nephrology and Transplantation, Beaumont Hospital, Dublin, Ireland
- Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Martina Živná
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
- Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
6
|
Martínez-Duncker I, Doederlein-Schwartz IV, Abreu-González M, García-Ortiz JE. Editorial: Inborn errors of carbohydrate metabolism. Front Genet 2024; 15:1430414. [PMID: 38966009 PMCID: PMC11222636 DOI: 10.3389/fgene.2024.1430414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/28/2024] [Indexed: 07/06/2024] Open
Affiliation(s)
- Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | | | - Melania Abreu-González
- Genos Médica Centro Especializado en Genética, México. Centro Médico ABC, Mexico City, Mexico
| | - José Elías García-Ortiz
- División de Genética, Centro de Investigación Biomédica de Occidente, Centro Médico Nacional de Occidente-Instituto Mexicano del Seguro Social (CMNO-IMSS), Guadalajara, Mexico
| |
Collapse
|
7
|
Raynor A, Haouari W, Lebredonchel E, Foulquier F, Fenaille F, Bruneel A. Biochemical diagnosis of congenital disorders of glycosylation. Adv Clin Chem 2024; 120:1-43. [PMID: 38762238 DOI: 10.1016/bs.acc.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Congenital disorders of glycosylation (CDG) are one of the fastest growing groups of inborn errors of metabolism, comprising over 160 described diseases to this day. CDG are characterized by a dysfunctional glycosylation process, with molecular defects localized in the cytosol, the endoplasmic reticulum, or the Golgi apparatus. Depending on the CDG, N-glycosylation, O-glycosylation and/or glycosaminoglycan synthesis can be affected. Various proteins, lipids, and glycosylphosphatidylinositol anchors bear glycan chains, with potential impacts on their folding, targeting, secretion, stability, and thus, functionality. Therefore, glycosylation defects can have diverse and serious clinical consequences. CDG patients often present with a non-specific, multisystemic syndrome including neurological involvement, growth delay, hepatopathy and coagulopathy. As CDG are rare diseases, and typically lack distinctive clinical signs, biochemical and genetic testing bear particularly important and complementary diagnostic roles. Here, after a brief introduction on glycosylation and CDG, we review historical and recent findings on CDG biomarkers and associated analytical techniques, with a particular emphasis on those with relevant use in the specialized clinical chemistry laboratory. We provide the reader with insights and methods which may help them properly assist the clinician in navigating the maze of glycosylation disorders.
Collapse
Affiliation(s)
- Alexandre Raynor
- AP-HP, Biochimie Métabolique et Cellulaire, Hôpital Bichat, Paris, France
| | - Walid Haouari
- INSERM UMR1193, Faculté de Pharmacie, Université Paris-Saclay, Orsay, France
| | | | - François Foulquier
- Université de Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - François Fenaille
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, MetaboHUB, Gif sur Yvette, France.
| | - Arnaud Bruneel
- AP-HP, Biochimie Métabolique et Cellulaire, Hôpital Bichat, Paris, France; INSERM UMR1193, Faculté de Pharmacie, Université Paris-Saclay, Orsay, France.
| |
Collapse
|
8
|
Raynor A, Bruneel A, Vermeersch P, Cholet S, Friedrich S, Eckenweiler M, Schumann A, Hengst S, Tuncel AT, Fenaille F, Thiel C, Rymen D. "Hide and seek": Misleading transferrin variants in PMM2-CDG complicate diagnostics. Proteomics Clin Appl 2024; 18:e2300040. [PMID: 37876147 DOI: 10.1002/prca.202300040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023]
Abstract
PURPOSE Congenital disorders of glycosylation (CDG) are one of the fastest growing groups of inborn errors of metabolism. Despite the availability of next-generation sequencing techniques and advanced methods for evaluation of glycosylation, CDG screening mainly relies on the analysis of serum transferrin (Tf) by isoelectric focusing, HPLC or capillary electrophoresis. The main pitfall of this screening method is the presence of Tf protein variants within the general population. Although reports describe the role of Tf variants leading to falsely abnormal results, their significance in confounding diagnosis in patients with CDG has not been documented so far. Here, we describe two PMM2-CDG cases, in which Tf variants complicated the diagnostic. EXPERIMENTAL DESIGN Glycosylation investigations included classical screening techniques (capillary electrophoresis, isoelectric focusing and HPLC of Tf) and various confirmation techniques (two-dimensional electrophoresis, western blot, N-glycome, UPLC-FLR/QTOF MS with Rapifluor). Tf variants were highlighted following neuraminidase treatment. Sequencing of PMM2 was performed. RESULTS In both patients, Tf screening pointed to CDG-II, while second-line analyses pointed to CDG-I. Tf variants were found in both patients, explaining these discrepancies. PMM2 causative variants were identified in both patients. CONCLUSION AND CLINICAL RELEVANCE We suggest that a neuraminidase treatment should be performed when a typical CDG Tf pattern is found upon initial screening analysis.
Collapse
Affiliation(s)
- Alexandre Raynor
- AP-HP, Biochimie Métabolique et Cellulaire, Hôpital Bichat, Paris, France
| | - Arnaud Bruneel
- AP-HP, Biochimie Métabolique et Cellulaire, Hôpital Bichat, Paris, France
- INSERM UMR1193, Faculté de Pharmacie, Université Paris-Saclay, bâtiment Henri Moissan, Orsay, France
| | - Pieter Vermeersch
- Clinical Department of Laboratory Medicine, UZ Leuven, Leuven, Belgium
| | - Sophie Cholet
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Gif sur Yvette, France
| | - Sebastian Friedrich
- Centre for Child and Adolescent Medicine Freiburg, Department of General Paediatrics, Adolescent Medicine and Neonatology, Freiburg, Germany
| | - Matthias Eckenweiler
- Department of Neuropediatrics and Muscle Disorders, Centre for Child and Adolescent Medicine Freiburg, Freiburg, Germany
| | - Anke Schumann
- Centre for Child and Adolescent Medicine Freiburg, Department of General Paediatrics, Adolescent Medicine and Neonatology, Freiburg, Germany
| | - Simone Hengst
- Department 1, Centre for Child and Adolescent Medicine Heidelberg, Heidelberg, Germany
| | - Ali Tunç Tuncel
- Department 1, Centre for Child and Adolescent Medicine Heidelberg, Heidelberg, Germany
| | - François Fenaille
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Gif sur Yvette, France
| | - Christian Thiel
- Department 1, Centre for Child and Adolescent Medicine Heidelberg, Heidelberg, Germany
| | - Daisy Rymen
- Department of Pediatrics, Center for Metabolic Diseases, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
10
|
Salinas-Marín R, Murakami Y, González-Domínguez CA, Cruz-Muñoz ME, Mora-Montes HM, Morava E, Kinoshita T, Monroy-Santoyo S, Martínez-Duncker I. Case report: Functional characterization of a de novo c.145G>A p.Val49Met pathogenic variant in a case of PIGA-CDG with megacolon. Front Genet 2022; 13:971473. [PMID: 36324500 PMCID: PMC9619068 DOI: 10.3389/fgene.2022.971473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/23/2022] [Indexed: 12/02/2022] Open
Abstract
A subgroup of congenital disorders of glycosylation (CDGs) includes inherited GPI-anchor deficiencies (IGDs) that affect the biosynthesis of glycosylphosphatidylinositol (GPI) anchors, including the first reaction catalyzed by the X-linked PIGA. Here, we show the first PIGA-CDG case reported in Mexico in a male child with a moderate-to-severe phenotype characterized by neurological and gastrointestinal symptoms, including megacolon. Exome sequencing identified the hemizygous variant PIGA c.145G>A (p.Val49Met), confirmed by Sanger sequencing and characterized as de novo. The pathogenicity of this variant was characterized by flow cytometry and complementation assays in PIGA knockout (KO) cells.
Collapse
Affiliation(s)
- Roberta Salinas-Marín
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
| | - Yoshiko Murakami
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Carlos Alberto González-Domínguez
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | | | - Héctor Manuel Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, México
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, United States
- Department of Medical Genetics, University of Pecs Medical School, Pecs, Hungary
- Frontiers in Congenital Disorders of Glycosylation Consortium, National Institute of Neurological Diseases and Stroke (NINDS), National Institute of Child Health and Human Development (NICHD) and the National Center for Advancing Translational Sciences (NCATS), and the Rare Disorders Clinical Research Network (RDCRN), Bethesda, MD, United States
| | - Taroh Kinoshita
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Susana Monroy-Santoyo
- Centro de Investigación Traslacional, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, México
- *Correspondence: Iván Martínez-Duncker, ; Susana Monroy-Santoyo,
| | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
- Frontiers in Congenital Disorders of Glycosylation Consortium, National Institute of Neurological Diseases and Stroke (NINDS), National Institute of Child Health and Human Development (NICHD) and the National Center for Advancing Translational Sciences (NCATS), and the Rare Disorders Clinical Research Network (RDCRN), Bethesda, MD, United States
- *Correspondence: Iván Martínez-Duncker, ; Susana Monroy-Santoyo,
| |
Collapse
|
11
|
Yang B, Mai TD, Tran NT, Taverna M. In capillary labeling and online electrophoretic separation of N-glycans from glycoproteins. J Sep Sci 2022; 45:3594-3603. [PMID: 35820058 PMCID: PMC9796131 DOI: 10.1002/jssc.202200340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/16/2022] [Accepted: 07/07/2022] [Indexed: 01/01/2023]
Abstract
In this study, we present a new approach for in-capillary fluorescent labeling of N-glycans prior to their analysis with CE coupled with laser-induced fluorescent detection. This integrated approach allows using a CE capillary as a microreactor to perform several steps required for labeling glycans with 8-aminopyrene-1,3,6 trisulfonic acid and at the same time as a separation channel for CE of fluorescently labeled glycans. This could be achieved through careful optimization of all different steps, including sequential injections of fluorescent dye and glycan plugs, mixing by transverse diffusion of laminar flow profiles, incubation in a thermostatic zone, and finally separation and detection with CE. Such a complex sample treatment protocol for glycan labeling that is feasible thus far only in batchwise mode can now be converted into an automated and integrated protocol. Our approach was applied successfully to analyze fluorescently labeled N-linked oligosaccharides released from human immunoglobulin G and rituximab, a monoclonal antibody used for cancer treatment. We demonstrated the superiority of this in-capillary approach over the conventional in-tube protocol, with fourfold less reagent consumption and full automation without remarkable degradation of the glycan separation profile obtained by capillary electrophoresis.
Collapse
Affiliation(s)
- Bin Yang
- Université Paris‐Saclay, CNRS, Faculté de PharmacieInstitut Galien Paris‐SaclayBâtiment Henri Moissan, 17 Avenue des SciencesOrsay91400France
| | - Thanh Duc Mai
- Université Paris‐Saclay, CNRS, Faculté de PharmacieInstitut Galien Paris‐SaclayBâtiment Henri Moissan, 17 Avenue des SciencesOrsay91400France
| | - Nguyet Thuy Tran
- Université Paris‐Saclay, CNRS, Faculté de PharmacieInstitut Galien Paris‐SaclayBâtiment Henri Moissan, 17 Avenue des SciencesOrsay91400France
| | - Myriam Taverna
- Université Paris‐Saclay, CNRS, Faculté de PharmacieInstitut Galien Paris‐SaclayBâtiment Henri Moissan, 17 Avenue des SciencesOrsay91400France,Institut Universitaire de France (IUF)ParisFrance
| |
Collapse
|
12
|
Liénard--Mayor T, Bricteux C, Bendali A, Tran NT, Bruneel A, Taverna M, Mai TD. Lab-in-droplet: From glycan sample treatment toward diagnostic screening of congenital disorders of glycosylation. Anal Chim Acta 2022; 1221:340150. [DOI: 10.1016/j.aca.2022.340150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/09/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022]
|
13
|
A Community-Led Approach as a Guide to Overcome Challenges for Therapy Research in Congenital Disorders of Glycosylation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116829. [PMID: 35682409 PMCID: PMC9180837 DOI: 10.3390/ijerph19116829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022]
Abstract
Congenital Disorders of Glycosylation (CDG) are a large family of rare genetic diseases for which effective therapies are almost nonexistent. To better understand the reasons behind this, to analyze ongoing therapy research and development (R&D) for CDG, and to provide future guidance, a community-led mixed methods approach was organized during the 4th World Conference on CDG for Families and Professionals. In the quantitative phase, electronic surveys pointed to the prioritization of six therapeutic R&D tools, namely biobanks, registries, biomarkers, disease models, natural history studies, and clinical trials. Subsequently, in the qualitative phase, the challenges and solutions associated with these research tools were explored through community-driven think tanks. The multiple challenges and solutions identified administrative/regulatory, communication, financial, technical, and biological issues, which are directly related to three fundamental aspects of therapy R&D, namely data, sample, and patient management. An interdependence was traced between the prioritized tools, with diagnosis and therapies acting as bidirectional triggers that fuel these interrelationships. In conclusion, this study’s pioneering and adaptable community-led methodology identified several CDG therapy R&D gaps, many common to other rare diseases, without easy solutions. However, the strong proactive attitude towards research, based on inclusive and international partnerships and involving all members of the CDG community, sets the direction for better future therapy R&D.
Collapse
|
14
|
Liénard-Mayor T, Yang B, Tran NT, Bruneel A, Guttman A, Taverna M, Mai TD. High sensitivity capillary electrophoresis with fluorescent detection for glycan mapping. J Chromatogr A 2021; 1657:462593. [PMID: 34689907 DOI: 10.1016/j.chroma.2021.462593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022]
Abstract
We present in this study a novel strategy to drastically improve the detection sensitivity and peak capacity for capillary electrophoresis with laser induced fluorescent detection (CE-LIF) of glucose oligomers and released glycans. This is based on a new approach exploiting a polymer-free background electrolyte (BGE) for CE-LIF of glycans. The best performance in terms of sample stacking and suppression of electroosmotic flow (EOF) was found for a BGE composed of triethanolamine/citric acid and triethanolamine/acetic acid at elevated ionic strengths (IS up to 200 mM). Compared to the conventional protocols for CE-LIF of glucose-oligosaccharides and released glycans, our polymer-free strategy offered up to 5-fold improvement of detection sensitivity and visualization of higher degree of polymerization (DP) of glucose oligomers (18 vs 15). To further improve the detection sensitivity, a new electrokinetic preconcentration strategy via large volume sample stacking with electroosmotic modulation without having recourse to neutrally coated capillaries is proposed, offering a 200-fold signal enhancement. This approach is based on variation of the buffer's IS, rather than pH adjustment as in conventional methods, for EOF modulation or quasi-total reduction. This strategy allows selecting with high flexibility the best pH conditions to perform efficient preconcentration and separation. The new approach was demonstrated to be applicable for the analysis of N-linked oligosaccharides released from a model glycoprotein (Human Immunoglobulin G) and applied to map N-glycans from human serum for congenital disorders of glycosylation (CDG) diagnosis.
Collapse
Affiliation(s)
- Théo Liénard-Mayor
- Institut Galien Paris Sud, UMR 8612, Protein and Nanotechnology in Analytical Science (PNAS), CNRS, Univ. Paris-Sud, Univ. Paris-Saclay, 5 rue Jean Baptiste Clément, 92290 Châtenay-Malabry, France
| | - Bin Yang
- Institut Galien Paris Sud, UMR 8612, Protein and Nanotechnology in Analytical Science (PNAS), CNRS, Univ. Paris-Sud, Univ. Paris-Saclay, 5 rue Jean Baptiste Clément, 92290 Châtenay-Malabry, France
| | - Nguyet Thuy Tran
- Institut Galien Paris Sud, UMR 8612, Protein and Nanotechnology in Analytical Science (PNAS), CNRS, Univ. Paris-Sud, Univ. Paris-Saclay, 5 rue Jean Baptiste Clément, 92290 Châtenay-Malabry, France
| | - Arnaud Bruneel
- Université Paris-Saclay, INSERM UMR1193, Mécanismes cellulaires et moléculaires de l'adaptation au stress et cancérogenèse, Châtenay-Malabry, France; AP-HP, Biochimie Métabolique et Cellulaire, Hôpital Bichat-Claude Bernard, Paris, France
| | - Andras Guttman
- Translational Glycomics Research Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, 10 Egyetem Street, Veszprem 8200, Hungary; Horváth Csaba Laboratory of Bioseparation Sciences, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 98 Nagyerdei Krt, Debrecen, 4032, Hungary
| | - Myriam Taverna
- Institut Galien Paris Sud, UMR 8612, Protein and Nanotechnology in Analytical Science (PNAS), CNRS, Univ. Paris-Sud, Univ. Paris-Saclay, 5 rue Jean Baptiste Clément, 92290 Châtenay-Malabry, France; Institut Universitaire de France (IUF)
| | - Thanh Duc Mai
- Institut Galien Paris Sud, UMR 8612, Protein and Nanotechnology in Analytical Science (PNAS), CNRS, Univ. Paris-Sud, Univ. Paris-Saclay, 5 rue Jean Baptiste Clément, 92290 Châtenay-Malabry, France.
| |
Collapse
|
15
|
Raynor A, Haouari W, Ng BG, Cholet S, Harroche A, Raulet-Bussian C, Lounis-Ouaras S, Vuillaumier-Barrot S, Pascreau T, Borgel D, Freeze HH, Fenaille F, Bruneel A. SLC37A4-CDG: New biochemical insights for an emerging congenital disorder of glycosylation with major coagulopathy. Clin Chim Acta 2021; 521:104-106. [PMID: 34245688 DOI: 10.1016/j.cca.2021.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
SLC37A4-CDG is an emerging congenital disorder of glycosylation which is characterized by a dominant inheritance and a major coagulopathy originating from the liver. Recent studies took interest in the biochemical alterations found in this CDG and showed that they consisted of multiple glycosylation abnormalities, which result from mislocalization of the endoplasmic reticulum glucose-6-phosphate transporter and associated Golgi homeostasis defects. In this work, we highlight in six affected individuals abnormal patterns for various serum N-glycoproteins and bikunin proteoglycan isoforms, together with specific alterations of the mass spectra of endoglycosidase H-released serum N-glycans. Collectively, these data complement previous findings, help to better delineate SLC37A4-CDG and could present interest in diagnosing this disease.
Collapse
Affiliation(s)
- Alexandre Raynor
- AP-HP, Biochimie Métabolique et Cellulaire, Hôpital Bichat-Claude Bernard, Paris, France
| | - Walid Haouari
- INSERM UMR1193, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Bobby G Ng
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Sophie Cholet
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, MetaboHUB, 91191 Gif sur Yvette, France
| | - Annie Harroche
- AP-HP, Haemophilia Care Centre, Necker Hospital, Paris, France
| | - Celia Raulet-Bussian
- AP-HP, Biochimie Métabolique et Cellulaire, Hôpital Bichat-Claude Bernard, Paris, France
| | | | | | - Tiffany Pascreau
- Laboratoire d'Hématologie Biologique, AP-HP, Hôpital Necker Enfants Malades, 75015 Paris, France
| | - Delphine Borgel
- Laboratoire d'Hématologie Biologique, AP-HP, Hôpital Necker Enfants Malades, 75015 Paris, France; HITh, INSERM UMR-S 1176, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Hudson H Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - François Fenaille
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, MetaboHUB, 91191 Gif sur Yvette, France
| | - Arnaud Bruneel
- AP-HP, Biochimie Métabolique et Cellulaire, Hôpital Bichat-Claude Bernard, Paris, France; INSERM UMR1193, Université Paris-Saclay, 92290 Châtenay-Malabry, France.
| |
Collapse
|
16
|
MAN1B1-CDG: Three new individuals and associated biochemical profiles. Mol Genet Metab Rep 2021; 28:100775. [PMID: 34141584 PMCID: PMC8182421 DOI: 10.1016/j.ymgmr.2021.100775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 11/24/2022] Open
Abstract
Congenital disorders of glycosylation (CDG) constitute an ever-growing group of genetic diseases affecting the glycosylation of proteins. CDG individuals usually present with severe multisystem disorders. MAN1B1-CDG is a CDG with nonspecific clinical symptoms such as intellectual deficiency and developmental delay. Although up to 40 affected individuals were described so far, its final diagnosis is not straightforward using common biochemical methods due to the trace-level accumulation of defective glycan structures. In this study, we present three unreported MAN1B1-CDG individuals and propose a decision tree to reach diagnosis using a panel of techniques ranging from exome sequencing to gel electrophoresis and mass spectrometry. The occurrence of MAN1B1-CDG in patients showing unexplained intellectual disability and development delay, as well as a particular transferrin glycosylation profile, can be ascertained notably using matrix assisted laser desorption/ionization – time of flight (MALDI-TOF) mass spectrometry analysis of endo-β-acetylglucosaminidase H-released serum N-glycans. In addition to reporting new pathogenic variants and additional clinical signs such as hypersialorrhea, we highlight particular biochemical features of MAN1B1-CDG with potential glycoprotein-specific glycosylation defects.
Collapse
Key Words
- 2-DE, two-dimensional electrophoresis
- A1AT, α1-antitrypsin
- ApoC-III, apolipoprotein C-III
- BMI, body mass index
- CDG
- CDG, congenital disorder(s) of glycosylation
- CE, capillary electrophoresis
- DD, developmental delay
- DWI, Diffusion-weighted imaging
- ER, endoplasmic reticulum
- ESI-QTOF, electrospray ionization – quadrupole time of flight
- Endo H, endo-ß-N-acetylglucosaminidase H
- FLAIR, fluid-attenuated inversion recovery
- HPLC, high performance liquid chromatography
- Hpt, haptoglobin
- Hypersialorrhea
- ID, intellectual disability
- Intellectual disability
- M6, Man6GlcNAc2
- M8A/B/C, Man8GlcNAc2 lacking the first/middle/third terminal mannose
- M9, Man9GlcNAc2
- MALDI-TOF, matrix assisted laser desorption/ionization – time of flight
- MAN1B1
- MRI, magnetic resonance imaging
- MS, mass spectrometry
- Man, mannose
- N-glycan mass spectrometry
- PNGase F, peptide-N-glycosidase F
- Trf, transferrin
- WES, whole exome sequencing
Collapse
|
17
|
Raynor A, Vincent-Delorme C, Alaix AS, Cholet S, Dupré T, Vuillaumier-Barrot S, Fenaille F, Besmond C, Bruneel A. Normal transferrin patterns in congenital disorders of glycosylation with Golgi homeostasis disruption: apolipoprotein C-III at the rescue! Clin Chim Acta 2021; 519:285-290. [PMID: 34022244 DOI: 10.1016/j.cca.2021.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 02/08/2023]
Abstract
We identified three cases of congenital disorders of glycosylation (CDG) with Golgi homeostasis disruption, one ATP6V0A2-CDG and two COG4-CDG, with normal transferrin screening analyses. Patient 1 (P1) presented at birth with cutis laxa. Patient 2 (P2) and patient 3 (P3) are adult siblings and presented with severe symptoms evocative of inborn errors of metabolism. Targeted gene sequencing in P1 revealed pathogenic ATP6V0A2 variants, shared by her affected older brother. In P2 and P3, whole exome sequencing revealed a homozygous COG4 variant of unknown significance. In all affected individuals, transferrin analysis was normal. Mass-spectrometry based serum N-glycome analysis and two-dimensional electrophoresis (2-DE) of haptoglobin and of mucin core 1 O-glycosylated apolipoprotein C-III (apoC-III) were performed. All results of second-line N-glycosylation analyses were initially normal. However, apoC-III 2-DE revealed characteristic "apoC-III1" pattern in P1 and specific "apoC-III0" patterns in P2 and P3. In P2 and P3, this allowed reclassifying the variant as likely pathogenic according to ACMG guidelines. These cases highlight the existence of normal transferrin patterns in CDG with Golgi homeostasis disruption, putting the clinicians at risk of misdiagnosing patients. Furthermore, they show the potential of apoC-III 2-DE in diagnosing this type of CDG, with highly specific patterns in COG-CDG.
Collapse
Affiliation(s)
- Alexandre Raynor
- AP-HP, Biochimie Métabolique et Cellulaire, Hôpital Bichat-Claude Bernard, Paris, France
| | | | - Anne-Sophie Alaix
- Fondation Elan Retrouvé, Université de Paris-Sorbonne Paris Cité, Imagine Institute, INSERM UMR1163, Paris, France
| | - Sophie Cholet
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191 Gif sur Yvette, France
| | - Thierry Dupré
- AP-HP, Biochimie Métabolique et Cellulaire, Hôpital Bichat-Claude Bernard, Paris, France
| | | | - François Fenaille
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191 Gif sur Yvette, France
| | - Claude Besmond
- Université de Paris-Sorbonne Paris Cité, Imagine Institute, INSERM UMR1163, Paris, France
| | - Arnaud Bruneel
- AP-HP, Biochimie Métabolique et Cellulaire, Hôpital Bichat-Claude Bernard, Paris, France; INSERM UMR1193, Mécanismes cellulaires et moléculaires de l'adaptation au stress et cancérogenèse, Université Paris-Sud, Châtenay-Malabry, France.
| |
Collapse
|
18
|
Sierra T, Crevillen AG, Escarpa A. Electrochemical sensor for the assessment of carbohydrate deficient transferrin: Application to diagnosis of congenital disorders of glycosilation. Biosens Bioelectron 2021; 179:113098. [PMID: 33636501 DOI: 10.1016/j.bios.2021.113098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 11/26/2022]
Abstract
Carbohydrate deficient transferrin (CDT) is used as biomarker of different health problems as, for example, congenital disorders of glycosylation (CDG). We propose a screen-printed-based electrochemical sensor for the determination of carbohydrate deficient transferrin using an Os (VI) tag-based electrochemistry. When transferrin is labeled with Os (VI) complex, it generates two voltammetric signals: one from carbohydrates (electrochemical signal of osmium (VI) complex at -0.9 V/Ag) and one from the amino acids present in glycoprotein (intrinsic electrochemical signal of glycoprotein at +0.8 V/Ag). The relationship between the two analytical signals (carbohydrate signal/protein signal) is an indicator of the degree of glycosylation (electrochemical index of glycosylation), which has shown an excellent correlation (r = 0.990) with the official parameter %CDT obtained by CE-UV. The suitability of this approach was demonstrated by analyzing serum samples from CDG patients.
Collapse
Affiliation(s)
- Tania Sierra
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, E-28871, Alcala de Henares, Madrid, Spain
| | - Agustín G Crevillen
- Department of Analytical Sciences, Faculty of Sciences, Universidad Nacional de Educación a Distancia (UNED), E-28040, Madrid, Spain.
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, E-28871, Alcala de Henares, Madrid, Spain; Chemical Research Institute "Andrés M. Del Río" (IQAR), University of Alcala, E-28805, Alcala de Henares, Madrid, Spain.
| |
Collapse
|
19
|
Congenital disorders of glycosylation: Prevalence, incidence and mutational spectrum in the Polish population. Mol Genet Metab Rep 2021; 27:100726. [PMID: 33643843 PMCID: PMC7892981 DOI: 10.1016/j.ymgmr.2021.100726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 01/03/2023] Open
Abstract
Introduction The incidence and prevalence of congenital disorders of glycosylation (CDG) have not been well established. The aim of the study was to evaluate the prevalence, incidence and genotypes of CDG patients diagnosed during the last 23 years in Poland (1997 – 30th October 2020). Material and methods The diagnosis was based on serum Tf IEF which is performed at The Children's Memorial Health Institute (CMHI) in Warsaw. Based on demographic data, the prevalence of CDG among the Polish population in 2020 as well as the birth prevalence of CDG from 1990 to 2020 were estimated. Results 39 patients (from 35 families) with molecularly confirmed CDG were diagnosed, including 17 (44%) patients (from 16 families) with PMM2-CDG. The c.422G > A, p.Arg141His and c.691G > A, p.Val231Met pathogenic missense variants were the most common identified PMM2 variants. Eleven other patients were diagnosed with CDG based on serum Tf IEF analysis only; the molecular analysis is pending. Ten CDG patients died, including 6 with PMM2-CDG, 1 with PGM1-CDG and 1 with DPAGT1-CDG. The prevalence of CDG in the Polish population was estimated at approximately 1 per million while that of PMM2 at 0.4 per million. The annual incidence of CDG was estimated at 0.013 per 100,000 people in 2020. Conclusions A low frequence of CDG in our study could be underestimated.
Collapse
|
20
|
Castiglioni C, Feillet F, Barnerias C, Wiedemann A, Muchart J, Cortes F, Hernando-Davalillo C, Montero R, Dupré T, Bruneel A, Seta N, Vuillaumier-Barrot S, Serrano M. Expanding the phenotype of X-linked SSR4-CDG: Connective tissue implications. Hum Mutat 2020; 42:142-149. [PMID: 33300232 DOI: 10.1002/humu.24151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/07/2020] [Accepted: 12/04/2020] [Indexed: 02/01/2023]
Abstract
Signal sequence receptor protein 4 (SSR4) is a subunit of the translocon-associated protein complex, which participates in the translocation of proteins across the endoplasmic reticulum membrane, enhancing the efficiency of N-linked glycosylation. Pathogenic variants in SSR4 cause a congenital disorder of glycosylation: SSR4-congenital disorders of glycosylation (CDG). We describe three SSR4-CDG boys and review the previously reported. All subjects presented with hypotonia, failure to thrive, developmental delay, and dysmorphic traits and showed a type 1 serum sialotransferrin profile, facilitating the diagnosis. Genetic confirmation of this X-linked CDG revealed one de novo hemizygous deletion, one maternally inherited deletion, and one de novo nonsense mutation of SSR4. The present subjects highlight the similarities with a connective tissue disorder (redundant skin, joint laxity, blue sclerae, and vascular tortuosity). The connective tissue problems are relevant, and require preventive rehabilitation measures. As an X-linked disorder, genetic counseling is essential.
Collapse
Affiliation(s)
- Claudia Castiglioni
- Department of Pediatric Neurology, Rare Disease Center, Clínica Las Condes, Santiago, Chile
| | - François Feillet
- Department of Pediatrics, Reference Center for Inborn Errors of Metabolism, University Hospital of Nancy, Nancy, France.,INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, Nancy, France
| | - Christine Barnerias
- Pediatric Neurology Department, Center de Référence Maladies Neuromusculaires (GNMH), Necker University Hospital, AP-HP, Paris, France
| | - Arnaud Wiedemann
- Department of Pediatrics, Reference Center for Inborn Errors of Metabolism, University Hospital of Nancy, Nancy, France.,INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, Nancy, France
| | - Jordi Muchart
- Department of Radiology, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Fanny Cortes
- Pediatric Department. Rare Diseases Center, Clínica Las Condes, Santiago, Chile
| | - Cristina Hernando-Davalillo
- Department of Genetic and Molecular Medicine and Pediatric Institute of Rare Diseases, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Raquel Montero
- Clinical Biochemistry Department, Institut de Recerca Hospital Sant Joan de Déu Barcelona, Barcelona, Spain.,Unit-703 Center for Biomedical Research on Rare Diseases (CIBER-ER), Instituto de Salud Carlos III, Madrid, Spain
| | - Thierry Dupré
- Service de Biochimie Métabolique et Cellulaire, Hôpital Bichat-Claude Bernard, AP-HP, Paris, France.,INSERM UMR_S 1149, Faculté de Médecine Xavier Bichat, Université de Paris, Paris, France
| | - Arnaud Bruneel
- Service de Biochimie Métabolique et Cellulaire, Hôpital Bichat-Claude Bernard, AP-HP, Paris, France.,INSERM UMR1193, "Mécanismes cellulaires et moléculaires de l'adaptation au stress et cancérogenèse", Université Paris-Sud, Châtenay-Malabry, France
| | - Nathalie Seta
- Service de Biochimie Métabolique et Cellulaire, Hôpital Bichat-Claude Bernard, AP-HP, Paris, France
| | | | - Mercedes Serrano
- Unit-703 Center for Biomedical Research on Rare Diseases (CIBER-ER), Instituto de Salud Carlos III, Madrid, Spain.,Pediatric Neurology Department, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| |
Collapse
|