1
|
Desai PR, Marko JF. Molecular Crowding Suppresses Mechanical Stress-Driven DNA Strand Separation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.11.628023. [PMID: 39713393 PMCID: PMC11661227 DOI: 10.1101/2024.12.11.628023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Molecular crowding influences DNA mechanics and DNA - protein interactions and is ubiquitous in living cells. Quantifying the effects of molecular crowding on DNA supercoiling is essential to relating in-vitro experiments to in-vivo DNA supercoiling. We use single molecule magnetic tweezers to study DNA supercoiling in the presence of dehydrating or crowding co-solutes. To study DNA supercoiling, we apply a stretching force of 0.8 pN to the DNA and then rotate one end of the DNA to induce supercoiling. In a 200 mM NaCl buffer without co-solutes, negatively supercoiled DNA absorbs some of the tortional stress by forming locally melted DNA regions. The base-pairs in these locally melted regions are believed to adopt a configuration where nucleotide base pairing is disrupted. We find that the presence of dehydrating co-solutes like glycerol and ethylene glycol results in further destabilization of base-pairs in negatively supercoiled DNA. The presence of polyethylene glycol, commonly used as crowding agents, suppresses local strand separation and results in plectoneme formation even when DNA is negatively supercoiled. The results presented in this letter suggest many further directions for studies of DNA supercoiling and supercoiled DNA - protein interactions in molecular conditions that approximate in-vivo molecular composition.
Collapse
Affiliation(s)
- Parth Rakesh Desai
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | - John F. Marko
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
2
|
Norris V. Hypothesis: bacteria live on the edge of phase transitions with a cell cycle regulated by a water-clock. Theory Biosci 2024; 143:253-277. [PMID: 39505803 DOI: 10.1007/s12064-024-00427-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024]
Abstract
A fundamental problem in biology is how cells obtain the reproducible, coherent phenotypes needed for natural selection to act or, put differently, how cells manage to limit their exploration of the vastness of phenotype space. A subset of this problem is how they regulate their cell cycle. Bacteria, like eukaryotic cells, are highly structured and contain scores of hyperstructures or assemblies of molecules and macromolecules. The existence and functioning of certain of these hyperstructures depend on phase transitions. Here, I propose a conceptual framework to facilitate the development of water-clock hypotheses in which cells use water to generate phenotypes by living 'on the edge of phase transitions'. I give an example of such a hypothesis in the case of the bacterial cell cycle and show how it offers a relatively novel 'view from here' that brings together a range of different findings about hyperstructures, phase transitions and water and that can be integrated with other hypotheses about differentiation, metabolism and the origins of life.
Collapse
Affiliation(s)
- Vic Norris
- CBSA UR 4312, University of Rouen Normandy, 76821, Rouen, Mont Saint Aignan, France.
| |
Collapse
|
3
|
Chang MH, Lavrentovich MO, Männik J. Differentiating the roles of proteins and polysomes in nucleoid size homeostasis in Escherichia coli. Biophys J 2024; 123:1435-1448. [PMID: 37974398 PMCID: PMC11163298 DOI: 10.1016/j.bpj.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/17/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
A defining feature of the bacterial cytosolic interior is a distinct membrane-less organelle, the nucleoid, that contains the chromosomal DNA. Although increasing experimental evidence indicates that macromolecular crowding is the dominant mechanism for nucleoid formation, it has remained unclear which crowders control nucleoid volume. It is commonly assumed that polyribosomes play a dominant role, yet the volume fraction of soluble proteins in the cytosol is comparable with that of polyribosomes. Here, we develop a free energy-based model for the cytosolic interior of a bacterial cell to distinguish contributions arising from polyribosomes and cytosolic proteins in nucleoid volume control. The parameters of the model are determined from the existing experimental data. We show that, while the polysomes establish the existence of the nucleoid as a distinct phase, the proteins control the nucleoid volume in physiologically relevant conditions. Our model explains experimental findings in Escherichia coli that the nucleoid compaction curves in osmotic shock measurements do not depend on cell growth rate and that dissociation of polysomes in slow growth rates does not lead to significant nucleoid expansion, while the nucleoid phase disappears in fastest growth rates. Furthermore, the model predicts a cross-over in the exclusion of crowders by their linear dimensions from the nucleoid phase: below the cross-over of 30-50 nm, the concentration of crowders in the nucleoid phase decreases linearly as a function of the crowder diameter, while decreasing exponentially above the cross-over size. Our work points to the possibility that bacterial cells maintain nucleoid size and protein concentration homeostasis via feedback in which protein concentration controls nucleoid dimensions and the nucleoid dimensions control protein synthesis rate.
Collapse
Affiliation(s)
- Mu-Hung Chang
- Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee
| | - Maxim O Lavrentovich
- Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee; Department of Earth, Environment, and Physics, Worcester State University, Worcester, Massachusetts.
| | - Jaan Männik
- Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee.
| |
Collapse
|
4
|
Walker AM, Abbondanzieri EA, Meyer AS. Live to fight another day: The bacterial nucleoid under stress. Mol Microbiol 2024:10.1111/mmi.15272. [PMID: 38690745 PMCID: PMC11527795 DOI: 10.1111/mmi.15272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
The bacterial chromosome is both highly supercoiled and bound by an ensemble of proteins and RNA, causing the DNA to form a compact structure termed the nucleoid. The nucleoid serves to condense, protect, and control access to the bacterial chromosome through a variety of mechanisms that remain incompletely understood. The nucleoid is also a dynamic structure, able to change both in size and composition. The dynamic nature of the bacterial nucleoid is particularly apparent when studying the effects of various stresses on bacteria, which require cells to protect their DNA and alter patterns of transcription. Stresses can lead to large changes in the organization and composition of the nucleoid on timescales as short as a few minutes. Here, we summarize some of the recent advances in our understanding of how stress can alter the organization of bacterial chromosomes.
Collapse
Affiliation(s)
- Azra M. Walker
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | | | - Anne S. Meyer
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| |
Collapse
|
5
|
Jung Y, Sadeghi A, Ha BY. Modeling the compaction of bacterial chromosomes by biomolecular crowding and the cross-linking protein H-NS. Sci Rep 2024; 14:139. [PMID: 38167921 PMCID: PMC10762067 DOI: 10.1038/s41598-023-50355-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Cells orchestrate the action of various molecules toward organizing their chromosomes. Using a coarse-grained computational model, we study the compaction of bacterial chromosomes by the cross-linking protein H-NS and cellular crowders. In this work, H-NS, modeled as a mobile "binder," can bind to a chromosome-like polymer with a characteristic binding energy. The simulation results reported here clarify the relative role of biomolecular crowding and H-NS in condensing a bacterial chromosome in a quantitative manner. In particular, they shed light on the nature and degree of crowder and H-NS synergetics: while the presence of crowders enhances H-NS binding to a chromosome-like polymer, the presence of H-NS makes crowding effects more efficient, suggesting two-way synergetics in chain compaction. Also, the results show how crowding effects promote clustering of bound H-NS. For a sufficiently large concentration of H-NS, the cluster size increases with the volume fraction of crowders.
Collapse
Affiliation(s)
- Youngkyun Jung
- Supercomputing Center, Korea Institute of Science and Technology Information, Daejeon, 34141, South Korea.
| | - Amir Sadeghi
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Bae-Yeun Ha
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
6
|
Collette D, Dunlap D, Finzi L. Macromolecular Crowding and DNA: Bridging the Gap between In Vitro and In Vivo. Int J Mol Sci 2023; 24:17502. [PMID: 38139331 PMCID: PMC10744201 DOI: 10.3390/ijms242417502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
The cellular environment is highly crowded, with up to 40% of the volume fraction of the cell occupied by various macromolecules. Most laboratory experiments take place in dilute buffer solutions; by adding various synthetic or organic macromolecules, researchers have begun to bridge the gap between in vitro and in vivo measurements. This is a review of the reported effects of macromolecular crowding on the compaction and extension of DNA, the effect of macromolecular crowding on DNA kinetics, and protein-DNA interactions. Theoretical models related to macromolecular crowding and DNA are briefly reviewed. Gaps in the literature, including the use of biologically relevant crowders, simultaneous use of multi-sized crowders, empirical connections between macromolecular crowding and liquid-liquid phase separation of nucleic materials are discussed.
Collapse
Affiliation(s)
| | | | - Laura Finzi
- Department of Physics, College of Arts & Sciences, Emory University, Atlanta, GA 30322, USA; (D.C.); (D.D.)
| |
Collapse
|
7
|
Norris V, Kayser C, Muskhelishvili G, Konto-Ghiorghi Y. The roles of nucleoid-associated proteins and topoisomerases in chromosome structure, strand segregation, and the generation of phenotypic heterogeneity in bacteria. FEMS Microbiol Rev 2023; 47:fuac049. [PMID: 36549664 DOI: 10.1093/femsre/fuac049] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/06/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
How to adapt to a changing environment is a fundamental, recurrent problem confronting cells. One solution is for cells to organize their constituents into a limited number of spatially extended, functionally relevant, macromolecular assemblies or hyperstructures, and then to segregate these hyperstructures asymmetrically into daughter cells. This asymmetric segregation becomes a particularly powerful way of generating a coherent phenotypic diversity when the segregation of certain hyperstructures is with only one of the parental DNA strands and when this pattern of segregation continues over successive generations. Candidate hyperstructures for such asymmetric segregation in prokaryotes include those containing the nucleoid-associated proteins (NAPs) and the topoisomerases. Another solution to the problem of creating a coherent phenotypic diversity is by creating a growth-environment-dependent gradient of supercoiling generated along the replication origin-to-terminus axis of the bacterial chromosome. This gradient is modulated by transcription, NAPs, and topoisomerases. Here, we focus primarily on two topoisomerases, TopoIV and DNA gyrase in Escherichia coli, on three of its NAPs (H-NS, HU, and IHF), and on the single-stranded binding protein, SSB. We propose that the combination of supercoiling-gradient-dependent and strand-segregation-dependent topoisomerase activities result in significant differences in the supercoiling of daughter chromosomes, and hence in the phenotypes of daughter cells.
Collapse
Affiliation(s)
- Vic Norris
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| | - Clara Kayser
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| | - Georgi Muskhelishvili
- Agricultural University of Georgia, School of Natural Sciences, 0159 Tbilisi, Georgia
| | - Yoan Konto-Ghiorghi
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| |
Collapse
|
8
|
Abstract
Biomolecular condensates are intracellular organelles that are not bounded by membranes and often show liquid-like, dynamic material properties. They typically contain various types of proteins and nucleic acids. How the interaction of proteins and nucleic acids finally results in dynamic condensates is not fully understood. Here we use optical tweezers and fluorescence microscopy to study how the prototypical prion-like protein Fused-in-Sarcoma (FUS) condenses with individual molecules of single- and double-stranded DNA. We find that FUS adsorbs on DNA in a monolayer and hence generates an effectively sticky FUS–DNA polymer that collapses and finally forms a dynamic, reversible FUS–DNA co-condensate. We speculate that protein monolayer-based protein–nucleic acid co-condensation is a general mechanism for forming intracellular membraneless organelles. Biomolecular condensates provide distinct compartments that can localize and organize biochemistry inside cells. Recent evidence suggests that condensate formation is prevalent in the cell nucleus. To understand how different components of the nucleus interact during condensate formation is an important challenge. In particular, the physics of co-condensation of proteins together with nucleic acids remains elusive. Here we use optical tweezers to study how the prototypical prion-like protein Fused-in-Sarcoma (FUS) forms liquid-like assemblies in vitro, by co-condensing together with individual DNA molecules. Through progressive force-induced peeling of dsDNA, buffer exchange, and force measurements, we show that FUS adsorbing in a single layer on DNA effectively generates a sticky FUS–DNA polymer that can collapse to form a liquid-like FUS–DNA co-condensate. Condensation occurs at constant DNA tension for double-stranded DNA, which is a signature of phase separation. We suggest that co-condensation mediated by protein monolayer adsorption on nucleic acids is an important mechanism for intracellular compartmentalization.
Collapse
|