1
|
Zhang P, Zhao H, Xia X, Xiao H, Han C, You Z, Wang J, Cao F. Network pharmacology and molecular-docking-based strategy to explore the potential mechanism of salidroside-inhibited oxidative stress in retinal ganglion cell. PLoS One 2024; 19:e0305343. [PMID: 38968273 PMCID: PMC11226129 DOI: 10.1371/journal.pone.0305343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/28/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Salidroside (SAL), the main component of Rhodiola rosea extract, is a flavonoid with biological activities, such as antioxidative stress, anti-inflammatory, and hypolipidemic. In this study, the potential therapeutic targets and mechanisms of SAL against oxidative stress in retinal ganglion cells (RGCs) were investigated on the basis of in-vitro experiments, network pharmacology, and molecular docking techniques. METHODS RGC oxidative stress models were constructed, and cell activity, reactive oxygen species (ROS), and apoptosis levels were examined for differences. The genes corresponding to rhodopsin, RGCs, and oxidative stress were screened from GeneCards, TCMSP database, and an analysis platform. The intersection of the three was taken, and a Venn diagram was drawn. Protein interactions, GO functional enrichment, and KEGG pathway enrichment data were analyzed by STRING database, Cytohubba plugin, and Metascape database. The key factors in the screening pathway were validated using qRT-PCR. Finally, molecular docking prediction was performed using MOE 2019 software, molecular dynamic simulations was performed using Gromacs 2018 software. RESULTS In the RGC oxidative stress model in vitro, the cell activity was enhanced, ROS was reduced, and apoptosis was decreased after SAL treatment. A total of 16 potential targets of oxidative stress in SAL RGCs were obtained, and the top 10 core targets were screened by network topology analysis. GO analysis showed that SAL retinal oxidative stress treatment mainly involved cellular response to stress, transcriptional regulatory complexes, and DNA-binding transcription factor binding. KEGG analysis showed that most genes were mainly enriched in multiple cancer pathways and signaling pathways in diabetic complications, nonalcoholic fatty liver, and lipid and atherosclerosis. Validation by PCR, molecular docking and molecular dynamic simulations revealed that SAL may attenuate oxidative stress and reduce apoptosis in RGCs by regulating SIRT1, NRF2, and NOS3. CONCLUSION This study initially revealed the antioxidant therapeutic effects and molecular mechanisms of SAL on RGCs, providing a theoretical basis for subsequent studies.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi City, Guizhou Province, P.R. China
| | - Hongxin Zhao
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi City, Guizhou Province, P.R. China
| | - Xiangping Xia
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi City, Guizhou Province, P.R. China
| | - Hua Xiao
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi City, Guizhou Province, P.R. China
| | - Chong Han
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi City, Guizhou Province, P.R. China
| | - Zhibo You
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi City, Guizhou Province, P.R. China
| | - Junjie Wang
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi City, Guizhou Province, P.R. China
| | - Fang Cao
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi City, Guizhou Province, P.R. China
| |
Collapse
|
2
|
Norouzi G, Nikdel S, Pirayesh E, Salimi Y, Amoui M, Haghighatkhah H, Ghodsi Rad MA, Javanijouni E, Khoshbakht S. Utility of 99mTc-Sestamibi Heart/Liver Uptake Ratio in Screening Nonalcoholic Fatty Liver Disease During Myocardial Perfusion Imaging. Cancer Biother Radiopharm 2023; 38:663-669. [PMID: 36576502 DOI: 10.1089/cbr.2022.0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Purpose: Nonalcoholic fatty liver disease (NAFLD) is the most common chronic hepatic disease worldwide, with functional impairment of the mitochondria occurring from early stages. Technetium-99m methoxy-isobutyl-isonitrile (99mTc-MIBI) is a lipophilic agent trapped in the mitochondria. This study aims to evaluate the utility of 99mTc-MIBI heart/liver uptake ratio in screening for NAFLD during myocardial perfusion imaging (MPI). Methods: Seventy eligible patients underwent a 2-d rest/stress 99mTc-MIBI scan with a 2-min planar image acquired in rest phase, at 30, 60, and 120 min postradiotracer administration. Heart/liver uptake ratio was calculated by placing identical regions of interest on the heart and liver dome. All patients underwent liver ultrasound and were allocated into groups A, having NAFLD; and B, healthy individuals without NAFLD. Results: Mean count per pixel heart/liver ratios gradually increased over time in either group; nonetheless the values were significantly higher in group A, regardless of acquisition timing; with the p-value equal to 0.007, 0.014, and 0.010 at 30, 60, and 120 min, respectively. Conclusion: Determining 99mTc-MIBI heart/liver uptake ratio during rest phase in patients undergoing MPI may be a useful, noninvasive screening method for NAFLD; with no additional cost, radiation burden, or adverse effects in these patients. Trial registration number: IR.SBMU.MSP.REC.1398.308.
Collapse
Affiliation(s)
- Ghazal Norouzi
- Department of Nuclear Medicine, Shohada-e Tajrish Medical Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Clinical Research Development Unit, Shohada-e Tajrish Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Nikdel
- Department of Nuclear Medicine, Shohada-e Tajrish Medical Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Pirayesh
- Department of Nuclear Medicine, Shohada-e Tajrish Medical Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Clinical Research Development Unit, Shohada-e Tajrish Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yazdan Salimi
- Biomedical Engineering and Medical Physics Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahasti Amoui
- Department of Nuclear Medicine, Shohada-e Tajrish Medical Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Clinical Research Development Unit, Shohada-e Tajrish Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Haghighatkhah
- Clinical Research Development Unit, Shohada-e Tajrish Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Diagnostic Imaging, Shohada-e Tajrish Medical Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Ghodsi Rad
- Department of Nuclear Medicine, Shohada-e Tajrish Medical Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Clinical Research Development Unit, Shohada-e Tajrish Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elmira Javanijouni
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Khoshbakht
- Department of Nuclear Medicine, Shohada-e Tajrish Medical Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Clinical Research Development Unit, Shohada-e Tajrish Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Li D, Yuan X, Dong S, Al-Dhamin Z, Du J, Fu N, Nan Y. Heme oxygenase-1 prevents non-alcoholic steatohepatitis through modulating mitochondrial quality control. Acta Physiol (Oxf) 2023; 237:e13918. [PMID: 36602456 DOI: 10.1111/apha.13918] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 10/19/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
AIM Nonalcoholic steatohepatitis (NASH) is a severe form of nonalcoholic fatty liver disease (NAFLD) and lacks effective treatment options. Heme oxygenase-1 (HO-1) is a critical defense against oxidative stress and inflammation in the liver injury. This study aims to investigate the protective role and underlying mechanisms of HO-1 in NASH pathogenesis. METHODS The hepatocyte-specific HO-1 knockout (HO-1HEPKO ) mice on a C57BL/6J background (HO-1fl/fl /Alb-Cre) were generated and fed a high-fat/western-style diet (HFD) or methionine-choline-deficient diet (MCD). Changes in mitochondrial ultrastructure were observed by transmission electron microscopy and confocal microscopy. A mitochondrial PCR array was used to identify the crucial genes associated with mitochondrial dysfunction. RESULTS Hepatocyte-specific HO-1HEPKO mice developed steatohepatitis with severe steatosis, ballooning, and necroinflammation. Dysregulated hepatic expression of mitochondria-related proteins, including DRP1, Tomm20, MFN1 and MFN2 were detected in NASH animals. Ultrastructural mitochondrial damage was observed in HO-1HEPKO mice. Mitochondrial dysfunction was recapitulated in HO-1-knockdown cells in vitro, as evidenced by decreased membrane potential, reduced ATP content, and mtDNA damage. Conversely, HO-1 overexpression restored these changes in vitro. Mechanistically, HO-1 deficiency reduced the inhibitory effect on Tomm20, leading to mitochondrial dysfunction, and thereby causing steatohepatitis. CONCLUSIONS HO-1 attenuates diet-induced steatohepatitis by preventing mitochondrial dysfunction, indicating that HO-1 may constitute a potential therapeutic target for NASH.
Collapse
Affiliation(s)
- Dongdong Li
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, China
| | - Xiwei Yuan
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, China
| | - Shiming Dong
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, China
| | - Zaid Al-Dhamin
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, China
| | - Jinghua Du
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, China
| | - Na Fu
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, China
| | - Yuemin Nan
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, China
| |
Collapse
|
4
|
Puri V, Kanojia N, Sharma A, Huanbutta K, Dheer D, Sangnim T. Natural product-based pharmacological studies for neurological disorders. Front Pharmacol 2022; 13:1011740. [PMID: 36419628 PMCID: PMC9676372 DOI: 10.3389/fphar.2022.1011740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2023] Open
Abstract
Central nervous system (CNS) disorders and diseases are expected to rise sharply in the coming years, partly because of the world's aging population. Medicines for the treatment of the CNS have not been successfully made. Inadequate knowledge about the brain, pharmacokinetic and dynamic errors in preclinical studies, challenges with clinical trial design, complexity and variety of human brain illnesses, and variations in species are some potential scenarios. Neurodegenerative diseases (NDDs) are multifaceted and lack identifiable etiological components, and the drugs developed to treat them did not meet the requirements of those who anticipated treatments. Therefore, there is a great demand for safe and effective natural therapeutic adjuvants. For the treatment of NDDs and other memory-related problems, many herbal and natural items have been used in the Ayurvedic medical system. Anxiety, depression, Parkinson's, and Alzheimer's diseases (AD), as well as a plethora of other neuropsychiatric disorders, may benefit from the use of plant and food-derived chemicals that have antidepressant or antiepileptic properties. We have summarized the present level of knowledge about natural products based on topological evidence, bioinformatics analysis, and translational research in this review. We have also highlighted some clinical research or investigation that will help us select natural products for the treatment of neurological conditions. In the present review, we have explored the potential efficacy of phytoconstituents against neurological diseases. Various evidence-based studies and extensive recent investigations have been included, which will help pharmacologists reduce the progression of neuronal disease.
Collapse
Affiliation(s)
- Vivek Puri
- Chitkara School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, India
| | - Neha Kanojia
- Chitkara School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, India
| | - Ameya Sharma
- Chitkara School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, India
| | - Kampanart Huanbutta
- School of Pharmacy, Eastern Asia University, Rangsit, Pathum Thani, Thailand
| | - Divya Dheer
- Chitkara School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, India
| | - Tanikan Sangnim
- Faculty of Pharmaceutical Sciences, Burapha University, Muang, Chon Buri, Thailand
| |
Collapse
|
5
|
Będkowska N, Zontek A, Paprocka J. Stroke-like Episodes in Inherited Neurometabolic Disorders. Metabolites 2022; 12:metabo12100929. [PMID: 36295831 PMCID: PMC9611026 DOI: 10.3390/metabo12100929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
Stroke-like episodes (SLEs) are significant clinical manifestations of metabolic disorders affecting the central nervous system. Morphological equivalents presented in neuroimaging procedures are described as stroke-like lesions (SLLs). It is crucial to distinguish SLEs from cerebral infarction or intracerebral hemorrhage, mainly due to the variety in management. Another significant issue to underline is the meaning of the main pathogenetic hypotheses in the development of SLEs. The diagnostic process is based on the patient’s medical history, physical and neurological examination, neuroimaging techniques and laboratory and genetic testing. Implementation of treatment is generally symptomatic and includes L-arginine supplementation and adequate antiepileptic management. The main aim of the current review was to summarize the basic and actual knowledge about the occurrence of SLEs in various inherited neurometabolic disorders, discuss the possible pathomechanism of their development, underline the role of neuroimaging in the detection of SLLs and identification of the electroencephalographic patterns as well as histological abnormalities in inherited disorders of metabolism.
Collapse
Affiliation(s)
- Natalia Będkowska
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Aneta Zontek
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Justyna Paprocka
- Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
- Correspondence:
| |
Collapse
|
6
|
Hikiami R, Morimura T, Ayaki T, Tsukiyama T, Morimura N, Kusui M, Wada H, Minamiyama S, Shodai A, Asada-Utsugi M, Muramatsu SI, Ueki T, Takahashi R, Urushitani M. Conformational change of RNA-helicase DHX30 by ALS/FTD-linked FUS induces mitochondrial dysfunction and cytosolic aggregates. Sci Rep 2022; 12:16030. [PMID: 36163369 PMCID: PMC9512926 DOI: 10.1038/s41598-022-20405-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Genetic mutations in fused in sarcoma (FUS) cause amyotrophic lateral sclerosis (ALS). Although mitochondrial dysfunction and stress granule have been crucially implicated in FUS proteinopathy, the molecular basis remains unclear. Here, we show that DHX30, a component of mitochondrial RNA granules required for mitochondrial ribosome assembly, interacts with FUS, and plays a crucial role in ALS-FUS. WT FUS did not affect mitochondrial localization of DHX30, but the mutant FUS lowered the signal of mitochondrial DHX30 and promoted the colocalization of cytosolic FUS aggregates and stress granule markers. The immunohistochemistry of the spinal cord from an ALS-FUS patient also confirmed the colocalization, and the immunoelectron microscope demonstrated decreased mitochondrial DHX30 signal in the spinal motor neurons. Subcellular fractionation by the detergent-solubility and density-gradient ultracentrifugation revealed that mutant FUS also promoted cytosolic mislocalization of DHX30 and aggregate formation. Interestingly, the mutant FUS disrupted the DHX30 conformation with aberrant disulfide formation, leading to impaired mitochondrial translation. Moreover, blue-native gel electrophoresis revealed an OXPHOS assembly defect caused by the FUS mutant, which was similar to that caused by DHX30 knockdown. Collectively, our study proposes DHX30 as a pivotal molecule in which disulfide-mediated conformational change mediates mitochondrial dysfunction and cytosolic aggregate formation in ALS-FUS.
Collapse
Affiliation(s)
- Ryota Hikiami
- Department of Neurology, Shiga University of Medical Science, Seta-Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan.,Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan.,Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| | - Toshifumi Morimura
- Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| | - Takashi Ayaki
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| | - Tomoyuki Tsukiyama
- Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, 606-8501, Japan
| | - Naoko Morimura
- Department of Integrative Physiology, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| | - Makiko Kusui
- Department of Neurology, Shiga University of Medical Science, Seta-Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan
| | - Hideki Wada
- Department of Neurology, Shiga University of Medical Science, Seta-Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan
| | - Sumio Minamiyama
- Department of Neurology, Shiga University of Medical Science, Seta-Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan.,Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan.,Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| | - Akemi Shodai
- Department of Neurology, Shiga University of Medical Science, Seta-Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan
| | - Megumi Asada-Utsugi
- Department of Neurology, Shiga University of Medical Science, Seta-Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan
| | - Shin-Ichi Muramatsu
- Division of Neurological Gene Therapy, Center for Open Innovation, Jichi Medical University, Tochigi, 320-0498, Japan.,Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-0071, Japan
| | - Takatoshi Ueki
- Department of Integrative Anatomy, Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| | - Makoto Urushitani
- Department of Neurology, Shiga University of Medical Science, Seta-Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan. .,Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan.
| |
Collapse
|
7
|
Belal S, Goudenège D, Bocca C, Dumont F, Chao De La Barca JM, Desquiret-Dumas V, Gueguen N, Geffroy G, Benyahia R, Kane S, Khiati S, Bris C, Aranyi T, Stockholm D, Inisan A, Renaud A, Barth M, Simard G, Reynier P, Letournel F, Lenaers G, Bonneau D, Chevrollier A, Procaccio V. Glutamate-Induced Deregulation of Krebs Cycle in Mitochondrial Encephalopathy Lactic Acidosis Syndrome Stroke-Like Episodes (MELAS) Syndrome Is Alleviated by Ketone Body Exposure. Biomedicines 2022; 10:biomedicines10071665. [PMID: 35884972 PMCID: PMC9312837 DOI: 10.3390/biomedicines10071665] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/19/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: The development of mitochondrial medicine has been severely impeded by a lack of effective therapies. (2) Methods: To better understand Mitochondrial Encephalopathy Lactic Acidosis Syndrome Stroke-like episodes (MELAS) syndrome, neuronal cybrid cells carrying different mutation loads of the m.3243A > G mitochondrial DNA variant were analysed using a multi-omic approach. (3) Results: Specific metabolomic signatures revealed that the glutamate pathway was significantly increased in MELAS cells with a direct correlation between glutamate concentration and the m.3243A > G heteroplasmy level. Transcriptomic analysis in mutant cells further revealed alterations in specific gene clusters, including those of the glutamate, gamma-aminobutyric acid pathways, and tricarboxylic acid (TCA) cycle. These results were supported by post-mortem brain tissue analysis from a MELAS patient, confirming the glutamate dysregulation. Exposure of MELAS cells to ketone bodies significantly reduced the glutamate level and improved mitochondrial functions, reducing the accumulation of several intermediate metabolites of the TCA cycle and alleviating the NADH-redox imbalance. (4) Conclusions: Thus, a multi-omic integrated approach to MELAS cells revealed glutamate as a promising disease biomarker, while also indicating that a ketogenic diet should be tested in MELAS patients.
Collapse
Affiliation(s)
- Sophie Belal
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
| | - David Goudenège
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
- Biochemistry and Genetics Department, University Hospital of Angers, 49933 Angers, France; (M.B.); (G.S.)
| | - Cinzia Bocca
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
- Biochemistry and Genetics Department, University Hospital of Angers, 49933 Angers, France; (M.B.); (G.S.)
| | - Florent Dumont
- Signalling and Cardiovascular Pathophysiology, INSERM UMR-S 1180, University of Paris-Saclay, 92296 Châtenay-Malabry, France;
| | - Juan Manuel Chao De La Barca
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
- Biochemistry and Genetics Department, University Hospital of Angers, 49933 Angers, France; (M.B.); (G.S.)
| | - Valérie Desquiret-Dumas
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
- Biochemistry and Genetics Department, University Hospital of Angers, 49933 Angers, France; (M.B.); (G.S.)
| | - Naïg Gueguen
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
- Biochemistry and Genetics Department, University Hospital of Angers, 49933 Angers, France; (M.B.); (G.S.)
| | - Guillaume Geffroy
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
| | - Rayane Benyahia
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
| | - Selma Kane
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
| | - Salim Khiati
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
| | - Céline Bris
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
- Biochemistry and Genetics Department, University Hospital of Angers, 49933 Angers, France; (M.B.); (G.S.)
| | - Tamas Aranyi
- Institute of Enzymology, Research Center for Natural Sciences, H-1519 Budapest, Hungary;
- Department of Molecular Biology, Semmelweis University of Medicine, H-1519 Budapest, Hungary
| | - Daniel Stockholm
- Ecole Pratique des Hautes Etudes, PSL Research University, 75014 Paris, France;
- Centre de Recherche Saint-Antoine, UMRS-938, INSERM, Sorbonne Université, F-75012 Paris, France
| | - Aurore Inisan
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
| | - Aurélie Renaud
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
| | - Magalie Barth
- Biochemistry and Genetics Department, University Hospital of Angers, 49933 Angers, France; (M.B.); (G.S.)
| | - Gilles Simard
- Biochemistry and Genetics Department, University Hospital of Angers, 49933 Angers, France; (M.B.); (G.S.)
| | - Pascal Reynier
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
- Biochemistry and Genetics Department, University Hospital of Angers, 49933 Angers, France; (M.B.); (G.S.)
| | - Franck Letournel
- Department of Neurobiology-Neuropathology, Angers Hospital, 49933 Angers, France;
- UMR INSERM 1066-CNRS 6021, MINT Laboratory, 49933 Angers, France
| | - Guy Lenaers
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
- Service de Neurologie, CHU d'Angers, 49933 Angers, France
| | - Dominique Bonneau
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
- Biochemistry and Genetics Department, University Hospital of Angers, 49933 Angers, France; (M.B.); (G.S.)
| | - Arnaud Chevrollier
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
| | - Vincent Procaccio
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
- Biochemistry and Genetics Department, University Hospital of Angers, 49933 Angers, France; (M.B.); (G.S.)
- Correspondence:
| |
Collapse
|
8
|
Silveira Rossi JL, Barbalho SM, Reverete de Araujo R, Bechara MD, Sloan KP, Sloan LA. Metabolic syndrome and cardiovascular diseases: Going beyond traditional risk factors. Diabetes Metab Res Rev 2022; 38:e3502. [PMID: 34614543 DOI: 10.1002/dmrr.3502] [Citation(s) in RCA: 191] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/28/2021] [Indexed: 12/14/2022]
Abstract
Metabolic syndrome (MS) is a chronic non-infective syndrome characterised clinically by a set of vascular risk factors that include insulin resistance, hypertension, abdominal obesity, impaired glucose metabolism, and dyslipidaemia. These risk factors are due to a pro-inflammatory state, oxidative stress, haemodynamic dysfunction, and ischaemia, which overlap in 'dysmetabolic' patients. This review aimed to evaluate the relationship between the traditional components of MS with cardiovascular disease (CVD), inflammation, and oxidative stress. MEDLINE-PubMed, EMBASE, and Cochrane databases were searched. Chronic low-grade inflammatory states and metaflammation are often accompanied by metabolic changes directly related to CVD incidence, such as diabetes mellitus, hypertension, and obesity. Moreover, the metaflammation is characterised by an increase in the serum concentration of pro-inflammatory cytokines, mainly interleukin-1 β (IL-1β), IL-6, and tumour necrosis factor-α (TNF-α), originating from the chronically inflamed adipose tissue and associated with oxidative stress. The increase of reactive oxygen species overloads the antioxidant systems causing post-translational alterations of proteins, lipids, and DNA leading to oxidative stress. Hyperglycaemia contributes to the increase in oxidative stress and the production of advanced glycosylation end products (AGEs) which are related to cellular and molecular dysfunction. Oxidative stress and inflammation are associated with cellular senescence and CVD. CVD should not be seen only as being triggered by classical MS risk factors. Atherosclerosis is a multifactorial pathological process with several triggering and aetiopathogenic mechanisms. Its medium and long-term repercussions, however, invariably constitute a significant cause of morbidity and mortality. Implementing preventive and therapeutic measures against oxy-reductive imbalances and metaflammation states has unquestionable potential for favourable clinical outcomes in cardiovascular medicine.
Collapse
Affiliation(s)
- João Leonardo Silveira Rossi
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília, São Paulo, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation - University of Marília, Marília, São Paulo, Brazil
- School of Food and Technology of Marilia, Marilia, São Paulo, Brazil
| | - Renan Reverete de Araujo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília, São Paulo, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília, São Paulo, Brazil
| | | | - Lance Alan Sloan
- Texas Institute for Kidney and Endocrine Disorders, Lufkin, Texas, USA
- University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
9
|
D-galactose-induced aging in rats – The effect of metformin on bioenergetics of brain, skeletal muscle and liver. Exp Gerontol 2022; 163:111770. [DOI: 10.1016/j.exger.2022.111770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/18/2022]
|
10
|
Seminotti B, Grings M, Tucci P, Leipnitz G, Saso L. Nuclear Factor Erythroid-2-Related Factor 2 Signaling in the Neuropathophysiology of Inherited Metabolic Disorders. Front Cell Neurosci 2021; 15:785057. [PMID: 34955754 PMCID: PMC8693715 DOI: 10.3389/fncel.2021.785057] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/05/2021] [Indexed: 01/14/2023] Open
Abstract
Inherited metabolic disorders (IMDs) are rare genetic conditions that affect multiple organs, predominantly the central nervous system. Since treatment for a large number of IMDs is limited, there is an urgent need to find novel therapeutical targets. Nuclear factor erythroid-2-related factor 2 (Nrf2) is a transcription factor that has a key role in controlling the intracellular redox environment by regulating the expression of antioxidant enzymes and several important genes related to redox homeostasis. Considering that oxidative stress along with antioxidant system alterations is a mechanism involved in the neuropathophysiology of many IMDs, this review focuses on the current knowledge about Nrf2 signaling dysregulation observed in this group of disorders characterized by neurological dysfunction. We review here Nrf2 signaling alterations observed in X-linked adrenoleukodystrophy, glutaric acidemia type I, hyperhomocysteinemia, and Friedreich’s ataxia. Additionally, beneficial effects of different Nrf2 activators are shown, identifying a promising target for treatment of patients with these disorders. We expect that this article stimulates research into the investigation of Nrf2 pathway involvement in IMDs and the use of potential pharmacological modulators of this transcription factor to counteract oxidative stress and exert neuroprotection.
Collapse
Affiliation(s)
- Bianca Seminotti
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mateus Grings
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Guilhian Leipnitz
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Postgraduate Program in Biological Sciences: Physiology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
11
|
Kim D, Kim EH, Bae ON. Comparative study of two isothiazolinone biocides, 1,2-benzisothiazolin-3-one (BIT) and 4,5-dichloro-2-n-octyl-isothiazolin-3-one (DCOIT), on barrier function and mitochondrial bioenergetics using murine brain endothelial cell line (bEND.3). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:932-943. [PMID: 34315345 DOI: 10.1080/15287394.2021.1955786] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Isothiazolinone (IT) biocides are potent antibacterial substances used as preservatives and disinfectants. These biocides exert differing biocidal effects and display environmental stability based upon chemical structure. In agreement with our recent study reporting that 2-n-octyl-4-isothiazolin-3-one (OIT) induced dysfunction of the blood-brain barrier (BBB), the potential adverse health effects of two IT biocides 1,2-benzisothiazolin-3-one (BIT) and 4,5-dichloro-2-n-octyl-isothiazolin-3-one (DCOIT) were compared using brain endothelial cells (ECs) derived from murine brain endothelial cell line (bEND.3). BIT possesses an unchlorinated IT ring structure and used as a preservative in cleaning products. DCOIT contains a chlorinated IT ring structure and employed as an antifouling agent in paints. Data demonstrated that DCOIT altered cellular metabolism at a lower concentration than BIT. Both BIT and DCOIT increased reactive oxygen species (ROS) generation at the mitochondrial and cellular levels. However, the effect of DCOIT on glutathione (GSH) levels appeared to be greater than BIT. While mitochondrial membrane potential (MMP) was decreased in both BIT- and DCOIT-exposed cells, direct disturbance in mitochondrial bioenergetic flux was only observed in BIT-treated ECs. Taken together, IT biocides produced toxicity in brain EC and barrier dysfunction, but at different concentration ranges suggesting distinct differing mechanisms related to chemical structure.
Collapse
Affiliation(s)
- Donghyun Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Korea
| | - Eun-Hye Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Korea
| | - Ok-Nam Bae
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Korea
| |
Collapse
|
12
|
High Intakes of Bioavailable Phosphate May Promote Systemic Oxidative Stress and Vascular Calcification by Boosting Mitochondrial Membrane Potential-Is Good Magnesium Status an Antidote? Cells 2021; 10:cells10071744. [PMID: 34359914 PMCID: PMC8303439 DOI: 10.3390/cells10071744] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 12/23/2022] Open
Abstract
Chronic kidney disease is characterized by markedly increased risk for cardiovascular mortality, vascular calcification, and ventricular hypertrophy, and is associated with increased systemic oxidative stress. Hyperphosphatemia, reflecting diminished glomerular phosphate (Pi) clearance, coupled with a compensatory increase in fibroblast growth factor 23 (FGF23) secretion are thought to be key mediators of this risk. Elevated serum and dietary Pi and elevated plasma FGF23 are associated with increased cardiovascular and total mortality in people with normal baseline renal function. FGF23 may mediate some of this risk by promoting cardiac hypertrophy via activation of fibroblast growth factor receptor 4 on cardiomyocytes. Elevated serum Pi can also cause a profound increase in systemic oxidative stress, and this may reflect the ability of Pi to act directly on mitochondria to boost membrane potential and thereby increase respiratory chain superoxide production. Moreover, elevated FGF23 likewise induces oxidative stress in vascular endothelium via activation of NADPH oxidase complexes. In vitro exposure of vascular smooth muscle cells to elevated Pi provokes an osteoblastic phenotypic transition that is mediated by increased mitochondrial oxidant production; this is offset dose-dependently by increased exposure to magnesium (Mg). In vivo, dietary Mg is protective in rodent models of vascular calcification. It is proposed that increased intracellular Mg opposes Pi’s ability to increase mitochondrial membrane potential; this model could explain its utility for prevention of vascular calcification and predicts that Mg may have a more global protective impact with regard to the direct pathogenic effects of hyperphosphatemia.
Collapse
|