Nkemzi AQ, Okaiyeto K, Oyenihi O, Opuwari CS, Ekpo OE, Oguntibeju OO. Antidiabetic, anti-inflammatory, antioxidant, and cytotoxicity potentials of green-synthesized zinc oxide nanoparticles using the aqueous extract of
Helichrysum cymosum.
3 Biotech 2024;
14:291. [PMID:
39507059 PMCID:
PMC11535088 DOI:
10.1007/s13205-024-04125-0]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024] Open
Abstract
The current research involved the synthesis of zinc oxide nanoparticles (ZnO-NPs) using an aqueous extract of Helichrysum cymosum shoots, and subsequent characterization via different analytical methods, such as UV-Vis spectroscopy, Scanning electron microscope (SEM), Energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Transmission electron microscope (TEM), and zeta potential. The biological effects of the ZnO-NPs were then tested against C3A hepatocyte cells and L6 myocyte cell lines via series of analysis, including cytotoxicity, antioxidant, anti-inflammatory, and antidiabetic effect via enzymatic inhibition. The UV-Vis analysis showed a maximum absorption spectrum at 360, and the TEM analysis reveals a spherical and hexagonal structures, with an average dimension of 28.05-58.3 nm, and the XRD reveals a crystalline hexagonal structure. The zeta potential evaluation indicated that the ZnO-NPs are relatively stable at - 20 mV, and the FTIR analysis identified some important functional group associated with phenolics, carboxylic acid, and amides that are responsible for reducing and stabilizing the ZnO-NPs. The synthesized ZnO-NPs demonstrated cytotoxic effects on the cell lines at higher concentrations (125 µg/mL and 250 µg/mL), complicating the interpretation of the results of the inflammatory and antioxidant assays. However, there was a significant (p < 0.05) increase in the inhibitions of pancreatic lipase, alpha-glucosidase, and alpha-amylase, indicating beneficial antidiabetic effects.
Collapse