1
|
Fujita Y, Chokki T, Nishioka T, Morimoto K, Nakayama A, Nakae H, Ogasawara M, Terasaki AG. The emergence of nebulin repeats and evolution of lasp family proteins. Cytoskeleton (Hoboken) 2022; 78:419-435. [PMID: 35224880 DOI: 10.1002/cm.21693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/10/2022]
Abstract
The LIM and SH3 domain protein (lasp) family, the smallest proteins in the nebulin superfamily, consists of vertebrate lasp-1 expressed in various non-muscle tissues, vertebrate lasp-2 expressed in the brain and cardiac muscle, and invertebrate lasp whose functions have been analyzed in Ascidiacea and Insecta. Gene evolution of the lasp family proteins was investigated by multiple alignments, comparison of gene structure, and synteny analyses in eukaryotes in which mRNA expression was confirmed. All invertebrates analyzed in this study belonging to the clade Filasterea, with the exception of Placozoa, have at least one lasp gene. The minimal actin-binding region (LIM domain and first nebulin repeat) and SH3 domain detected in vertebrate lasp-2 were found to be conserved among the lasp family proteins, and we showed that nematode lasp has actin-binding activity. The linker sequences vary among invertebrate lasp proteins, implying that the lasp family proteins have universal and diverse functions. Gene structures and syntenic analyses suggest that a gene fragment encoding two nebulin repeats and a linker emerged in Filasterea or Holozoa, and the first lasp gene was generated following combination of three gene fragments encoding the LIM domain, two nebulin repeats with a linker, and the SH3 domain. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yuki Fujita
- Department of Biology, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, Japan
| | - Tamami Chokki
- Department of Biology, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, Japan
| | - Tatsuji Nishioka
- Department of Biology, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, Japan
| | - Kouta Morimoto
- Department of Biology, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, Japan
| | - Ayako Nakayama
- Department of Biology, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, Japan
| | - Hiroki Nakae
- BIO-Business Solutions, Hisamoto, Takatsu-ku, Kawasaki, Japan
| | - Michio Ogasawara
- Department of Biology, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, Japan
| | - Asako G Terasaki
- Department of Biology, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, Japan
| |
Collapse
|
2
|
Krasovec G, Karaiskou A, Quéinnec É, Chambon JP. Comparative transcriptomic analysis reveals gene regulation mediated by caspase activity in a chordate organism. BMC Mol Cell Biol 2021; 22:51. [PMID: 34615460 PMCID: PMC8495957 DOI: 10.1186/s12860-021-00388-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Apoptosis is a caspase regulated cell death present in all metazoans defined by a conserved set of morphological features. A well-described function of apoptosis is the removal of excessive cells during development and homeostasis. Recent studies have shown an unexpected signalling property of apoptotic cells, affecting cell fate and/or behaviour of neighbouring cells. In contrast to the apoptotic function of cell elimination, this new role of apoptosis is not well understood but seems caspase-dependent. To deepen our understanding of apoptotic functions, it is necessary to work on a biological model with a predictable apoptosis pattern affecting cell fate and/or behaviour. The tunicate Ciona intestinalis has a bi-phasic life cycle with swimming larvae which undergo metamorphosis after settlement. Previously, we have shown that the tail regression step during metamorphosis, characterized by a predictable polarized apoptotic wave, ensures elimination of most tail cells and controls primordial germ cells survival and migration. RESULTS We performed differential transcriptomic analysis between control metamorphosing larvae and larvae treated with the pan-caspase inhibitor Z-VAD-fmk in order to explore the transcriptional control of apoptotic cells on neighbouring cells that survive and migrate. When caspase activity was impaired, genes known to be involved in metamorphosis were downregulated along with other implicated in cell migration and survival molecular pathways. CONCLUSION We propose these results as a confirmation that apoptotic cells can control surrounding cells fate and as a reference database to explore novel apoptotic functions in animals, including those related to migration and differentiation.
Collapse
Affiliation(s)
- Gabriel Krasovec
- Institut de Systématique, Evolution, Biodiversité (ISYEB), UMR 7205, Sorbonne Université, Muséum National d'histoire Naturelle, CNRS, EPHE, 7 Quai St-Bernard, F-75252, Paris Cedex 05, France. .,Center for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland.
| | - Anthi Karaiskou
- INSERM UMRS_938, Centre de recherche Saint-Antoine (CRSA), Sorbonne Université, Paris, France
| | - Éric Quéinnec
- Institut de Systématique, Evolution, Biodiversité (ISYEB), UMR 7205, Sorbonne Université, Muséum National d'histoire Naturelle, CNRS, EPHE, 7 Quai St-Bernard, F-75252, Paris Cedex 05, France
| | - Jean-Philippe Chambon
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), Montpellier Univ., CNRS, 34000, Montpellier, France
| |
Collapse
|
3
|
Nishikawa A, Hanashima A, Nakayama S, Ogasawara M, Kimura S. Transcripts of the nebulin gene from Ciona heart and their implications for the evolution of nebulin family genes. Gene X 2019; 716:144036. [DOI: 10.1016/j.gene.2019.144036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/27/2019] [Accepted: 07/31/2019] [Indexed: 10/26/2022] Open
|
4
|
Orth MF, Cazes A, Butt E, Grunewald TGP. An update on the LIM and SH3 domain protein 1 (LASP1): a versatile structural, signaling, and biomarker protein. Oncotarget 2015; 6:26-42. [PMID: 25622104 PMCID: PMC4381576 DOI: 10.18632/oncotarget.3083] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 12/28/2014] [Indexed: 01/15/2023] Open
Abstract
The gene encoding the LIM and SH3 domain protein (LASP1) was cloned two decades ago from a cDNA library of breast cancer metastases. As the first protein of a class comprising one N-terminal LIM and one C-terminal SH3 domain, LASP1 founded a new LIM-protein subfamily of the nebulin group. Since its discovery LASP1 proved to be an extremely versatile protein because of its exceptional structure allowing interaction with various binding partners, its ubiquitous expression in normal tissues, albeit with distinct expression patterns, and its ability to transmit signals from the cytoplasm into the nucleus. As a result, LASP1 plays key roles in cell structure, physiological processes, and cell signaling. Furthermore, LASP1 overexpression contributes to cancer aggressiveness hinting to a potential value of LASP1 as a cancer biomarker. In this review we summarize published data on structure, regulation, function, and expression pattern of LASP1, with a focus on its role in human cancer and as a biomarker protein. In addition, we provide a comprehensive transcriptome analysis of published microarrays (n=2,780) that illustrates the expression profile of LASP1 in normal tissues and its overexpression in a broad range of human cancer entities.
Collapse
Affiliation(s)
- Martin F Orth
- Institute for Clinical Biochemistry and Pathobiochemistry, University Clinic of Würzburg, Grombühlstrasse, Würzburg, Germany
| | - Alex Cazes
- Institute for Clinical Biochemistry and Pathobiochemistry, University Clinic of Würzburg, Grombühlstrasse, Würzburg, Germany
| | - Elke Butt
- Institute for Clinical Biochemistry and Pathobiochemistry, University Clinic of Würzburg, Grombühlstrasse, Würzburg, Germany
| | - Thomas G P Grunewald
- Laboratory for Pediatric Sarcoma Biology, Institute of Pathology of the LMU Munich, Thalkirchner Strasse, Munich, Germany
| |
Collapse
|
5
|
Gao K, Deng XY, Qian HY, Wu P, Qin GX, Liu T, Guo XJ. cDNA cloning and characterization of LASP1 from silkworm, Bombyx mori, involved in cytoplasmic polyhedrosis virus infection. Gene 2012; 511:389-97. [PMID: 23031809 DOI: 10.1016/j.gene.2012.09.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Accepted: 09/12/2012] [Indexed: 12/29/2022]
Abstract
Full-length cDNA of a LIM and SH3 contained protein 1 (named BmLASP1) was identified from the silkworm, Bombyx mori, for the first time by rapid amplification of cDNA ends. The full-length cDNA of BmLASP1 is 2094 bp, consisting of a 5'-terminal untranslated region (UTR) of 117 bp, and a 3'-UTR of 610 bp with two poly-adenylation signal sequence AATAAA and a poly (A) tail. The BmLASP1 cDNA encodes a polypeptide comprising 455 amino acids, including a LIM domain, two nebulin domains and an SH3 domain. The theoretical isoelectric point is 7.07 and the predicted molecular weight is 51.8 kDa. BmLASP1 has no signal peptide but three potential N-glycosylation sites. Sequence similarity and phylogenic analyses indicated that BmLASP1 belonged to the group of insect LASP1 with a longer linker region which is different from vertebrate LASP1. The LASP1 in silkworm contained eight exons in its coding regions, and the last exon-intron boundary was conserved the same as in mammalian and Ciona intestinalis LASP1 genes. By fluorescent quantitative real-time polymerase chain reaction, the mRNA transcripts of BmLASP1 were mainly detected in the gonad, head, and spiracle, and slightly in the silk gland, vasa mucosa, midgut, fat body, and hemocytes. After silkworm larvae were infected by B. mori cytoplasmic polyhedrosis virus (BmCPV), the relative expression level of BmLASP1 was down-regulated in the midgut. This result suggested that BmLASP1 may play an important role in the response of silkworm to BmCPV infection.
Collapse
Affiliation(s)
- Kun Gao
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu, China
| | | | | | | | | | | | | |
Collapse
|
6
|
Pappas CT, Bliss KT, Zieseniss A, Gregorio CC. The Nebulin family: an actin support group. Trends Cell Biol 2010; 21:29-37. [PMID: 20951588 DOI: 10.1016/j.tcb.2010.09.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 09/08/2010] [Accepted: 09/09/2010] [Indexed: 11/25/2022]
Abstract
Nebulin, a giant, actin-binding protein, is the largest member of a family of proteins (including N-RAP, nebulette, lasp-1 and lasp-2) that are assembled in a variety of cytoskeletal structures, and expressed in different tissues. For decades, nebulin has been thought to act as a molecular ruler, specifying the precise length of actin filaments in skeletal muscle. However, emerging evidence suggests that nebulin should not be viewed as a ruler but as an actin filament stabilizer required for length maintenance. Nebulin has also been implicated recently in an array of regulatory functions independent of its role in actin filament length regulation. In this review, we discuss the current evolutionary, biochemical, and functional data for the nebulin family of proteins - a family whose members, both large and small, function as cytoskeletal scaffolds and stabilizers.
Collapse
Affiliation(s)
- Christopher T Pappas
- Department of Cell Biology, and Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, USA
| | | | | | | |
Collapse
|
7
|
Nakagawa H, Suzuki H, Machida S, Suzuki J, Ohashi K, Jin M, Miyamoto S, Terasaki AG. Contribution of the LIM domain and nebulin-repeats to the interaction of Lasp-2 with actin filaments and focal adhesions. PLoS One 2009; 4:e7530. [PMID: 19851499 PMCID: PMC2761545 DOI: 10.1371/journal.pone.0007530] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 09/28/2009] [Indexed: 11/24/2022] Open
Abstract
Lasp-2 binds to actin filaments and concentrates in the actin bundles of filopodia and lamellipodia in neural cells and focal adhesions in fibroblastic cells. Lasp-2 has three structural regions: a LIM domain, a nebulin-repeat region, and an SH3 domain; however, the region(s) responsible for its interactions with actin filaments and focal adhesions are still unclear. In this study, we revealed that the N-terminal fragment from the LIM domain to the first nebulin-repeat module (LIM-n1) retained actin-binding activity and showed a similar subcellular localization to full-length lasp-2 in neural cells. The LIM domain fragment did not interact with actin filaments or localize to actin filament bundles. In contrast, LIM-n1 showed a clear subcellular localization to filopodial actin bundles. Although truncation of the LIM domain caused the loss of F-actin binding activity and the accumulation of filopodial actin bundles, these truncated fragments localized to focal adhesions. These results suggest that lasp-2 interactions with actin filaments are mediated through the cooperation of the LIM domain and the first nebulin-repeat module in vitro and in vivo. Actin filament binding activity may be a major contributor to the subcellular localization of lasp-2 to filopodia but is not crucial for lasp-2 recruitment to focal adhesions.
Collapse
Affiliation(s)
- Hiroyuki Nakagawa
- Division of Biology, Faculty of Science, Fukuoka University, Fukuoka, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Grunewald TGP, Butt E. The LIM and SH3 domain protein family: structural proteins or signal transducers or both? Mol Cancer 2008; 7:31. [PMID: 18419822 PMCID: PMC2359764 DOI: 10.1186/1476-4598-7-31] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 04/17/2008] [Indexed: 12/24/2022] Open
Abstract
LIM and SH3 Protein 1 (LASP-1) was initially identified from a cDNA library of metastatic axillary lymph nodes (MLN) more than a decade ago. It was found to be overexpressed in human breast and ovarian cancer and became the first member of a newly defined LIM-protein subfamily of the nebulin group characterized by the combined presence of LIM and SH3 domains. LASP2, a novel LASP1-related gene was first identified and characterized in silico. Subsequently it proved to be a splice variant of the Nebulin gene and therefore was also termed LIM/nebulette. LASP-1 and -2 are highly conserved in their LIM, nebulin-like and SH3 domains but differ significantly at their linker regions. Both proteins are ubiquitously expressed and involved in cytoskeletal architecture, especially in the organization of focal adhesions. Here we present the first systematic review to summarize all relevant data concerning their domain organization, expression profiles, regulating factors and function. We compile evidence that both, LASP-1 and LASP-2, are important during early embryo- and fetogenesis and are highly expressed in the central nervous system of the adult. However, only LASP-1 seems to participate significantly in neuronal differentiation and plays an important functional role in migration and proliferation of certain cancer cells while the role of LASP-2 is more structural. The increased expression of LASP-1 in breast tumours correlates with high rates of nodal-metastasis and refers to a possible relevance as a prognostic marker.
Collapse
Affiliation(s)
- Thomas GP Grunewald
- Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, Pediatric Oncology Center, Kölner Platz 1, D-80804 Munich, Germany
| | - Elke Butt
- Institute for Clinical Biochemistry and Pathobiochemistry, University of Wuerzburg, Grombuehlstr. 12, D-97080 Wuerzburg, Germany
| |
Collapse
|