1
|
Wei Y, Liu H, Hu D, He Q, Yao C, Li H, Hu K, Wang J. Recent Advances in Enterovirus A71 Infection and Antiviral Agents. J Transl Med 2024; 104:100298. [PMID: 38008182 DOI: 10.1016/j.labinv.2023.100298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/29/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023] Open
Abstract
Enterovirus A71 (EV-A71) is one of the major causative agents of hand, foot, and mouth disease (HFMD) that majorly affects children. Most of the time, HFMD is a mild disease but can progress to severe complications, such as meningitis, brain stem encephalitis, acute flaccid paralysis, and even death. HFMD caused by EV-A71 has emerged as an acutely infectious disease of highly pathogenic potential in the Asia-Pacific region. In this review, we introduced the properties and life cycle of EV-A71, and the pathogenesis and the pathophysiology of EV-A71 infection, including tissue tropism and host range of virus infection, the diseases caused by the virus, as well as the genes and host cell immune mechanisms of major diseases caused by enterovirus 71 (EV-A71) infection, such as encephalitis and neurologic pulmonary edema. At the same time, clinicopathologic characteristics of EV-A71 infection were introduced. There is currently no specific medication for EV-A71 infection, highlighting the urgency and significance of developing suitable anti-EV-A71 agents. This overview also summarizes the targets of existing anti-EV-A71 agents, including virus entry, translation, polyprotein processing, replication, assembly and release; interferons; interleukins; the mitogen-activated protein kinase, phosphatidylinositol 3-kinase, and protein kinase B signaling pathways; the oxidative stress pathway; the ubiquitin-proteasome system; and so on. Furthermore, it overviews the effects of natural products, monoclonal antibodies, and RNA interference against EV-A71. It also discusses issues limiting the research of antiviral drugs. This review is a systematic and comprehensive summary of the mechanism and pathological characteristics of EV-A71 infection, the latest progress of existing anti-EV-A71 agents. It would provide better understanding and guidance for the research and application of EV-A71 infection and antiviral inhibitors.
Collapse
Affiliation(s)
- Yanhong Wei
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China
| | - Huihui Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China
| | - Da Hu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China
| | - Qun He
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China
| | - Chenguang Yao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China
| | - Hanluo Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China
| | - Kanghong Hu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China.
| | - Jun Wang
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Keng CT, Yogarajah T, Lee RCH, Muhammad IBH, Chia BS, Vasandani SR, Lim DS, Guo K, Wong YH, Mok CK, Chu JJH, Chew WL. AAV-CRISPR-Cas13 eliminates human enterovirus and prevents death of infected mice. EBioMedicine 2023; 93:104682. [PMID: 37390772 PMCID: PMC10363442 DOI: 10.1016/j.ebiom.2023.104682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND RNA viruses account for many human diseases and pandemic events but are often not targetable by traditional therapeutics modalities. Here, we demonstrate that adeno-associated virus (AAV) -delivered CRISPR-Cas13 directly targets and eliminates the positive-strand EV-A71 RNA virus in cells and infected mice. METHODS We developed a Cas13gRNAtor bioinformatics pipeline to design CRISPR guide RNAs (gRNAs) that cleave conserved viral sequences across the virus phylogeny and developed an AAV-CRISPR-Cas13 therapeutics using in vitro viral plaque assay and in vivo EV-A71 lethally-infected mouse model. FINDINGS We show that treatment with a pool of AAV-CRISPR-Cas13-gRNAs designed using the bioinformatics pipeline effectively blocks viral replication and reduces viral titers in cells by >99.99%. We further demonstrate that AAV-CRISPR-Cas13-gRNAs prophylactically and therapeutically inhibited viral replication in infected mouse tissues and prevented death in a lethally challenged EV-A71-infected mouse model. INTERPRETATION Our results show that the bioinformatics pipeline designs efficient CRISPR-Cas13 gRNAs for direct viral RNA targeting to reduce viral loads. Additionally, this new antiviral AAV-CRISPR-Cas13 modality represents an effective direct-acting prophylactic and therapeutic agent against lethal RNA viral infections. FUNDING Agency for Science, Technology and Research (A∗STAR) Assured Research Budget, A∗STAR Central Research Fund UIBR SC18/21-1089UI, A∗STAR Industrial Alignment Fund Pre-Positioning (IAF-PP) grant H17/01/a0/012, MOE Tier 2 2017 (MOE2017-T2-1-078; MOE-T2EP30221-0005), and NUHSRO/2020/050/RO5+5/NUHS-COVID/4.
Collapse
Affiliation(s)
- Choong Tat Keng
- Genome Institute of Singapore, Agency for Science, Technology and Research, 60 Biopolis Street, Singapore 138672, Singapore
| | - Thinesshwary Yogarajah
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Regina Ching Hua Lee
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Irfan Bin Hajis Muhammad
- Genome Institute of Singapore, Agency for Science, Technology and Research, 60 Biopolis Street, Singapore 138672, Singapore
| | - Bing Shao Chia
- Genome Institute of Singapore, Agency for Science, Technology and Research, 60 Biopolis Street, Singapore 138672, Singapore
| | - Suraj Rajan Vasandani
- Genome Institute of Singapore, Agency for Science, Technology and Research, 60 Biopolis Street, Singapore 138672, Singapore
| | - Daryl Shern Lim
- Genome Institute of Singapore, Agency for Science, Technology and Research, 60 Biopolis Street, Singapore 138672, Singapore
| | - Ke Guo
- Genome Institute of Singapore, Agency for Science, Technology and Research, 60 Biopolis Street, Singapore 138672, Singapore
| | - Yi Hao Wong
- NUSMed Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, 117599, Singapore
| | - Chee Keng Mok
- NUSMed Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, 117599, Singapore
| | - Justin Jang Hann Chu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos #06-05, 138673, Singapore; Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore; NUSMed Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, 117599, Singapore.
| | - Wei Leong Chew
- Genome Institute of Singapore, Agency for Science, Technology and Research, 60 Biopolis Street, Singapore 138672, Singapore; Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 117596, Singapore.
| |
Collapse
|
3
|
Whole-genome characterization of avian picornaviruses from diarrheic broiler chickens co-infected with multiple picornaviruses in Iran. Virus Genes 2023; 59:79-90. [PMID: 36239871 DOI: 10.1007/s11262-022-01938-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/25/2022] [Indexed: 01/13/2023]
Abstract
Gastrointestinal symptoms in poultry are caused by several factors, such as infecting viruses. Several avian picornaviruses can cause diarrhea in these valuable animals. Poultry flocks in Iran suffer from gastrointestinal diseases, and information on picornaviruses is limited. In this study, two genera of avian picornaviruses were isolated from poultry and identified by the viral metagenomics. Fecal samples were collected from broiler chicken flocks affected with diarrhea from Gilan province Iran. The results showed that Eastern chicken flocks carried two genera of picornaviridae belonging to Sicinivirus A (SiV A) and Megrivirus C (MeV C). The Western chicken flocks carried SiV A based on whole-genome sequencing data. SiV A had type II IRES and MeV C contained a type IVB IRES 5'UTR. Phylogenetic results showed that all these three picornaviruses were similar to the Hungarian isolates. Interestingly, two different picornavirus genera were simultaneously co-infected with Eastern flocks. This phenomenon could increase and facilitate the recombination and evolution rate of picornaviruses and consequently cause this diversity of gastrointestinal diseases in poultry. This is the first report and complete genome sequencing of Sicinivirus and Megrivirus in Iran. Further studies are needed to evaluate the pathogenic potential of these picornaviruses.
Collapse
|
4
|
Kinobe R, Wiyatno A, Artika IM, Safari D. Insight into the Enterovirus A71: A review. Rev Med Virol 2022; 32:e2361. [PMID: 35510476 DOI: 10.1002/rmv.2361] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 11/08/2022]
Abstract
Enterovirus A71 is a major causative pathogen of hand, foot and mouth disease. It has become a global public health threat, and is especially important for infants and young children in the Asian-Pacific countries. The enterovirus A71 is a non-enveloped virus of the Picornaviridae family having a single-stranded positive-sense RNA genome of about 7.4 kb which encodes the structural and nonstructural proteins. Currently there are no US FDA-approved vaccines or antiviral therapy available against enterovirus A71 infection. Although enterovirus A71 vaccines have been licenced in China, clinically approved vaccines for widespread vaccination programs are lacking. Substantial progress has recently been achieved on understanding the structure and function of enterovirus A71 proteins together with information on the viral genetic diversity and geographic distribution. The present review is intended to provide an overview on our current understanding of the molecular biology and epidemiology of enterovirus A71 which will aid the development of vaccines, therapeutics and other control strategies so as to bolster the preparedness for future enterovirus A71 outbreaks.
Collapse
Affiliation(s)
- Robert Kinobe
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia
| | - Ageng Wiyatno
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - I Made Artika
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia.,Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Dodi Safari
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| |
Collapse
|
5
|
Abstract
Enterovirus 71 (EV71) is the major pathogen of hand, foot, and mouth disease. In severe cases, it can cause life-threatening neurological complications, such as aseptic meningitis and polio-like paralysis. There are no specific antiviral treatments for EV71 infections. In a previous study, the host protein growth arrest and DNA damage-inducible protein 34 (GADD34) expression was upregulated during EV71 infection determined by ribosome profiling and RNA-sequencing. Here, we investigated the interactions of host protein GADD34 and EV71 during infections. Rhabdomyosarcoma (RD) cells were infected with EV71 resulting in a significant increase in expression of GADD34 mRNA and protein. Through screening of EV71 protein we determined that the non-structural precursor protein 3CD is responsible for upregulating GADD34. EV71 3CD increased the RNA and protein levels of GADD34, while the 3CD mutant Y441S could not. 3CD upregulated GADD34 translation via the upstream open reading frame (uORF) of GADD34 5'untranslated regions (UTR). EV71 replication was attenuated by the knockdown of GADD34. The function of GADD34 to dephosphorylate eIF2α was unrelated to the upregulation of EV71 replication, but the PEST 1, 2, and 3 regions of GADD34 were required. GADD34 promoted the EV71 internal ribosome entry site (IRES) activity through the PEST repeats and affected several other viruses. Finally, GADD34 amino acids 563 to 565 interacted with 3CD, assisting GADD34 to target the EV71 IRES. Our research reveals a new mechanism by which GADD34 promotes viral IRES and how the EV71 non-structural precursor protein 3CD regulates host protein expression to support viral replication. IMPORTANCE Identification of host factors involved in viral replication is an important approach in discovering viral pathogenic mechanisms and identifying potential therapeutic targets. Previously, we screened host proteins that were upregulated by EV71 infection. Here, we report the interaction between the upregulated host protein GADD34 and EV71. EV71 non-structural precursor protein 3CD activates the RNA and protein expression of GADD34. Our study reveals that 3CD regulates the uORF of the 5′-UTR to increase GADD34 translation, providing a new explanation for how viral proteins regulate host protein expression. GADD34 is important for EV71 replication, and the key functional domains of GADD34 that promote EV71 are PEST 1, 2, and 3 regions. We report that GADD34 promotes viral IRES for the first time and this process is independent of its eIF2α phosphatase activity.
Collapse
|
6
|
Su YS, Hwang LH, Chen CJ. Heat Shock Protein A6, a Novel HSP70, Is Induced During Enterovirus A71 Infection to Facilitate Internal Ribosomal Entry Site-Mediated Translation. Front Microbiol 2021; 12:664955. [PMID: 34025620 PMCID: PMC8137988 DOI: 10.3389/fmicb.2021.664955] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/12/2021] [Indexed: 12/31/2022] Open
Abstract
Enterovirus A71 (EV-A71) is a human pathogen causing hand, foot, and mouth disease (HFMD) in children. Its infection can lead to severe neurological diseases or even death in some cases. While being produced in a large quantity during infection, viral proteins often require the assistance from cellular chaperones for proper folding. In this study, we found that heat shock protein A6 (HSPA6), whose function in viral life cycle is scarcely studied, was induced and functioned as a positive regulator for EV-A71 infection. Depletion of HSPA6 led to the reductions of EV-A71 viral proteins, viral RNA and virions as a result of the downregulation of internal ribosomal entry site (IRES)-mediated translation. Unlike other HSP70 isoforms such as HSPA1, HSPA8, and HSPA9, which regulate all phases of the EV-A71 life, HSPA6 was required for the IRES-mediated translation only. Unexpectedly, the importance of HSPA6 in the IRES activity could be observed in the absence of viral proteins, suggesting that HSPA6 facilitated IRES activity through cellular factor(s) instead of viral proteins. Intriguingly, the knockdown of HSPA6 also caused the reduction of luciferase activity driven by the IRES from coxsackievirus A16, echovirus 9, encephalomyocarditis virus, or hepatitis C virus, supporting that HSPA6 may assist the function of a cellular protein generally required for viral IRES activities.
Collapse
Affiliation(s)
- Yu-Siang Su
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Lih-Hwa Hwang
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Chi-Ju Chen
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
7
|
Ren X, Zhang S, Gao X, Guo X, Xin T, Zhu H, Jia H, Hou S. Experimental immunization of mice with a recombinant bovine enterovirus vaccine expressing BVDV E0 protein elicits a long-lasting serologic response. Virol J 2020; 17:88. [PMID: 32611446 PMCID: PMC7331136 DOI: 10.1186/s12985-020-01338-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 05/07/2020] [Indexed: 01/22/2023] Open
Abstract
Background Bovine viral diarrhea virus (BVDV) is a cause of substantial economic loss to the cattle industry worldwide, and there are currently no effective treatment or preventive measures. Bovine enterovirus (BEV) has a broad host range with low virulence and is a good candidate as a viral vaccine vector. In this study, we explored new insertion sites for the expression of exogenous genes in BEV, and developed a recombinant infectious cDNA clone for BEV BJ101 strain expressing BVDV E0 protein. Methods A recognition site for the viral proteinase 3Cpro was inserted in the GpBSK-BEV plasmid at the 2C/3A junction by overlapping PCR. Subsequently, the optimized full-length BVDV E0 gene was inserted to obtain the recombinant infectious plasmid GpBSK-BEV-E0. The rescued recombinant virus was obtained by transfection with linearized plasmid. Expression of BVDV E0 in the recombinant virus was confirmed by PCR, western blotting, and immunofluorescence analysis, and the genetic stability was tested in MDBK cells over 10 passages. We further tested the ability of the recombinant virus to induce an antibody response in mice infected with BVDV and immunized them with the recombinant virus and parental strain. Results The rescued recombinant virus rBEV-E0 was identified and confirmed by western blot and indirect immunofluorescence. The sequencing results showed that the recombinant virus remained stable for 10 passages without genetic changes. There was also no significant difference in growth dynamics and plaque morphology between the recombinant virus and parental virus. Mice infected with both recombinant and parental viruses produced antibodies against BEV VP1, while the recombinant virus also induced antibodies against BVDV E0. Conclusion A new insertion site in the BEV vector can be used for the prevention and control of both BEV and BVDV, providing a useful tool for future research on the development of viral vector vaccines.
Collapse
Affiliation(s)
- Xiao Ren
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2, Yuan Ming Yuan West Road Haidian District, Beijing, 100193, China
| | - Shan Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2, Yuan Ming Yuan West Road Haidian District, Beijing, 100193, China
| | - Xintao Gao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No. 2, Yuan Ming Yuan West Road Haidian District, Beijing, 100193, China
| | - Xiaoyu Guo
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2, Yuan Ming Yuan West Road Haidian District, Beijing, 100193, China
| | - Ting Xin
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2, Yuan Ming Yuan West Road Haidian District, Beijing, 100193, China
| | - Hongfei Zhu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2, Yuan Ming Yuan West Road Haidian District, Beijing, 100193, China
| | - Hong Jia
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2, Yuan Ming Yuan West Road Haidian District, Beijing, 100193, China.
| | - Shaohua Hou
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2, Yuan Ming Yuan West Road Haidian District, Beijing, 100193, China.
| |
Collapse
|
8
|
Toyoda T, Wang Y, Wen Y, Tanaka Y. Fluorescence-based biochemical analysis of human hepatitis B virus reverse transcriptase activity. Anal Biochem 2020; 597:113642. [PMID: 32171777 DOI: 10.1016/j.ab.2020.113642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/04/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022]
Abstract
Although the unique mechanism by which hepatitis B virus (HBV) polymerase primes reverse transcription is now well-characterized, the subsequent elongation process remains poorly understood. Reverse transcriptase (RT)-RNase H sequences from polymerase amino acid 304 (the C-terminal part of spacer domain) to 843 were expressed in Escherichia coli and purified partially. RT elongation activity was investigated using the fluorescent-tagged primer and homopolymeric RNA templates. RT elongation activity depended on both Mg2+ and Mn2+, and had low affinity for purine deoxynucleotides, which may be related with the success of adefovir, tenofovir, and entecavir. However, the polymerization rate was lower than that of human immunodeficiency virus RT. All HBV genotypes displayed similar RT activity, except for genotype B, which demonstrated increased elongation activity.
Collapse
Affiliation(s)
- Tetsuya Toyoda
- Choju Medical Institute, Fukushimura Hospital, 19-14 Azayamanaka, Noyori-Cho, Toyohashi, Aichi, 441-8124, Japan.
| | - Yongxiang Wang
- Key Laboratory of Medical Molecular Virology, Institute of Medical Microbiology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Yumei Wen
- Key Laboratory of Medical Molecular Virology, Institute of Medical Microbiology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Yasuhito Tanaka
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
9
|
Liu D, Hu J, Dong H, Huang L, Wei Y, Xia D, Zhu H, Wang X, Wu H, Wang X, Liu C. Identification of three linear B cell epitopes using monoclonal antibodies against bovine enterovirus VP2 protein. Appl Microbiol Biotechnol 2019; 103:7467-7480. [PMID: 31253999 DOI: 10.1007/s00253-019-09971-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/01/2019] [Accepted: 06/05/2019] [Indexed: 12/26/2022]
Abstract
Bovine enterovirus (BEV) VP2 protein is a structural protein that plays an important role in inducing protective immunity in the host. The function of VP2 has been characterized, but there is little information on its B cell epitopes. Three monoclonal antibodies (mAbs) directed against BEV VP2 were generated and characterized from mice immunized with the recombinant VP2 protein. Three minimal linear epitopes 152FQEAFWLEDG161, 168LIYPHQ173, and 46DATSVD51 reactive to the three mAbs were identified using western blotting analysis. Three-dimensional model of the BEV-E virion and the VP2 monomer showed that epitope 152FQEAFWLEDG161 is exposed on surface of the virion and epitopes 46DATSVD51 and 168LIYPHQ173 are located inside the virion. Alignment of the amino acid sequences corresponding to the regions containing the three minimal linear epitopes in the VP2 proteins and their cross-reactivity with the three mAbs showed that epitope 168LIYPHQ173 is completely conserved in all BEV strains. Epitope 46DATSVD51 is highly conserved among BEV-E strains and partly conserved among BEV-F strains. However, epitope 152FQEAFWLEDG161 is not conserved among BEV-F strains. Using the mAbs of 3H4 and 1E10, we found that VP2 localized in the cytoplasm during viral replication and could be used to monitor the viral antigen in infected tissues using immunohistochemistry. A preliminary 3H4-epitope-based indirect ELISA allowed us to detect anti-BEV-strain-HY12 antibodies in mice. This study indicates that the three mAbs could be useful tools for investigating the structure and function of the viral VP2 protein and the development of serological diagnostic techniques for BEV infection.
Collapse
Affiliation(s)
- Dan Liu
- Swine Digestive System Infectious Diseases Research Team, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China.,College of Veterinary Medicine, Key Laboratory for Zoonosis, Ministry of Education, Jilin University, No. 5333 Xian Road, Changchun, Jilin, 130062, China
| | - Junying Hu
- College of Veterinary Medicine, Key Laboratory for Zoonosis, Ministry of Education, Jilin University, No. 5333 Xian Road, Changchun, Jilin, 130062, China
| | - Hui Dong
- Inactivated Vaccine Production Workshop Comprehensive Group, Harbin Weike Biotechnology Limited Company, Harbin, 150069, China
| | - Liping Huang
- Swine Digestive System Infectious Diseases Research Team, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China
| | - Yanwu Wei
- Swine Digestive System Infectious Diseases Research Team, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China
| | - Deli Xia
- Swine Digestive System Infectious Diseases Research Team, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China
| | - Hongzhen Zhu
- Swine Digestive System Infectious Diseases Research Team, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China
| | - Xu Wang
- College of Veterinary Medicine, Key Laboratory for Zoonosis, Ministry of Education, Jilin University, No. 5333 Xian Road, Changchun, Jilin, 130062, China
| | - Hongli Wu
- Swine Digestive System Infectious Diseases Research Team, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China
| | - Xinping Wang
- College of Veterinary Medicine, Key Laboratory for Zoonosis, Ministry of Education, Jilin University, No. 5333 Xian Road, Changchun, Jilin, 130062, China.
| | - Changming Liu
- Swine Digestive System Infectious Diseases Research Team, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China.
| |
Collapse
|
10
|
Role of Enteroviral RNA-Dependent RNA Polymerase in Regulation of MDA5-Mediated Beta Interferon Activation. J Virol 2019; 93:JVI.00132-19. [PMID: 30814289 DOI: 10.1128/jvi.00132-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 02/21/2019] [Indexed: 02/06/2023] Open
Abstract
Infection by enteroviruses can cause severe neurological complications in humans. The interactions between the enteroviral and host proteins may facilitate the virus replication and be involved in the pathogenicity of infected individuals. It has been shown that human enteroviruses possess various mechanisms to suppress host innate immune responses in infected cells. Previous studies showed that infection by enterovirus 71 (EV71) causes the degradation of MDA5, which is a critical cytoplasmic pathogen sensor in the recognition of picornaviruses for initiating transcription of type I interferons. In the present study, we demonstrated that the RNA-dependent RNA polymerase (RdRP; also denoted 3Dpol) encoded by EV71 interacts with the caspase activation and recruitment domains (CARDs) of MDA5 and plays a role in the inhibition of MDA5-mediated beta interferon (IFN-β) promoter activation and mRNA expression. In addition, we found that the 3Dpol protein encoded by coxsackievirus B3 also interacted with MDA5 and downregulated the antiviral signaling initiated by MDA5. These findings indicate that enteroviral RdRP may function as an antagonist against the host antiviral innate immune response.IMPORTANCE Infection by enteroviruses causes severe neurological complications in humans. Human enteroviruses possess various mechanisms to suppress the host type I interferon (IFN) response in infected cells to establish viral replication. In the present study, we found that the enteroviral 3Dpol protein (or RdRP), which is a viral RNA-dependent RNA polymerase for replicating viral RNA, plays a role in the inhibition of MDA5-mediated beta interferon (IFN-β) promoter activation. We further demonstrated that enteroviral 3Dpol protein interacts with the caspase activation and recruitment domains (CARDs) of MDA5. These findings indicate that enteroviral RdRP functions as an antagonist against the host antiviral response.
Collapse
|
11
|
Rescue and characterization of a recombinant HY12 bovine enterovirus carrying a foreign HA epitope in the 3A nonstructural protein. Arch Virol 2019; 164:1309-1321. [PMID: 30877453 DOI: 10.1007/s00705-019-04178-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/17/2019] [Indexed: 10/27/2022]
Abstract
Full-length infectious cDNA clones for recombinant HY12 bovine enteroviruses designated as rHY12-3A-2-HA, rHY12-3A-3-HA, and rHY12-3A-9-HA were constructed by the insertion of an epitope from influenza virus hemagglutinin (HA) at the N-terminus of the HY12-encoded 3A protein at amino acid positions 2, 3, and 9. The recombinant HY12 viruses expressing the HA epitope were rescued and characterized using immunoperoxidase monolayer assay, western blotting, and electron microscopy. The three rescued recombinant marker viruses showed similar characteristics, such as TCID50 titer, plaque size, and growth properties, to those of parental rHY12 virus. Comparative analysis of the nucleotide sequences demonstrated the three recombinant marker viruses remained stable for 15 passages with no genetic changes. The recombinant viruses remained viable in various permissive cell lines, including BHK-21, Vero, and PK15 cells, suggesting that the insertion of the HA epitope tag had no effect on virus infectivity. Mice infected with the recombinant marker viruses and the parental virus produced anti-HY12-virus antibodies, while the recombinant marker viruses also produced anti-HA-epitope-tag antibodies. Taken together, these results demonstrate that HY12 viruses containing genetic markers may be useful tools for future investigations of the mechanisms of viral pathogenesis and virus replication, as well as for vaccine development.
Collapse
|
12
|
Wang H, Li Y. Recent Progress on Functional Genomics Research of Enterovirus 71. Virol Sin 2018; 34:9-21. [PMID: 30552635 DOI: 10.1007/s12250-018-0071-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/14/2018] [Indexed: 01/20/2023] Open
Abstract
Enterovirus 71 (EV71) is one of the main pathogens that causes hand-foot-and-mouth disease (HFMD). HFMD caused by EV71 infection is mostly self-limited; however, some infections can cause severe neurological diseases, such as aseptic meningitis, brain stem encephalitis, and even death. There are still no effective clinical drugs used for the prevention and treatment of HFMD. Studying EV71 protein function is essential for elucidating the EV71 replication process and developing anti-EV71 drugs and vaccines. In this review, we summarized the recent progress in the studies of EV71 non-coding regions (5' UTR and 3' UTR) and all structural and nonstructural proteins, especially the key motifs involving in viral infection, replication, and immune regulation. This review will promote our understanding of EV71 virus replication and pathogenesis, and will facilitate the development of novel drugs or vaccines to treat EV71.
Collapse
Affiliation(s)
- Huiqiang Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.,NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yuhuan Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China. .,NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
13
|
Wang Y, Ma L, Stipkovits L, Szathmary S, Li X, Liu Y. The Strategy of Picornavirus Evading Host Antiviral Responses: Non-structural Proteins Suppress the Production of IFNs. Front Microbiol 2018; 9:2943. [PMID: 30619109 PMCID: PMC6297142 DOI: 10.3389/fmicb.2018.02943] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/15/2018] [Indexed: 12/22/2022] Open
Abstract
Viral infections trigger the innate immune system to produce interferons (IFNs), which play important role in host antiviral responses. Co-evolution of viruses with their hosts has favored development of various strategies to evade the effects of IFNs, enabling viruses to survive inside host cells. One such strategy involves inhibition of IFN signaling pathways by non-structural proteins. In this review, we provide a brief overview of host signaling pathways inducing IFN production and their suppression by picornavirus non-structural proteins. Using this strategy, picornaviruses can evade the host immune response and replicate inside host cells.
Collapse
Affiliation(s)
- Yining Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Lina Ma
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | | | | | - Xuerui Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yongsheng Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
14
|
Construction and evaluation of HA-epitope-tag introduction onto the VP1 structural protein of a novel HY12 enterovirus. Virology 2018; 525:106-116. [PMID: 30253275 DOI: 10.1016/j.virol.2018.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 11/23/2022]
Abstract
In this study, we investigated the feasibility of using enterovirus HY12 as a vector to express an exogenous hemagglutinin (HA)-epitope tag onto the HY12-encoded VP1 protein via a reverse genetic system. Characteristics of recombinant (r) HY12-VP1-HA marker virus were determined by immunoperoxidase monolayer assay, western blot, electron microscopy, and serum-neutralisation assay. Sequence analysis demonstrated that the marker virus stably maintained the HA-epitope-tag in MDBK cells, with no changes in viral morphological features observed relative to those of the parental rHY12 virus. Furthermore, detection by immunofluorescence assay revealed the expression of HA-epitope tag and VP2 protein, which distinguish the marker virus from parental rHY12 virus. In addition, neonatal mice infected with the recombinant marker virus showed various microscopic pathological lesions and generated anti-HY12 virus and -HA-epitope-tag antibodies. These results indicated that the recombinant marker virus represented a valuable platform to promote the development of novel genetic vaccines.
Collapse
|
15
|
Sobhy NM, Mor SK, Mohammed MEM, Bastawecy IM, Fakhry HM, Youssef CRB, Abouzeid NZ, Goyal SM. Isolation and molecular characterization of bovine enteroviruses in Egypt. Vet J 2015; 206:317-21. [PMID: 26586212 PMCID: PMC7129267 DOI: 10.1016/j.tvjl.2015.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 09/29/2015] [Accepted: 10/04/2015] [Indexed: 01/07/2023]
Abstract
Bovine enterovirus (BEV) was isolated from diarrheic calves in Egypt. Sequencing revealed of BEV/Egypt/2014//KM667941 to have 7417 nucleotides (nt). The organization of nt was typical of the BEV genome including 822 nt in 5′NTR, 6498 nt in ORF, and 97 nt in 3′NTR. Phylogenetic analysis revealed clustering of BEV/Egypt/2014/KM667941 with BEV-F. A specific RT-PCR for BEV was developed to detect this pathogen in cattle.
Enteroviruses belong to the Picornaviridae family and infect a wide range of mammals including cattle. Bovine enterovirus (BEV) has recently been reclassified into E and F serotypes. BEV was first isolated in Egypt in 1966 although it has been known in other countries since the 1950s. In this study, BEV-F2 was isolated from calves with severe diarrhea and the isolated viruses were subjected to molecular characterization. Illumina sequencing of one of the isolates revealed the presence of a complete BEV-F genome sequence. The phylogenetic analysis revealed nucleotide substitutions along the genome in comparison with other known strains of BEV-F (HQ663846, AY508697 and DQ092795). Two primer sets were designed from the 3D and 5′NTR regions and used for the examination of the remaining isolates, which were confirmed to be of the BEV-F2 serotype. The availability of the complete genome sequence of this virus adds to the sequence database of the members of Picornaviridae and should be useful in future molecular studies of BEV.
Collapse
Affiliation(s)
- N M Sobhy
- Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia 44511, Egypt
| | - S K Mor
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - M E M Mohammed
- Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia 44511, Egypt
| | - I M Bastawecy
- Department of Virology, Animal Health Research Institute, Dokki, Giza 12618, Egypt
| | - H M Fakhry
- Veterinary Serum and Vaccine Research Institute, East of Cairo 131, Egypt
| | - C R B Youssef
- Department of Microbiology, Faculty of Pharmacy, Zagazig University, Zagazig, Sharkia 44519, Egypt
| | - N Z Abouzeid
- Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia 44511, Egypt
| | - S M Goyal
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA.
| |
Collapse
|
16
|
Li X, Liu Y, Wu T, Jin Y, Cheng J, Wan C, Qian W, Xing F, Shi W. The Antiviral Effect of Baicalin on Enterovirus 71 In Vitro. Viruses 2015; 7:4756-71. [PMID: 26295407 PMCID: PMC4576202 DOI: 10.3390/v7082841] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 07/24/2015] [Accepted: 08/10/2015] [Indexed: 02/07/2023] Open
Abstract
Baicalin is a flavonoid compound extracted from Scutellaria roots that has been reported to possess antibacterial, anti-inflammatory, and antiviral activities. However, the antiviral effect of baicalin on enterovirus 71 (EV71) is still unknown. In this study, we found that baicalin showed inhibitory activity on EV71 infection and was independent of direct virucidal or prophylactic effect and inhibitory viral absorption. The expressions of EV71/3D mRNA and polymerase were significantly blocked by baicalin treatment at early stages of EV71 infection. In addition, baicalin could decrease the expressions of FasL and caspase-3, as well as inhibit the apoptosis of EV71-infected human embryonal rhabdomyosarcoma (RD) cells. Altogether, these results indicate that baicalin exhibits potent antiviral effect on EV71 infection, probably through inhibiting EV71/3D polymerase expression and Fas/FasL signaling pathways.
Collapse
Affiliation(s)
- Xiang Li
- Department of Clinical Laboratory, Huai'an Hospital Affiliated of Xuzhou Medical College, 62 Huaihai south road, Huai'an, Jiangsu 223300, China.
- Department of Clinical Laboratory, the Third Affiliated Hospital of Soochow University, 185 Juqian street, Changzhou, Jiangsu 213003, China.
| | - Yuanyuan Liu
- Department of Endocrinology, Huai'an First Affliated Hospital of Nanjing Medical University, 6 Beijing west road, Huai'an, Jiangsu 223300, China.
| | - Tingting Wu
- Department of Clinical Laboratory, the Fourth People's Hospital of Huai'an, 128 Yanan east road, Huai'an, Jiangsu 223300, China.
| | - Yue Jin
- Department of Clinical Laboratory, Huai'an Hospital Affiliated of Xuzhou Medical College, 62 Huaihai south road, Huai'an, Jiangsu 223300, China.
| | - Jianpin Cheng
- Department of Clinical Laboratory, Huai'an Hospital Affiliated of Xuzhou Medical College, 62 Huaihai south road, Huai'an, Jiangsu 223300, China.
| | - Changbiao Wan
- Department of Clinical Laboratory, Huai'an Hospital Affiliated of Xuzhou Medical College, 62 Huaihai south road, Huai'an, Jiangsu 223300, China.
| | - Weihe Qian
- Department of Clinical Laboratory, Huai'an Hospital Affiliated of Xuzhou Medical College, 62 Huaihai south road, Huai'an, Jiangsu 223300, China.
| | - Fei Xing
- Department of Clinical Laboratory, Huai'an Hospital Affiliated of Xuzhou Medical College, 62 Huaihai south road, Huai'an, Jiangsu 223300, China.
| | - Weifeng Shi
- Department of Clinical Laboratory, the Third Affiliated Hospital of Soochow University, 185 Juqian street, Changzhou, Jiangsu 213003, China.
| |
Collapse
|
17
|
Enterovirus 71 Proteins 2A and 3D Antagonize the Antiviral Activity of Gamma Interferon via Signaling Attenuation. J Virol 2015; 89:7028-37. [PMID: 25926657 DOI: 10.1128/jvi.00205-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/20/2015] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Enterovirus 71 (EV71) infection causes severe mortality involving multiple possible mechanisms, including cytokine storm, brain stem encephalitis, and fulminant pulmonary edema. Gamma interferon (IFN-γ) may confer anti-EV71 activity; however, the claim that disease severity is highly correlated to an increase in IFN-γ is controversial and would indicate an immune escape initiated by EV71. This study, investigating the role of IFN-γ in EV71 infection using a murine model, showed that IFN-γ was elevated. Moreover, IFN-γ receptor-deficient mice showed higher mortality rates and more severe disease progression with slower viral clearance than wild-type mice. In vitro results showed that IFN-γ pretreatment reduced EV71 yield, whereas EV71 infection caused IFN-γ resistance with attenuated IFN-γ signaling in IFN regulatory factor 1 (IRF1) gene transactivation. To study the immunoediting ability of EV71 proteins in IFN-γ signaling, 11 viral proteins were stably expressed in cells without cytotoxicity; however, viral proteins 2A and 3D blocked IFN-γ-induced IRF1 transactivation following a loss of signal transducer and activator of transcription 1 (STAT1) nuclear translocation. Viral 3D attenuated IFN-γ signaling accompanied by a STAT1 decrease without interfering with IFN-γ receptor expression. Restoration of STAT1 or blocking 3D activity was able to rescue IFN-γ signaling. Interestingly, viral 2A attenuated IFN-γ signaling using another mechanism by reducing the serine phosphorylation of STAT1 following the inactivation of extracellular signal-regulated kinase without affecting STAT1 expression. These results demonstrate the anti-EV71 ability of IFN-γ and the immunoediting ability by EV71 2A and 3D, which attenuate IFN-γ signaling through different mechanisms. IMPORTANCE Immunosurveillance by gamma interferon (IFN-γ) may confer anti-enterovirus 71 (anti-EV71) activity; however, the claim that disease severity is highly correlated to an increase in IFN-γ is controversial and would indicate an immune escape initiated by EV71. IFN-γ receptor-deficient mice showed higher mortality and more severe disease progression, indicating the anti-EV71 property of IFN-γ. However, EV71 infection caused cellular insusceptibility in response to IFN-γ stimulation. We used an in vitro system with viral protein expression to explore the novel IFN-γ inhibitory properties of the EV71 2A and 3D proteins through the different mechanisms. According to this study, targeting either 2A or 3D pharmacologically and/or genetically may sustain a cellular susceptibility in response to IFN-γ, particularly for IFN-γ-mediated anti-EV71 activity.
Collapse
|
18
|
Dang S, Gao N, Li Y, Li M, Wang X, Jia X, Zhai S, Zhang X, Liu J, Deng H, Dong T. Dominant CD4-dependent RNA-dependent RNA polymerase-specific T-cell responses in children acutely infected with human enterovirus 71 and healthy adult controls. Immunology 2014; 142:89-100. [PMID: 24329688 DOI: 10.1111/imm.12235] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 12/05/2013] [Accepted: 12/11/2013] [Indexed: 11/29/2022] Open
Abstract
Human enterovirus 71 (EV71) is one of the major causes of hand, foot and mouth disease (HFMD), which leads to significant mortality in infected children. A prophylactic vaccine is urgently needed. However, little is known about the protective T-cell immunity in individuals infected with the EV71 virus. In this study, we performed a comprehensive ex vivo interferon-γ ELISPOT analysis in 31 children infected with EV71 as well as in 40 healthy adult controls of the CD4(+) and CD8(+) T-cell responses to overlapping peptides spanning the VP1 structural protein and RNA-dependent RNA polymerase (RdRp) non-structural protein. EV71-specific CD4 T-cell responses were detected in most of the acute patients and were mostly CD4-dependent RdRp-specific responses. CD8-dependent VP1 and RdRp-specific responses were also detected in a small proportion of recently infected children. There was no significant association between the strength of the T-cell responses and disease severity observed during the acute EV71 infection phase. Interestingly, an RdRp-specific, but no VP1-specific, CD4-dependent T-cell response was detected in 30% of the adult controls, and no T-cell responses were detected in healthy children. In addition, 24 individual peptides containing potential T-cell epitope regions were identified. The data suggest that CD4-dependent RdRp-specific T-cell responses may play an important role in protective immunity, and the epitopes identified in this study should provide valuable information for future therapeutic and prophylactic vaccine design as well as basic research.
Collapse
Affiliation(s)
- Shuangsuo Dang
- Department of Infectious Diseases, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Epidemiology and Biostatistics, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Shang L, Xu M, Yin Z. Antiviral drug discovery for the treatment of enterovirus 71 infections. Antiviral Res 2012; 97:183-94. [PMID: 23261847 DOI: 10.1016/j.antiviral.2012.12.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 12/05/2012] [Accepted: 12/06/2012] [Indexed: 12/17/2022]
Abstract
Enterovirus 71 (EV71) is a small, positive-sense, single-stranded RNA virus in the genus Enterovirus, family Picornavirus. It causes hand, foot and mouth disease in infants and children, which in a small percentage of cases progresses to central nervous system infection, ranging from aseptic meningitis to fatal encephalitis. Sporadic cases of EV71 infection occur throughout the world, but large epidemics have occurred recently in Southeast Asia and China. There are currently no approved vaccines or antiviral therapies for the prevention or treatment of EV71 infection. This paper reviews efforts to develop antiviral therapies against EV71.
Collapse
Affiliation(s)
- Luqing Shang
- College of Pharmacy, Nankai University, Tianjin, PR China
| | | | | |
Collapse
|
20
|
Ribavirin-resistant mutants of human enterovirus 71 express a high replication fidelity phenotype during growth in cell culture. J Virol 2012; 87:1759-69. [PMID: 23175376 DOI: 10.1128/jvi.02139-12] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
It has been shown in animal models that ribavirin-resistant poliovirus with a G64S mutation in its 3D polymerase has high replication fidelity coupled with attenuated virulence. Here, we describe the effects of mutagenesis in the human enterovirus 71 (HEV71) 3D polymerase on ribavirin resistance and replication fidelity. Seven substitutions were introduced at amino acid position 3D-G64 of a HEV71 full-length infectious cDNA clone (26M). Viable clone-derived virus populations were rescued from the G64N, G64R, and G64T mutant cDNA clones. The clone-derived G64R and G64T mutant virus populations were resistant to growth inhibition in the presence of 1,600 μM ribavirin, whereas the growth of parental 26M and the G64N mutant viruses were inhibited in the presence of 800 μM ribavirin. Nucleotide sequencing of the 2C and 3D coding regions revealed that the rate of random mutagenesis after 13 passages in the presence of 400 μM ribavirin was nearly 10 times higher in the 26M genome than in the mutant G64R virus genome. Furthermore, random mutations acquired in the 2C coding regions of 26M and G64N conferred resistance to growth inhibition in the presence of 0.5 mM guanidine, whereas the G64R and G64T mutant virus populations remained susceptible to growth inhibition by 0.5 mM guanidine. Interestingly, a S264L mutation identified in the 3D coding region of 26M after ribavirin selection was also associated with both ribavirin-resistant and high replication fidelity phenotypes. These findings are consistent with the hypothesis that the 3D-G64R, 3D-G64T, and 3D-S264L mutations confer resistance upon HEV71 to the antiviral mutagen ribavirin, coupled with a high replication fidelity phenotype during growth in cell culture.
Collapse
|
21
|
Wang Q, Weng L, Jiang H, Zhang S, Toyoda T. Fluorescent primer-based in vitro transcription system of viral RNA-dependent RNA polymerases. Anal Biochem 2012; 433:92-4. [PMID: 23103398 DOI: 10.1016/j.ab.2012.10.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/10/2012] [Accepted: 10/16/2012] [Indexed: 11/26/2022]
Abstract
Viral infection is a leading cause of disease and death. Although vaccines are the most effective method of controlling viral infections, antiviral drugs are also important. Here, we established an in vitro transcription system by using fluorescein isothiocyanate-conjugated primers for RNA polymerases of viruses that are important disease-causing human pathogens (influenza, hepatitis C, Japanese encephalitis viruses, and enterovirus 71). This technology will allow us to analyze RNA polymerase activity without using radioisotopes.
Collapse
Affiliation(s)
- Qiang Wang
- Unit of Viral Genome Regulation, Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200025, People's Republic of China
| | | | | | | | | |
Collapse
|
22
|
Bek EJ, McMinn PC. The Pathogenesis and Prevention of Encephalitis due to Human Enterovirus 71. Curr Infect Dis Rep 2012; 14:397-407. [PMID: 22639066 DOI: 10.1007/s11908-012-0267-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Human enterovirus 71 (HEV71) has emerged as a major cause of viral encephalitis in Southeast Asia, with increased epidemic activity observed since 1997. This is reflected in a large increase in scientific publications relating directly to HEV71. New research is elucidating details of the viral life cycle, confirming similarities between HEV71 and other enteroviruses. Scavenger receptor B2 (SCARB2) is a receptor for HEV71, although other receptors are likely to be identified. Currently, the only strategies to prevent HEV71-associated disease are early diagnosis and aggressive supportive management of identified cases. As more information emerges regarding the molecular processes of HEV71 infection, further advances may lead to the development of effective antiviral treatments and ultimately a vaccine-protection strategy. The protective efficacies of several inactivated HEV71 vaccines have been confirmed in animal models, suggesting that an effective vaccine may become available in the next decade.
Collapse
Affiliation(s)
- Emily Jane Bek
- Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, Blackburn Building D06, Sydney, NSW, 2006, Australia
| | | |
Collapse
|
23
|
Wang Q, Weng L, Tian X, Counor D, Sun J, Mao Y, Deubel V, Okada H, Toyoda T. Effect of the methyltransferase domain of Japanese encephalitis virus NS5 on the polymerase activity. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:411-8. [DOI: 10.1016/j.bbagrm.2012.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 12/05/2011] [Accepted: 01/06/2012] [Indexed: 12/25/2022]
|
24
|
Liu J, Yang Y, Xu Y, Ma C, Qin C, Zhang L. Lycorine reduces mortality of human enterovirus 71-infected mice by inhibiting virus replication. Virol J 2011; 8:483. [PMID: 22029605 PMCID: PMC3212826 DOI: 10.1186/1743-422x-8-483] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 10/27/2011] [Indexed: 12/17/2022] Open
Abstract
Human enterovirus 71 (EV71) infection causes hand, foot and mouth disease in children under 6 years old and this infection occasionally induces severe neurological complications. No vaccines or drugs are clinical available to control EV71 epidemics. In present study, we show that treatment with lycorine reduced the viral cytopathic effect (CPE) on rhabdomyosarcoma (RD) cells by inhibiting virus replication. Analysis of this inhibitory effect of lycorine on viral proteins synthesis suggests that lycorine blocks the elongation of the viral polyprotein during translation. Lycorine treatment of mice challenged with a lethal dose of EV71 resulted in reduction of mortality, clinical scores and pathological changes in the muscles of mice, which were achieved through inhibition of viral replication. When mice were infected with a moderate dose of EV71, lycorine treatment was able to protect them from paralysis. Lycorine may be a potential drug candidate for the clinical treatment of EV71-infected patients.
Collapse
Affiliation(s)
- Jiangning Liu
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health; Institute of Laboratory Animal Science, CAMS & Comparative Medicine Centre, PUMC, Chao Yang Strict, Pan Jia Yuan Nan Li No.5, Beijing 100021, China
| | | | | | | | | | | |
Collapse
|