1
|
Hosseini SH, Roussel MR. Analytic delay distributions for a family of gene transcription models. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:6225-6262. [PMID: 39176425 DOI: 10.3934/mbe.2024273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Models intended to describe the time evolution of a gene network must somehow include transcription, the DNA-templated synthesis of RNA, and translation, the RNA-templated synthesis of proteins. In eukaryotes, the DNA template for transcription can be very long, often consisting of tens of thousands of nucleotides, and lengthy pauses may punctuate this process. Accordingly, transcription can last for many minutes, in some cases hours. There is a long history of introducing delays in gene expression models to take the transcription and translation times into account. Here we study a family of detailed transcription models that includes initiation, elongation, and termination reactions. We establish a framework for computing the distribution of transcription times, and work out these distributions for some typical cases. For elongation, a fixed delay is a good model provided elongation is fast compared to initiation and termination, and there are no sites where long pauses occur. The initiation and termination phases of the model then generate a nontrivial delay distribution, and elongation shifts this distribution by an amount corresponding to the elongation delay. When initiation and termination are relatively fast, the distribution of elongation times can be approximated by a Gaussian. A convolution of this Gaussian with the initiation and termination time distributions gives another analytic approximation to the transcription time distribution. If there are long pauses during elongation, because of the modularity of the family of models considered, the elongation phase can be partitioned into reactions generating a simple delay (elongation through regions where there are no long pauses), and reactions whose distribution of waiting times must be considered explicitly (initiation, termination, and motion through regions where long pauses are likely). In these cases, the distribution of transcription times again involves a nontrivial part and a shift due to fast elongation processes.
Collapse
Affiliation(s)
- S Hossein Hosseini
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Marc R Roussel
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
2
|
Eyboulet F, Jeronimo C, Côté J, Robert F. The deubiquitylase Ubp15 couples transcription to mRNA export. eLife 2020; 9:e61264. [PMID: 33226341 PMCID: PMC7682988 DOI: 10.7554/elife.61264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022] Open
Abstract
Nuclear export of messenger RNAs (mRNAs) is intimately coupled to their synthesis. pre-mRNAs assemble into dynamic ribonucleoparticles as they are being transcribed, processed, and exported. The role of ubiquitylation in this process is increasingly recognized but, while a few E3 ligases have been shown to regulate nuclear export, evidence for deubiquitylases is currently lacking. Here we identified deubiquitylase Ubp15 as a regulator of nuclear export in Saccharomyces cerevisiae. Ubp15 interacts with both RNA polymerase II and the nuclear pore complex, and its deletion reverts the nuclear export defect of E3 ligase Rsp5 mutants. The deletion of UBP15 leads to hyper-ubiquitylation of the main nuclear export receptor Mex67 and affects its association with THO, a complex coupling transcription to mRNA processing and involved in the recruitment of mRNA export factors to nascent transcripts. Collectively, our data support a role for Ubp15 in coupling transcription to mRNA export.
Collapse
Affiliation(s)
- Fanny Eyboulet
- Institut de recherches cliniques de MontréalMontréalCanada
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Axe Oncologie du Centre de Recherche du CHU de Québec-Université LavalQuébec CityCanada
| | - Célia Jeronimo
- Institut de recherches cliniques de MontréalMontréalCanada
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Axe Oncologie du Centre de Recherche du CHU de Québec-Université LavalQuébec CityCanada
| | - François Robert
- Institut de recherches cliniques de MontréalMontréalCanada
- Département de Médecine, Faculté de Médecine, Université de MontréalMontréalCanada
| |
Collapse
|
3
|
Dargemont C, Babour A. Novel functions for chromatin dynamics in mRNA biogenesis beyond transcription. Nucleus 2017; 8:482-488. [PMID: 28816581 DOI: 10.1080/19491034.2017.1342916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The first step of gene expression results in the production of mRNA ribonucleoparticles (mRNPs) that are exported to the cytoplasm via the NPC for translation into the cytoplasm. During this process, the mRNA molecule synthesized by RNA polymerase II (Pol II) undergoes extensive maturation, folding and packaging events that are intimately coupled to its synthesis. All these events take place in a chromatin context and it is therefore not surprising that a growing number of studies recently reported specific contributions of chromatin dynamics to various steps of mRNP biogenesis. In this extra view, we replace our recent findings highlighting the contribution of the yeast chromatin remodeling complex ISW1 to nuclear mRNA quality control in the context of the recent literature.
Collapse
Affiliation(s)
- Catherine Dargemont
- a Université Paris Diderot, Sorbonne Paris Cité, INSERM UMR944, CNRS UMR7212 , Hôpital St. Louis 1, Paris , France
| | - Anna Babour
- a Université Paris Diderot, Sorbonne Paris Cité, INSERM UMR944, CNRS UMR7212 , Hôpital St. Louis 1, Paris , France
| |
Collapse
|
4
|
The Chromatin Remodeler ISW1 Is a Quality Control Factor that Surveys Nuclear mRNP Biogenesis. Cell 2017; 167:1201-1214.e15. [PMID: 27863241 DOI: 10.1016/j.cell.2016.10.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/12/2016] [Accepted: 10/27/2016] [Indexed: 02/07/2023]
Abstract
Chromatin dynamics play an essential role in regulating DNA transaction processes, but it is unclear whether transcription-associated chromatin modifications control the mRNA ribonucleoparticles (mRNPs) pipeline from synthesis to nuclear exit. Here, we identify the yeast ISW1 chromatin remodeling complex as an unanticipated mRNP nuclear export surveillance factor that retains export-incompetent transcripts near their transcription site. This tethering activity of ISW1 requires chromatin binding and is independent of nucleosome sliding activity or changes in RNA polymerase II processivity. Combination of in vivo UV-crosslinking and genome-wide RNA immunoprecipitation assays show that Isw1 and its cofactors interact directly with premature mRNPs. Our results highlight that the concerted action of Isw1 and the nuclear exosome ensures accurate surveillance mechanism that proofreads the efficiency of mRNA biogenesis.
Collapse
|
5
|
Aukrust I, Rosenberg LA, Ankerud MM, Bertelsen V, Hollås H, Saraste J, Grindheim AK, Vedeler A. Post-translational modifications of Annexin A2 are linked to its association with perinuclear nonpolysomal mRNP complexes. FEBS Open Bio 2017; 7:160-173. [PMID: 28174683 PMCID: PMC5292671 DOI: 10.1002/2211-5463.12173] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/03/2016] [Accepted: 11/23/2016] [Indexed: 01/20/2023] Open
Abstract
Various post‐translational modifications (PTMs) regulate the localisation and function of the multifunctional protein Annexin A2 (AnxA2). In addition to its various tasks as a cytoskeletal‐ and membrane‐associated protein, AnxA2 can function as a trans‐acting protein binding to cis‐acting sequences of specific mRNAs. In the present study, we have examined the role of Ser25 phosphorylation in subcellular localisation of AnxA2 and its interaction with mRNP complexes. Subcellular fractionation and confocal microscopy of rat neuroendocrine PC12 cells showed that Ser25‐phosphorylated AnxA2 (pSer25AnxA2) is absent from the nucleus and mainly localised to the perinuclear region, evidently associating with both membranes and cytoskeletal elements. Perinuclear targeting of AnxA2 was abolished by inhibition of protein kinase C activity, which resulted in cortical enrichment of the protein. Although oligo(dT)‐affinity purification of mRNAs revealed that pSer25AnxA2 associates with nonpolysomal, translationally inactive mRNP complexes, it displayed only partial overlap with a marker of P‐bodies. The phosphorylated protein is present as high‐molecular‐mass forms, indicating that it contains additional covalent PTMs, apparently triggered by its Ser25 phosphorylation. The subcellular distributions of these forms clearly differ from the main form of AnxA2 and are also distinct from that of Tyr23‐phosphorylated AnxA2. Immunoprecipitation verified that these high‐molecular‐mass forms are due to ubiquitination and/or sumoylation. Moreover, these results indicate that Ser25 phosphorylation and ubiquitin/SUMO1 conjugation of AnxA2 promote its association with nonpolysomal mRNAs, providing evidence of a possible mechanism to sequester a subpopulation of mRNAs in a translationally inactive and transport competent form at a distinct subcellular localisation.
Collapse
Affiliation(s)
- Ingvild Aukrust
- Department of Biomedicine University of Bergen Norway; Present address: Centre for Medical Genetics and Molecular Medicine Haukeland University Hospital Bergen Norway
| | | | | | - Vibeke Bertelsen
- Department of Biomedicine University of Bergen Norway; Present address: Department of Pathology Oslo University Hospital University of Oslo Oslo Norway
| | - Hanne Hollås
- Department of Biomedicine University of Bergen Norway
| | - Jaakko Saraste
- Department of Biomedicine University of Bergen Norway; Molecular Imaging Centre (MIC) University of Bergen Norway
| | - Ann Kari Grindheim
- Department of Biomedicine University of Bergen Norway; Molecular Imaging Centre (MIC) University of Bergen Norway
| | - Anni Vedeler
- Department of Biomedicine University of Bergen Norway
| |
Collapse
|
6
|
Kragelund BB, Schenstrøm SM, Rebula CA, Panse VG, Hartmann-Petersen R. DSS1/Sem1, a Multifunctional and Intrinsically Disordered Protein. Trends Biochem Sci 2016; 41:446-459. [PMID: 26944332 DOI: 10.1016/j.tibs.2016.02.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/01/2016] [Accepted: 02/04/2016] [Indexed: 01/24/2023]
Abstract
DSS1/Sem1 is a versatile intrinsically disordered protein. Besides being a bona fide subunit of the 26S proteasome, DSS1 associates with other protein complexes, including BRCA2-RPA, involved in homologous recombination; the Csn12-Thp3 complex, involved in RNA splicing; the integrator, involved in transcription; and the TREX-2 complex, involved in nuclear export of mRNA and transcription elongation. As a subunit of the proteasome, DSS1 functions both in complex assembly and possibly as a ubiquitin receptor. Here, we summarise structural and functional aspects of DSS1/Sem1 with particular emphasis on its multifunctional and disordered properties. We suggest that DSS1/Sem1 can act as a polyanionic adhesive to prevent nonproductive interactions during construction of protein assemblies, uniquely employing different structures when associating with the diverse multisubunit complexes.
Collapse
Affiliation(s)
- Birthe B Kragelund
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Signe M Schenstrøm
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Caio A Rebula
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Vikram Govind Panse
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland.
| | - Rasmus Hartmann-Petersen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
7
|
Recruitment, Duplex Unwinding and Protein-Mediated Inhibition of the Dead-Box RNA Helicase Dbp2 at Actively Transcribed Chromatin. J Mol Biol 2016; 428:1091-1106. [PMID: 26876600 DOI: 10.1016/j.jmb.2016.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/26/2016] [Accepted: 02/02/2016] [Indexed: 02/07/2023]
Abstract
RNA helicases play fundamental roles in modulating RNA structures and facilitating RNA-protein (RNP) complex assembly in vivo. Previously, our laboratory demonstrated that the DEAD-box RNA helicase Dbp2 in Saccharomyces cerevisiae is required to promote efficient assembly of the co-transcriptionally associated mRNA-binding proteins Yra1, Nab2, and Mex67 onto poly(A)(+)RNA. We also found that Yra1 associates directly with Dbp2 and functions as an inhibitor of Dbp2-dependent duplex unwinding, suggestive of a cycle of unwinding and inhibition by Dbp2. To test this, we undertook a series of experiments to shed light on the order of events for Dbp2 in co-transcriptional mRNP assembly. We now show that Dbp2 is recruited to chromatin via RNA and forms a large, RNA-dependent complex with Yra1 and Mex67. Moreover, single-molecule fluorescence resonance energy transfer and bulk biochemical assays show that Yra1 inhibits unwinding in a concentration-dependent manner by preventing the association of Dbp2 with single-stranded RNA. This inhibition prevents over-accumulation of Dbp2 on mRNA and stabilization of a subset of RNA polymerase II transcripts. We propose a model whereby Yra1 terminates a cycle of mRNP assembly by Dbp2.
Collapse
|
8
|
The 26S proteasome and initiation of gene transcription. Biomolecules 2014; 4:827-47. [PMID: 25211636 PMCID: PMC4192674 DOI: 10.3390/biom4030827] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 08/20/2014] [Accepted: 09/01/2014] [Indexed: 11/17/2022] Open
Abstract
Transcription activation is the foremost step of gene expression and is modulated by various factors that act in synergy. Misregulation of this process and its associated factors has severe effects and hence requires strong regulatory control. In recent years, growing evidence has highlighted the 26S proteasome as an important contributor to the regulation of transcription initiation. Well known for its role in protein destruction, its contribution to protein synthesis was initially viewed with skepticism. However, studies over the past several years have established the proteasome as an important component of transcription initiation through proteolytic and non-proteolytic activities. In this review, we discuss findings made so far in understanding the connections between transcription initiation and the 26S proteasome complex.
Collapse
|
9
|
Bonizec M, Hérissant L, Pokrzywa W, Geng F, Wenzel S, Howard GC, Rodriguez P, Krause S, Tansey WP, Hoppe T, Dargemont C. The ubiquitin-selective chaperone Cdc48/p97 associates with Ubx3 to modulate monoubiquitylation of histone H2B. Nucleic Acids Res 2014; 42:10975-86. [PMID: 25183520 PMCID: PMC4176170 DOI: 10.1093/nar/gku786] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 08/18/2014] [Accepted: 08/18/2014] [Indexed: 11/14/2022] Open
Abstract
Cdc48/p97 is an evolutionary conserved ubiquitin-dependent chaperone involved in a broad array of cellular functions due to its ability to associate with multiple cofactors. Aside from its role in removing RNA polymerase II from chromatin after DNA damage, little is known about how this AAA-ATPase is involved in the transcriptional process. Here, we show that yeast Cdc48 is recruited to chromatin in a transcription-coupled manner and modulates gene expression. Cdc48, together with its cofactor Ubx3 controls monoubiquitylation of histone H2B, a conserved modification regulating nucleosome dynamics and chromatin organization. Mechanistically, Cdc48 facilitates the recruitment of Lge1, a cofactor of the H2B ubiquitin ligase Bre1. The function of Cdc48 in controlling H2B ubiquitylation appears conserved in human cells because disease-related mutations or chemical inhibition of p97 function affected the amount of ubiquitylated H2B in muscle cells. Together, these results suggest a prominent role of Cdc48/p97 in the coordination of chromatin remodeling with gene transcription to define cellular differentiation processes.
Collapse
Affiliation(s)
- Mélanie Bonizec
- Sorbonne Paris Cité, INSERM UMR944, CNRS UMR7212, Equipe labellisée Ligue contre le cancer, University of Paris Diderot, Hôpital St. Louis 1, Avenue Claude Vellefaux 75475 Paris Cedex 10, France
| | - Lucas Hérissant
- Sorbonne Paris Cité, INSERM UMR944, CNRS UMR7212, Equipe labellisée Ligue contre le cancer, University of Paris Diderot, Hôpital St. Louis 1, Avenue Claude Vellefaux 75475 Paris Cedex 10, France
| | - Wojciech Pokrzywa
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Fuqiang Geng
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 465 21st Avenue South, Nashville, TN 37232, USA
| | - Sabine Wenzel
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 465 21st Avenue South, Nashville, TN 37232, USA
| | - Gregory C Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 465 21st Avenue South, Nashville, TN 37232, USA
| | - Paco Rodriguez
- Sorbonne Paris Cité, INSERM UMR944, CNRS UMR7212, Equipe labellisée Ligue contre le cancer, University of Paris Diderot, Hôpital St. Louis 1, Avenue Claude Vellefaux 75475 Paris Cedex 10, France
| | - Sabine Krause
- Laboratory for Molecular Myology, Friedrich Baur Institute, Department of Neurology, Ludwig Maximilians University, Munich, Germany
| | - William P Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 465 21st Avenue South, Nashville, TN 37232, USA
| | - Thorsten Hoppe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Catherine Dargemont
- Sorbonne Paris Cité, INSERM UMR944, CNRS UMR7212, Equipe labellisée Ligue contre le cancer, University of Paris Diderot, Hôpital St. Louis 1, Avenue Claude Vellefaux 75475 Paris Cedex 10, France
| |
Collapse
|
10
|
From hypothesis to mechanism: uncovering nuclear pore complex links to gene expression. Mol Cell Biol 2014; 34:2114-20. [PMID: 24615017 DOI: 10.1128/mcb.01730-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The gene gating hypothesis put forth by Blobel in 1985 was an alluring proposal outlining functions for the nuclear pore complex (NPC) in transcription and nuclear architecture. Over the past several decades, collective studies have unveiled a full catalog of nucleoporins (Nups) that comprise the NPC, structural arrangements of Nups in the nuclear pore, and mechanisms of nucleocytoplasmic transport. With this foundation, investigations of the gene gating hypothesis have now become possible. Studies of several model organisms provide credence for Nup functions in transcription, mRNA export, and genome organization. Surprisingly, Nups are not only involved in transcriptional events that occur at the nuclear periphery, but there are also novel roles for dynamic Nups within the nucleoplasmic compartment. Several tenants of the original gene gating hypothesis have yet to be addressed. Knowledge of whether the NPC impacts the organization of the genome to control subsets of genes is limited, and the cooperating molecular machinery or specific genomic anchoring sequences are not fully resolved. This minireview summarizes the current evidence for gene gating in Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, and mammalian model systems. These examples highlight new and unpredicted mechanisms for Nup impacts on transcription and questions that are left to be explored.
Collapse
|
11
|
Hérissant L, Moehle EA, Bertaccini D, Van Dorsselaer A, Schaeffer-Reiss C, Guthrie C, Dargemont C. H2B ubiquitylation modulates spliceosome assembly and function in budding yeast. Biol Cell 2014; 106:126-38. [PMID: 24476359 DOI: 10.1111/boc.201400003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 01/24/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND INFORMATION Commitment to splicing occurs co-transcriptionally, but a major unanswered question is the extent to which various modifications of chromatin, the template for transcription in vivo, contribute to the regulation of splicing. RESULTS Here, we perform genome-wide analyses showing that inhibition of specific marks - H2B ubiquitylation, H3K4 methylation and H3K36 methylation - perturbs splicing in budding yeast, with each modification exerting gene-specific effects. Furthermore, semi-quantitative mass spectrometry on purified nuclear mRNPs and chromatin immunoprecipitation analysis on intron-containing genes indicated that H2B ubiquitylation, but not Set1-, Set2- or Dot1-dependent H3 methylation, stimulates recruitment of the early splicing factors, namely U1 and U2 snRNPs, onto nascent RNAs. CONCLUSIONS These results suggest that histone modifications impact splicing of distinct subsets of genes using distinct pathways.
Collapse
Affiliation(s)
- Lucas Hérissant
- Pathologie Cellulaire, University Paris Diderot, Sorbonne Paris Cité, INSERM U944, CNRS UMR7212, Equipe labellisée Ligue contre le cancer, Hôpital Saint Louis, Paris, Cedex 10, France
| | | | | | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- C A Niño
- Institut Jacques Monod, Paris Diderot University , Sorbonne Paris Cité, CNRS UMR7592, Equipe labellisée Ligue contre le cancer, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
| | | | | | | |
Collapse
|
13
|
Multiple crosstalks between mRNA biogenesis and SUMO. Chromosoma 2013; 122:387-99. [PMID: 23584125 DOI: 10.1007/s00412-013-0408-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/10/2013] [Accepted: 03/13/2013] [Indexed: 12/26/2022]
Abstract
mRNA metabolism involves the orchestration of multiple nuclear events, including transcription, processing (e.g., capping, splicing, polyadenylation), and quality control. This leads to the accurate formation of messenger ribonucleoparticles (mRNPs) that are finally exported to the cytoplasm for translation. The production of defined sets of mRNAs in given environmental or physiological situations relies on multiple regulatory mechanisms that target the mRNA biogenesis machineries. Among other regulations, post-translational modification by the small ubiquitin-like modifier SUMO, whose prominence in several cellular processes has been largely demonstrated, also plays a key role in mRNA biogenesis. Analysis of the multiple available SUMO proteomes and functional validations of an increasing number of sumoylated targets have revealed the key contribution of SUMO-dependent regulation in nuclear mRNA metabolism. While sumoylation of transcriptional activators and repressors is so far best documented, SUMO contribution to other stages of mRNA biogenesis is also emerging. Modification of mRNA metabolism factors by SUMO determine their subnuclear targeting and biological activity, notably by regulating their molecular interactions with nucleic acids or protein partners. In particular, sumoylation of DNA-bound transcriptional regulators interfere with their association to target sequences or chromatin modifiers. In addition, the recent identification of enzymes of the SUMO pathway within specialized mRNA biogenesis machineries may provide a further level of regulation to their specificity. These multiple crosstalks between mRNA metabolism and SUMO appear therefore as important players in cellular regulatory networks.
Collapse
|
14
|
Eukaryotic mRNA decay: methodologies, pathways, and links to other stages of gene expression. J Mol Biol 2013; 425:3750-75. [PMID: 23467123 DOI: 10.1016/j.jmb.2013.02.029] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/24/2013] [Accepted: 02/26/2013] [Indexed: 01/15/2023]
Abstract
mRNA concentration depends on the balance between transcription and degradation rates. On both sides of the equilibrium, synthesis and degradation show, however, interesting differences that have conditioned the evolution of gene regulatory mechanisms. Here, we discuss recent genome-wide methods for determining mRNA half-lives in eukaryotes. We also review pre- and posttranscriptional regulons that coordinate the fate of functionally related mRNAs by using protein- or RNA-based trans factors. Some of these factors can regulate both transcription and decay rates, thereby maintaining proper mRNA homeostasis during eukaryotic cell life.
Collapse
|