1
|
Rao C, Liu B, Qin H, Du Z. Enoyl coenzyme a hydratase 1 attenuates aortic valve calcification by suppressing Runx2 via Wnt5a/Ca 2+ pathway. J Cell Commun Signal 2024; 18:e12038. [PMID: 38946717 PMCID: PMC11208118 DOI: 10.1002/ccs3.12038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 05/01/2024] [Accepted: 05/17/2024] [Indexed: 07/02/2024] Open
Abstract
The morbidity and death rates of calcified aortic valves|calcific aortic valve (CAV) disease (CAVD) remain high for its limited therapeutic choices. Here, we investigated the function, therapeutic potential, and putative mechanisms of Enoyl coenzyme A hydratase 1 (ECH1) in CAVD by various in vitro and in vivo experiments. Single-cell sequencing revealed that ECH1 was predominantly expressed in valve interstitial cells and was significantly reduced in CAVs. Overexpression of ECH1 reduced aortic valve calcification in ApoE-/- mice treated with high cholesterol diet, while ECH1 silencing had the reverse effect. We also identified Wnt5a, a noncanonical Wnt ligand, was also altered when ECH1 expression was modulated. Mechanistically, we found that ECH1 exerted anti-calcific actions through suppressing Wnt signaling, since CHIR99021, a Wnt agonist, may significantly lessen the protective impact of ECH1 overexpression on the development of valve calcification. ChIP and luciferase assays all showed that ECH1 overexpression prevented Runx2 binding to its downstream gene promoters (osteopontin and osteocalcin), while CHIR99021 neutralized this protective effect. Collectively, our findings reveal a previously unrecognized mechanism of ECH1-Wnt5a/Ca2+ regulation in CAVD, implying that targeting ECH1 may be a potential therapeutic strategy to prevent CAVD development.
Collapse
Affiliation(s)
- Caijun Rao
- Department of GeriatricsTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Baoqing Liu
- Department of Cardiovascular SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Haojie Qin
- Clinic Center of Human Gene ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Zhipeng Du
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
2
|
Dashti P, Thaler R, Hawse JR, Galvan ML, van der Eerden BJ, van Wijnen AJ, Dudakovic A. G-protein coupled receptor 5C (GPRC5C) is required for osteoblast differentiation and responds to EZH2 inhibition and multiple osteogenic signals. Bone 2023; 176:116866. [PMID: 37558192 PMCID: PMC10962865 DOI: 10.1016/j.bone.2023.116866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023]
Abstract
Osteoblast differentiation is epigenetically suppressed by the H3K27 methyltransferase EZH2, and induced by the morphogen BMP2 and transcription factor RUNX2. These factors also regulate distinct G protein coupled receptors (GPRCs; e.g., PTH1R, GPR30/GPER1). Because GPRCs transduce many physiological stimuli, we examined whether BMP2 or EZH2 inhibition (i.e., GSK126) regulates other GPRC genes in osteoblasts. RNA-seq screening of >400 mouse GPRC-related genes showed that many GPRCs are downregulated during osteogenic differentiation. The orphan receptor GPRC5C, along with a small subset of other GPRCs, is induced by BMP2 or GSK126 during Vitamin C dependent osteoblast differentiation, but not by all-trans retinoic acid. ChIP-seq analysis revealed that GSK126 reduces H3K27me3 levels at the GPRC5C gene locus in differentiating MC3T3-E1 osteoblasts, consistent with enhanced GPRC5C mRNA expression. Loss of function analyses revealed that shRNA-mediated depletion of GPRC5C decreases expression of bone markers (e.g., BGLAP and IBSP) and mineral deposition in response to BMP2 or GSK126. GPRC5C mRNA was found to be reduced in the osteopenic bones of KLF10 null mice which have compromised BMP2 signaling. GPRC5C mRNA is induced by the bone-anabolic activity of 17β-estradiol in trabecular but not cortical bone following ovariectomy. Collectively, these findings suggest that GPRC5C protein is a key node in a pro-osteogenic axis that is normally suppressed by EZH2-mediated H3K27me3 marks and induced during osteoblast differentiation by GSK126, BMP2, and/or 17β-estradiol. Because GPRC5C protein is an understudied orphan receptor required for osteoblast differentiation, identification of ligands that induce GPRC5C signaling may support therapeutic strategies to mitigate bone-related disorders.
Collapse
Affiliation(s)
- Parisa Dashti
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - John R Hawse
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - M Lizeth Galvan
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Bram J van der Eerden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Andre J van Wijnen
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Biochemistry, University of Vermont, Burlington, VT, USA.
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
3
|
Chen R, Lei S, She Y, Zhou S, Shi H, Li C, Jiang T. Lnc-GD2H Promotes Proliferation by Forming a Feedback Loop With c-Myc and Enhances Differentiation Through Interacting With NACA to Upregulate Myog in C2C12 Myoblasts. Front Cell Dev Biol 2021; 9:671857. [PMID: 34490239 PMCID: PMC8416608 DOI: 10.3389/fcell.2021.671857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/07/2021] [Indexed: 11/23/2022] Open
Abstract
In the present study, the roles of a novel long non-coding RNA (lncRNA), lnc-GD2H, in promoting C2C12 myoblast proliferation and differentiation and muscle regeneration were investigated by quantitative polymerase chain reaction, western blotting, Cell Counting Kit-8, 5-ethynyl-2′-deoxyuridine (EdU), immunofluorescence staining, luciferase reporter, mass spectrometry, pulldown, chromatin immunoprecipitation, RNA immunoprecipitation assay, wound healing assays, and cardiotoxin (CTX)-induced muscle injury assays. It was observed that lnc-GD2H promoted myoblast proliferation as evidenced by the enhancement of the proliferation markers c-Myc, CDK2, CDK4, and CDK6, percentage of EdU-positive cells, and rate of cell survival during C2C12 myoblast proliferation. Additional experiments confirmed that c-Myc bound to the lnc-GD2H promoter and regulated its transcription. lnc-GD2H promoted cell differentiation with enhanced MyHC immunostaining as well as increased expression of the myogenic marker genes myogenin (Myog), Mef2a, and Mef2c during myoblast differentiation. Additional assays indicated that lnc-GD2H interacted with NACA which plays a role of transcriptional regulation in myoblast differentiation, and the enrichment of NACA at the Myog promoter was impaired by lnc-GD2H. Furthermore, inhibition of lnc-GD2H impaired muscle regeneration after CTX-induced injury in mice. lnc-GD2H facilitated the expression of proliferating marker genes and formed a feedback loop with c-Myc during myoblast proliferation. In differentiating myoblasts, lnc-GD2H interacted with NACA to relieve the inhibitory effect of NACA on Myog, facilitating Myog expression to promote differentiation. The results provide evidence for the role of lncRNAs in muscle regeneration and are useful for developing novel therapeutic targets for muscle disorders.
Collapse
Affiliation(s)
- Rui Chen
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Si Lei
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yanling She
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shanyao Zhou
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Huacai Shi
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Cheng Li
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Ting Jiang
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Pellicelli M, Hariri H, Miller JA, St-Arnaud R. Lrp6 is a target of the PTH-activated αNAC transcriptional coregulator. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:61-71. [PMID: 29413898 DOI: 10.1016/j.bbagrm.2018.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 12/20/2022]
Abstract
In the nucleus of differentiated osteoblasts, the alpha chain of nascent polypeptide associated complex (αNAC) interacts with cJUN transcription factors to regulate the expression of target genes, including Osteocalcin (Bglap2). PTH induces the phosphorylation of αNAC on serine 99 through a Gαs-PKA dependent pathway. This leads to activation of αNAC and expression of Bglap2. To identify additional target genes regulated by PTH-activated αNAC, we performed ChIP-Seq against αNAC in PTH-treated MC3T3-E1 cells. This identified Low density lipoprotein receptor-Related Protein 6 (Lrp6) as a potential αNAC target. LRP6 acts as a co-receptor for the PTH receptor to allow optimal activation of PTH signaling. PTH increased Lrp6 mRNA levels in primary osteoblasts. Conventional quantitative ChIP confirmed the ChIP-Seq results. To assess whether αNAC plays a critical role in PTH-stimulated Lrp6 expression, we knocked-down Naca expression in MC3T3-E1 cells. Reduction of αNAC levels decreased basal expression of Lrp6 by 30% and blocked the stimulation of Lrp6 expression by PTH. We cloned the proximal mouse Lrp6 promoter (-2523/+120 bp) upstream of the luciferase reporter. Deletion and point mutations analysis in electrophoretic mobility shift assays and transient transfections identified a functional αNAC binding site centered around -343 bp. ChIP and ChIP-reChIP against JUND and αNAC showed that they cohabit on the proximal Lrp6 promoter. Luciferase assays confirmed that PTH-activated αNAC potentiated JUND-mediated Lrp6 transcription and Jund knockdown abolished this response. This study identified a novel αNAC target gene induced downstream of PTH signaling and represents the first characterization of the regulation of Lrp6 transcription in osteoblasts.
Collapse
Affiliation(s)
- Martin Pellicelli
- Research Centre, Shriners Hospitals for Children - Canada, H4A 0A9, Canada
| | - Hadla Hariri
- Research Centre, Shriners Hospitals for Children - Canada, H4A 0A9, Canada; Department of Human Genetics, McGill University, H3A 1A1, Canada
| | - Julie A Miller
- Research Centre, Shriners Hospitals for Children - Canada, H4A 0A9, Canada; Department of Human Genetics, McGill University, H3A 1A1, Canada
| | - René St-Arnaud
- Research Centre, Shriners Hospitals for Children - Canada, H4A 0A9, Canada; Department of Human Genetics, McGill University, H3A 1A1, Canada; Department of Surgery, McGill University, H3A 1A1, Canada; Department of Medicine, McGill University, H3A 1A1, Canada; Research Institute of the McGill University Health Centre, Montreal, Quebec H3H 2R9, Canada.
| |
Collapse
|
5
|
|
6
|
Hekmatnejad B, Akhouayri O, Jafarov T, St-Arnaud R. SUMOylated αNAC potentiates transcriptional repression by FIAT. J Cell Biochem 2014; 115:866-73. [PMID: 24375853 DOI: 10.1002/jcb.24729] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 11/27/2013] [Indexed: 11/12/2022]
Abstract
The transcriptional coregulator αNAC (Nascent polypeptide associated complex And Coregulator alpha) and the transcriptional repressor FIAT (Factor Inhibiting ATF4-mediated Transcription) interact but the biological relevance of this interaction remains unclear. The activity of αNAC is extensively modulated by post-translational modifications (PTMs). We identified a novel αNAC PTM through covalent attachment of the Small Ubiquitin-like MOdifier (SUMO1). Recombinant αNAC was a SUMO1 target in in vitro SUMOylation assays and we confirmed that αNAC is conjugated to SUMO1 in cultured osteoblasts and in calvarial tissue. The amino acid sequence of αNAC contains one copy of the composite "phospho-sumoyl switch" motif that couples sequential phosphorylation and SUMOylation. We found that αNAC is selectively SUMOylated at lysine residue 127 within the motif and that SUMOylation is enhanced when a phosphomimetic mutation is introduced at the nearby serine residue 132. SUMOylation did not alter the DNA-binding capacity of αNAC. The S132D, hyper-SUMOylated αNAC mutant specifically interacted with histone deacetylase-2 (HDAC2) and enhanced the inhibitory activity of FIAT on ATF4-mediated transcription from the Osteocalcin gene promoter. This effect required binding of SUMOylated αNAC to the target promoter. We propose that maximal transcriptional repression by FIAT requires its interaction with SUMOylated, HDAC2-interacting αNAC.
Collapse
Affiliation(s)
- Bahareh Hekmatnejad
- Research Unit, Shriners Hospitals for Children - Canada, Montreal, Quebec, Canada, H3G 1A6; Department of Human Genetics, McGill University, Montreal, Quebec, Canada, H3A 1B1
| | | | | | | |
Collapse
|
7
|
|
8
|
The PTH-Gαs-protein kinase A cascade controls αNAC localization to regulate bone mass. Mol Cell Biol 2014; 34:1622-33. [PMID: 24550008 DOI: 10.1128/mcb.01434-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The binding of PTH to its receptor induces Gα(s)-dependent cyclic AMP (cAMP) accumulation to turn on effector kinases, including protein kinase A (PKA). The phenotype of mice with osteoblasts specifically deficient for Gα(s) is mimicked by a mutation leading to cytoplasmic retention of the transcriptional coregulator αNAC, suggesting that Gαs and αNAC form part of a common genetic pathway. We show that treatment of osteoblasts with PTH(1-34) or the PKA-selective activator N(6)-benzoyladenosine cAMP (6Bnz-cAMP) leads to translocation of αNAC to the nucleus. αNAC was phosphorylated by PKA at serine 99 in vitro. Phospho-S99-αNAC accumulated in osteoblasts exposed to PTH(1-34) or 6Bnz-cAMP but not in treated cells expressing dominant-negative PKA. Nuclear accumulation was abrogated by an S99A mutation but enhanced by a phosphomimetic residue (S99D). Chromatin immunoprecipitation (ChIP) analysis showed that PTH(1-34) or 6Bnz-cAMP treatment leads to accumulation of αNAC at the Osteocalcin (Ocn) promoter. Altered gene dosages for Gα(s) and αNAC in compound heterozygous mice result in reduced bone mass, increased numbers of osteocytes, and enhanced expression of Sost. Our results show that αNAC is a substrate of PKA following PTH signaling. This enhances αNAC translocation to the nucleus and leads to its accumulation at target promoters to regulate transcription and affect bone mass.
Collapse
|