1
|
Xu Y, Xu M, Li X, Weng X, Su Z, Zhang M, Tan J, Zeng H, Li X, Nie L, Gong J, Chen N, Chen X, Zhou Q. SOX9 and HMGB3 co-operatively transactivate NANOG and promote prostate cancer progression. Prostate 2023; 83:440-453. [PMID: 36541373 DOI: 10.1002/pros.24476] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/03/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND The homeodomain-containing transcription factor NANOG is overexpressed in prostate adenocarcinoma (PCa) and predicts poor prognosis. The SOX family transcription factor SOX9, as well as the transcription co-activator HMGB3 of the HMGB family, are also overexpressed and may play pivotal roles in PCa. However, it is unknown whether SOX9 and HMGB3 interact with each other, or if they regulate NANOG gene transcription. METHODS We identified potential SOX9 responsive elements in NANOG promoter, and investigated if SOX9 regulated NANOG transcription in co-operation with HMGB3 by experimental analysis of potential SOX9 binding sites in NANOG promoter, reporter gene transcription assays with or without interference or artificial overexpression of SOX9 and/or HMGB3, and protein-binding assays of SOX9-HMGB3 interaction. Clinicopathologic and prognostic significance of SOX9-HMGB3 overexpression in PCa was analyzed. RESULTS SOX9 activated NANOG gene transcription by preferentially binding to a highly conserved consensus cis-regulatory element (-573 to -568) in NANOG promoter, and promoted the expression of NANOG downstream oncogenic genes. Importantly, HMGB3 functioned as a partner of SOX9 to co-operatively enhance transactivation of NANOG by interacting with SOX9, predominantly via the HMG Box A domain of HMGB3. Overexpression of SOX9 and/or HMGB3 enhanced PCa cell survival and cell migration and were significantly associated with PCa progression. Notably, Cox proportional regression analysis showed that co-overexpression of both SOX9 and HMGB3 was an independent unfavorable prognosticator for both CRPC-free survival (relative risk [RR] = 3.779,95% confidence interval [CI]: 1.159-12.322, p = 0.028) and overall survival (RR = 3.615,95% CI: 1.101-11.876, p = 0.034). CONCLUSIONS These findings showed a novel SOX9/HMGB3/NANOG regulatory mechanism, deregulation of which played important roles in PCa progression.
Collapse
Affiliation(s)
- Yunyi Xu
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Miao Xu
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xinglan Li
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Weng
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhengzheng Su
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Mengni Zhang
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Junya Tan
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Zeng
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xun Li
- Department of Ophthalmology and Research Laboratory of Ophthalmology and Vision Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Nie
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Gong
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ni Chen
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xueqin Chen
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qiao Zhou
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Suwannakul N, Midorikawa K, Du C, Qi YP, Zhang J, Xiang BD, Murata M, Ma N. Subcellular localization of HMGB1 in human cholangiocarcinoma: correlation with tumor stage. Discov Oncol 2021; 12:49. [PMID: 35201494 PMCID: PMC8777519 DOI: 10.1007/s12672-021-00446-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/22/2021] [Indexed: 11/23/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a malignant disease with a poor prognosis, and several studies have been conducted using different molecular markers as a tool for CCA diagnosis, including Clonorchis sinensis (CS)-CCA. We initially identified the expression profiles of the three markers of interest, HMGB1, SOX9, and YAP1, using GSE (GSE76297 and GSE32958) datasets. Upregulated levels of these three proteins were detected in CCA samples compared to those in normal samples. To clarify this issue, 24 human CCA tissues with paired adjacent normal tissues were evaluated using immunohistochemical staining. Of the three markers, the total cellular staining intensities were scanned, and subcellular localization was scored in the nuclear and cytoplasmic regions. The intensities of HMGB1, SOX9, and YAP1 were elevated in CCA tissues than the adjacent normal tissues. Individual scoring of subcellular localization revealed that the expression levels of HMGB1 (nucleus) and YAP1 (nucleus and cytoplasm) were significantly different from the pathologic M stage. Moreover, the translocation pattern was categorized using "site-index", and the results demonstrated that the overexpression of HMGB1 and SOX9 was mostly observed in both the nucleus and cytoplasm, whereas YAP1 was predominantly expressed in the cytoplasm of tumor cells. Interestingly, the site index of HMGB1 was moderately correlated with the tumor stage (r = 0.441, p = 0.031). These findings imply that the overexpression of subcellular HMGB1 could be associated with the metastatic status of patients with CS-CCA, which was shown to be effective for CS-CCA prognosis.
Collapse
Affiliation(s)
- Nattawan Suwannakul
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Kaoru Midorikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Chunping Du
- Department of Pathology, Guangxi Medical University Cancer Hospital, Guangxi, China
| | - Ya-Peng Qi
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Guangxi, China
| | - Jie Zhang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Guangxi, China
| | - Bang-De Xiang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Guangxi, China
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Ning Ma
- Graduate School of Health Science, Suzuka University of Medical Science, 1001-1, Kishioka, Suzuka, Mie, 510-0293, Japan.
| |
Collapse
|
3
|
HMGB1 Recruits TET2/AID/TDG to Induce DNA Demethylation in STAT3 Promoter in CD4 + T Cells from aGVHD Patients. J Immunol Res 2020; 2020:7165230. [PMID: 33029541 PMCID: PMC7532413 DOI: 10.1155/2020/7165230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/14/2020] [Accepted: 08/31/2020] [Indexed: 11/20/2022] Open
Abstract
STAT3 is highly expressed in aGVHD CD4+ T cells and plays a critical role in inducing or worsening aGVHD. In our preceding studies, DNA hypomethylation in STAT3 promoter was shown to cause high expression of STAT3 in aGVHD CD4+ T cells, and the process could be modulated by HMGB1, but the underlying mechanism remains unclear. TET2, AID, and TDG are indispensable in DNA demethylation; meanwhile, TET2 and AID also serve extremely important roles in immune response. So, we speculated these enzymes involved in the STAT3 promoter hypomethylation induced by HMGB1 in aGVHD CD4+ T cells. In this study, we found that the binding levels of TET2/AID/TDG to STAT3 promoter were remarkably increased in CD4+T cells from aGVHD patients and were significantly negatively correlated with the STAT3 promoter methylation level. Simultaneously, we revealed that HMGB1 could recruit TET2, AID, and TDG to form a complex in the STAT3 promoter region. Interference with the expression of TET2/AID/TDG inhibited the overexpression of STAT3 caused by HMGB1 downregulation of the STAT3 promoter DNA methylation. These data demonstrated a new molecular mechanism of how HMGB1 promoted the expression of STAT3 in CD4+ T cells from aGVHD patients.
Collapse
|
4
|
Park JS, Yi SW, Kim HJ, Kim SM, Kim JH, Park KH. Construction of PLGA Nanoparticles Coated with Polycistronic SOX5, SOX6, and SOX9 Genes for Chondrogenesis of Human Mesenchymal Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:1361-1372. [PMID: 28005327 DOI: 10.1021/acsami.6b15354] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Transfection of a cocktail of genes into cells has recently attracted attraction in stem cell differentiation. However, it is not easy to control the transfection rate of each gene. To control and regulate gene delivery into human mesenchymal stem cells (hMSCs), we employed multicistronic genes coupled with a nonviral gene carrier system for stem cell differentiation. Three genes, SOX5, SOX6, and SOX9, were successfully fabricated in a single plasmid. This multicistronic plasmid was complexed with the polycationic polymer polyethylenimine, and poly(lactic-co-glycolic) acid (PLGA) nanoparticles were coated with this complex. The uptake of PLGA nanoparticles complexed with the multicistronic plasmid was tested first. Thereafter, transfection of SOX5, SOX6, and SOX9 was evaluated, which increased the potential for chondrogenesis of hMSCs. The expression of specific genes triggered by transfection of SOX5, SOX6, and SOX9 was tested by RT-PCR and real-time qPCR. Furthermore, specific proteins related to chondrocytes were investigated by a glycosaminoglycan/DNA assay, Western blotting, histological analyses, and immunofluorescence staining. These methods demonstrated that chondrogenesis of hMSCs treated with PLGA nanoparticles carrying this multicistronic genes was better than that of hMSCs treated with other carriers. Furthermore, the multicistronic genes complexed with PLGA nanoparticles were more simple than that of each single gene complexation with PLGA nanoparticles. Multicistronic genes showed more chondrogenic differentiation than each single gene transfection methods.
Collapse
Affiliation(s)
- Ji Sun Park
- Department of Biomedical Science, College of Life Science, CHA University , 6F, CHA Bio-complex, 689 Sampyeong-dong Bundang-gu, Seongnam-si 134-88, Korea
| | - Se Won Yi
- Department of Biomedical Science, College of Life Science, CHA University , 6F, CHA Bio-complex, 689 Sampyeong-dong Bundang-gu, Seongnam-si 134-88, Korea
| | - Hye Jin Kim
- Department of Biomedical Science, College of Life Science, CHA University , 6F, CHA Bio-complex, 689 Sampyeong-dong Bundang-gu, Seongnam-si 134-88, Korea
| | - Seong Min Kim
- Department of Biomedical Science, College of Life Science, CHA University , 6F, CHA Bio-complex, 689 Sampyeong-dong Bundang-gu, Seongnam-si 134-88, Korea
| | - Jae-Hwan Kim
- Department of Biomedical Science, College of Life Science, CHA University , 6F, CHA Bio-complex, 689 Sampyeong-dong Bundang-gu, Seongnam-si 134-88, Korea
| | - Keun-Hong Park
- Department of Biomedical Science, College of Life Science, CHA University , 6F, CHA Bio-complex, 689 Sampyeong-dong Bundang-gu, Seongnam-si 134-88, Korea
| |
Collapse
|
5
|
Xia J, Yu X, Song X, Li G, Mao X, Zhang Y. Inhibiting the cytoplasmic location of HMGB1 reverses cisplatin resistance in human cervical cancer cells. Mol Med Rep 2016; 15:488-494. [PMID: 27959427 DOI: 10.3892/mmr.2016.6003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 10/31/2016] [Indexed: 11/06/2022] Open
Abstract
Cervical cancer is the fourth most common malignancy in women worldwide, and resistance to chemotherapy drugs is the biggest obstacle in the treatment of cervical cancers. In the present study, the molecular mechanisms underlying cisplatin resistance in human cervical cancer cells were investigated. When human cervical cancer cells were treated with 10 µg/ml of cisplatin for 24 and 48 h, high mobility group box 1 (HMGB1) protein expression levels significantly increased in a time‑dependent manner. Comparisons between cisplatin‑sensitive HeLa cells and cisplatin‑resistant HeLa/DDP cells revealed higher levels of HMGB1 in HeLa/DDP cells than in HeLa cells. Additionally, the half maximal inhibitory concentration (IC50) value for cisplatin in HeLa/DDP cells was 5.3‑fold that in HeLa cells. Analysis of the distribution of cellular components revealed that HMGB1 translocation from the nucleus to cytoplasm contributed to cisplatin resistance. This was further confirmed by demonstration that ethyl pyruvate treatment suppressed the cytoplasmic translocation of HMGB1, resulting in inhibition of HeLa cell proliferation. Furthermore, endogenous HMGB1 was inhibited with HMGB1‑specific short hairpin (sh)RNA, and MTT assay results showed that interference with HMGB1 expression reduced cell viability and potentially reversed cisplatin resistance in HeLa cells. Transfection with HMGB1 shRNA was demonstrated to induce cell apoptosis in HeLa cells, as detected by FACS analysis. In addition, administration of recombinant HMGB1 protein in HeLa cells promoted cell autophagy, mediated by the phosphorylation of extracellular signal‑regulated kinase 1/2. Thus, cytoplasmic HMGB1 translocation and HMGB1‑induced cell autophagy are proposed to contribute to cisplatin resistance by inhibiting apoptosis of cervical cancer cells. HMGB1 could, therefore, represent a novel therapeutic target for, and a diagnostic marker of, chemotherapy resistant cervical cancers.
Collapse
Affiliation(s)
- Jiyi Xia
- School of Medical Information and Engineering, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xiaolan Yu
- Department of Obstetrics and Gynecology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xueqin Song
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Gang Li
- Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xiguang Mao
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yujiao Zhang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
6
|
Liu CF, Lefebvre V. The transcription factors SOX9 and SOX5/SOX6 cooperate genome-wide through super-enhancers to drive chondrogenesis. Nucleic Acids Res 2015; 43:8183-203. [PMID: 26150426 PMCID: PMC4787819 DOI: 10.1093/nar/gkv688] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/24/2015] [Indexed: 12/21/2022] Open
Abstract
SOX9 is a transcriptional activator required for chondrogenesis, and SOX5 and SOX6 are closely related DNA-binding proteins that critically enhance its function. We use here genome-wide approaches to gain novel insights into the full spectrum of the target genes and modes of action of this chondrogenic trio. Using the RCS cell line as a faithful model for proliferating/early prehypertrophic growth plate chondrocytes, we uncover that SOX6 and SOX9 bind thousands of genomic sites, frequently and most efficiently near each other. SOX9 recognizes pairs of inverted SOX motifs, whereas SOX6 favors pairs of tandem SOX motifs. The SOX proteins primarily target enhancers. While binding to a small fraction of typical enhancers, they bind multiple sites on almost all super-enhancers (SEs) present in RCS cells. These SEs are predominantly linked to cartilage-specific genes. The SOX proteins effectively work together to activate these SEs and are required for in vivo expression of their associated genes. These genes encode key regulatory factors, including the SOX trio proteins, and all essential cartilage extracellular matrix components. Chst11, Fgfr3, Runx2 and Runx3 are among many other newly identified SOX trio targets. SOX9 and SOX5/SOX6 thus cooperate genome-wide, primarily through SEs, to implement the growth plate chondrocyte differentiation program.
Collapse
Affiliation(s)
- Chia-Feng Liu
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Véronique Lefebvre
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
7
|
Zhang Z. Chondrons and the pericellular matrix of chondrocytes. TISSUE ENGINEERING PART B-REVIEWS 2014; 21:267-77. [PMID: 25366980 DOI: 10.1089/ten.teb.2014.0286] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In cartilage, chondrocytes are embedded within an abundant extracellular matrix (ECM). A typical chondron consists of a chondrocyte and the immediate surrounding pericellular matrix (PCM). The PCM has a patent structure, defined molecular composition, and unique physical properties that support the chondrocyte. Given this spatial position, the PCM is pivotal in mediating communication between chondrocytes and the ECM and, thus, plays a critical role in cartilage homeostasis. The biological function and mechanical properties of the PCM have been extensively studied, mostly in the form of chondrons. This review intends to summarize recent progress in chondron and chondrocyte PCM research, with emphasis on the re-establishment of the PCM by isolated chondrocytes or mesenchymal stem cells during chondrogenic differentiation, and the effects of the PCM on cartilage tissue formation.
Collapse
Affiliation(s)
- Zijun Zhang
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland
| |
Collapse
|
8
|
Sox9 and Hif-2α regulate TUBB3 gene expression and affect ovarian cancer aggressiveness. Gene 2014; 542:173-81. [DOI: 10.1016/j.gene.2014.03.037] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/10/2014] [Accepted: 03/17/2014] [Indexed: 02/07/2023]
|