1
|
Yoo M, Bunkowski K, Lie A, Junn E. Regulation of MicroRNA-4697-3p by Parkinson's disease-associated SNP rs329648 and its impact on SNCA112 mRNA. Mol Biol Rep 2024; 51:797. [PMID: 39001947 DOI: 10.1007/s11033-024-09725-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/13/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is a common neurodegenerative disorder characterized by a multifaceted genetic foundation. Genome-Wide Association Studies (GWAS) have played a crucial role in pinpointing genetic variants linked to PD susceptibility. Current study aims to delve into the mechanistic aspects through which the PD-associated Single Nucleotide Polymorphism (SNP) rs329648, identified in prior GWAS, influences the pathogenesis of PD. METHODS AND RESULTS Employing the CRISPR/Cas9-mediated genome editing mechanism, we demonstrated the association of the disease-associated allele of rs329648 with increased expression of miR-4697-3p in differentiated SH-SY5Y cells. We revealed that miR-4697-3p contributes to the formation of high molecular weight complexes of α-Synuclein (α-Syn), indicative of α-Syn aggregate formation, as evidenced by Western blot analysis. Furthermore, our study unveiled that miR-4697-3p elevates SNCA112 mRNA levels. The resultant protein product, α-Syn 112, a variant of α-Syn with 112 amino acids, is recognized for augmenting α-Syn aggregation. Notably, this regulatory effect minimally impacts the levels of full-length SNCA140 mRNA, as evidenced by qRT-PCR. Additionally, we observed a correlation between the disease-associated allele and miR-4697-3p with increased cell death, substantiated by assessments including cell viability assays, alterations in cell morphology, and TUNEL assays. CONCLUSION Our research reveals that the disease-associated allele of rs329648 is linked to higher levels of miR-4697-3p. This increase in miR-4697-3p leads to elevated SNCA112 mRNA levels, consequently promoting the formation of α-Syn aggregates. Furthermore, miR-4697-3p appears to play a role in increased cell death, potentially contributing to the pathogenesis of PD.
Collapse
Affiliation(s)
- Myungsik Yoo
- RWJMS Institute for Neurological Therapeutics, Department of Neurology, Rutgers -Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Klaudia Bunkowski
- RWJMS Institute for Neurological Therapeutics, Department of Neurology, Rutgers -Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Andrew Lie
- RWJMS Institute for Neurological Therapeutics, Department of Neurology, Rutgers -Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Eunsung Junn
- RWJMS Institute for Neurological Therapeutics, Department of Neurology, Rutgers -Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA.
| |
Collapse
|
2
|
Piergiorge RM, Vasconcelos ATRD, Santos-Rebouças CB. Understanding the (epi)genetic dysregulation in Parkinson's disease through an integrative brain competitive endogenous RNA network. Mech Ageing Dev 2024; 219:111942. [PMID: 38762037 DOI: 10.1016/j.mad.2024.111942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Parkinson's disease (PD) is a rapidly growing neurodegenerative disorder characterized by dopaminergic neuron loss in the substantia nigra pars compacta (SN) and aggregation of α-synuclein. Its aetiology involves a multifaceted interplay among genetic, environmental, and epigenetic factors. We integrated brain gene expression data from PD patients to construct a comprehensive regulatory network encompassing messenger RNAs (mRNAs), microRNAs (miRNAs), circular RNAs (circRNAs) and, for the first time, RNA binding proteins (RBPs). Expression data from the SN of PD patients and controls were systematically selected from public databases to identify combined differentially expressed genes (DEGs). Brain co-expression analysis revealed modules comprising significant DEGs that function cooperatively. The relationships among co-expressed DEGs, miRNAs, circRNAs, and RBPs revealed an intricate competitive endogenous RNA (ceRNA) network responsible for post-transcriptional dysregulation in PD. Many genes in the ceRNA network, including the TOMM20 and HMGCR genes, overlap with the most relevant genes in our previous Alzheimer's disease-associated ceRNA network, suggesting common underlying mechanisms between both conditions. Moreover, in the ceRNA subnetwork, the RBP Aly/REF export factor (ALYREF), which acts as an RNA 5-methylcytosine(m5C)-binding protein, stood out. Our data sheds new light on the potential role of brain ceRNA networks in PD pathogenesis.
Collapse
Affiliation(s)
- Rafael Mina Piergiorge
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | - Cíntia Barros Santos-Rebouças
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Mohan N, Dashwood RH, Rajendran P. A-Z of Epigenetic Readers: Targeting Alternative Splicing and Histone Modification Variants in Cancer. Cancers (Basel) 2024; 16:1104. [PMID: 38539439 PMCID: PMC10968829 DOI: 10.3390/cancers16061104] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 11/03/2024] Open
Abstract
Epigenetic 'reader' proteins, which have evolved to interact with specific chromatin modifications, play pivotal roles in gene regulation. There is growing interest in the alternative splicing mechanisms that affect the functionality of such epigenetic readers in cancer etiology. The current review considers how deregulation of epigenetic processes and alternative splicing events contribute to pathophysiology. An A-Z guide of epigenetic readers is provided, delineating the antagonistic 'yin-yang' roles of full-length versus spliced isoforms, where this is known from the literature. The examples discussed underscore the key contributions of epigenetic readers in transcriptional regulation, early development, and cancer. Clinical implications are considered, offering insights into precision oncology and targeted therapies focused on epigenetic readers that have undergone alternative splicing events during disease pathogenesis. This review underscores the fundamental importance of alternative splicing events in the context of epigenetic readers while emphasizing the critical need for improved understanding of functional diversity, regulatory mechanisms, and future therapeutic potential.
Collapse
Affiliation(s)
- Nivedhitha Mohan
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA
- Department of Translational Medical Sciences, Antibody & Biopharmaceuticals Core, Texas A&M School of Medicine, Houston, TX 77030, USA
| | - Roderick H. Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA
- Department of Translational Medical Sciences, Antibody & Biopharmaceuticals Core, Texas A&M School of Medicine, Houston, TX 77030, USA
| | - Praveen Rajendran
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA
- Department of Translational Medical Sciences, Antibody & Biopharmaceuticals Core, Texas A&M School of Medicine, Houston, TX 77030, USA
| |
Collapse
|
4
|
Erkelenz S, Grzonka M, Papadakis A, Schaal H, Hoeijmakers JHJ, Gyenis Á. Rbm3 deficiency leads to transcriptome-wide splicing alterations. RNA Biol 2024; 21:1-13. [PMID: 39387568 PMCID: PMC11575738 DOI: 10.1080/15476286.2024.2413820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024] Open
Abstract
Rbm3 (RNA-binding motif protein 3) is a stress responsive gene, which maintains cellular homeostasis and promotes survival upon various harmful cellular stimuli. Rbm3 protein shows conserved structural and molecular similarities to heterogeneous nuclear ribonucleoproteins (hnRNPs), which regulate all steps of the mRNA metabolism. Growing evidence is pointing towards a broader role of Rbm3 in various steps of gene expression. Here, we demonstrate that Rbm3 deficiency is linked to transcriptome-wide pre-mRNA splicing alterations, which can be reversed through Rbm3 co-expression from a cDNA. Using an MS2 tethering assay, we show that Rbm3 regulates splice site selection similar to other hnRNP proteins when recruited between two competing 5 ' splice sites. Furthermore, we show that the N-terminal part of Rbm3 encompassing the RNA recognition motif (RRM), is sufficient to elicit changes in splice site selection. On the basis of these findings, we propose a novel, undescribed function of Rbm3 in RNA splicing that contributes to the preservation of transcriptome integrity.
Collapse
Affiliation(s)
- Steffen Erkelenz
- Faculty of Medicine, University of Cologne, Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University Hospital of Cologne, Köln, Germany
| | - Marta Grzonka
- Faculty of Medicine, University of Cologne, Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University Hospital of Cologne, Köln, Germany
| | - Antonios Papadakis
- Faculty of Medicine, University of Cologne, Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University Hospital of Cologne, Köln, Germany
| | - Heiner Schaal
- Institute of Virology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jan H. J. Hoeijmakers
- Faculty of Medicine, University of Cologne, Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University Hospital of Cologne, Köln, Germany
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Princess Maxima Center for Pediatric Oncology, ONCODE Institute, Utrecht, The Netherlands
| | - Ákos Gyenis
- Faculty of Medicine, University of Cologne, Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University Hospital of Cologne, Köln, Germany
| |
Collapse
|
5
|
Wu Z, Zuo X, Zhang W, Li Y, Gui R, Leng J, Shen H, Pan B, Fan L, Li J, Jin H. m6A-Modified circTET2 Interacting with HNRNPC Regulates Fatty Acid Oxidation to Promote the Proliferation of Chronic Lymphocytic Leukemia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304895. [PMID: 37821382 PMCID: PMC10700176 DOI: 10.1002/advs.202304895] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/01/2023] [Indexed: 10/13/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is a hematological malignancy with high metabolic heterogeneity. N6-methyladenosine (m6A) modification plays an important role in metabolism through regulating circular RNAs (circRNAs). However, the underlying mechanism is not yet fully understood in CLL. Herein, an m6A scoring system and an m6A-related circRNA prognostic signature are established, and circTET2 as a potential prognostic biomarker for CLL is identified. The level of m6A modification is found to affect the transport of circTET2 out of the nucleus. By interacting with the RNA-binding protein (RBP) heterogeneous nuclear ribonucleoprotein C (HNRNPC), circTET2 regulates the stability of CPT1A and participates in the lipid metabolism and proliferation of CLL cells through mTORC1 signaling pathway. The mTOR inhibitor dactolisib and FAO inhibitor perhexiline exert a synergistic effect on CLL cells. In addition, the biogenesis of circTET2 can be affected by the splicing process and the RBPs RBMX and YTHDC1. CP028, a splicing inhibitor, modulates the expression of circTET2 and shows pronounced inhibitory effects. In summary, circTET2 plays an important role in the modulation of lipid metabolism and cell proliferation in CLL. This study demonstrates the clinical value of circTET2 as a prognostic indicator as well as provides novel insights in targeting treatment for CLL.
Collapse
Affiliation(s)
- Zijuan Wu
- Department of Hematologythe First Affiliated Hospital of Nanjing Medical UniversityJiangsu Province HospitalNanjing Medical UniversityNanjing210029China
- Key Laboratory of Hematology of Nanjing Medical UniversityNanjing210029China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjing210029China
| | - Xiaoling Zuo
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjing210029China
- Anqing First People's Hospital of Anhui Medical UniversityAnqing First People's Hospital of Anhui ProvinceAnqing246004China
| | - Wei Zhang
- Department of Hematologythe First Affiliated Hospital of Nanjing Medical UniversityJiangsu Province HospitalNanjing Medical UniversityNanjing210029China
- Key Laboratory of Hematology of Nanjing Medical UniversityNanjing210029China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjing210029China
| | - Yongle Li
- Department of Hematologythe First Affiliated Hospital of Nanjing Medical UniversityJiangsu Province HospitalNanjing Medical UniversityNanjing210029China
- Key Laboratory of Hematology of Nanjing Medical UniversityNanjing210029China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjing210029China
| | - Renfu Gui
- Department of Hematologythe First Affiliated Hospital of Nanjing Medical UniversityJiangsu Province HospitalNanjing Medical UniversityNanjing210029China
- Key Laboratory of Hematology of Nanjing Medical UniversityNanjing210029China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjing210029China
| | - Jiayan Leng
- Department of HematologyAffiliated People's Hospital of Jiangsu UniversityZhenjiang212002China
| | - Haorui Shen
- Department of Hematologythe First Affiliated Hospital of Nanjing Medical UniversityJiangsu Province HospitalNanjing Medical UniversityNanjing210029China
- Key Laboratory of Hematology of Nanjing Medical UniversityNanjing210029China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjing210029China
| | - Bihui Pan
- Department of Hematologythe First Affiliated Hospital of Nanjing Medical UniversityJiangsu Province HospitalNanjing Medical UniversityNanjing210029China
- Key Laboratory of Hematology of Nanjing Medical UniversityNanjing210029China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjing210029China
| | - Lei Fan
- Department of Hematologythe First Affiliated Hospital of Nanjing Medical UniversityJiangsu Province HospitalNanjing Medical UniversityNanjing210029China
- Key Laboratory of Hematology of Nanjing Medical UniversityNanjing210029China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjing210029China
| | - Jianyong Li
- Department of Hematologythe First Affiliated Hospital of Nanjing Medical UniversityJiangsu Province HospitalNanjing Medical UniversityNanjing210029China
- Key Laboratory of Hematology of Nanjing Medical UniversityNanjing210029China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjing210029China
- National Clinical Research Center for Hematologic Diseasesthe First Affiliated Hospital of Soochow UniversitySuzhou215000China
| | - Hui Jin
- Department of Hematologythe First Affiliated Hospital of Nanjing Medical UniversityJiangsu Province HospitalNanjing Medical UniversityNanjing210029China
- Key Laboratory of Hematology of Nanjing Medical UniversityNanjing210029China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjing210029China
| |
Collapse
|
6
|
Varesi A, Campagnoli LIM, Barbieri A, Rossi L, Ricevuti G, Esposito C, Chirumbolo S, Marchesi N, Pascale A. RNA binding proteins in senescence: A potential common linker for age-related diseases? Ageing Res Rev 2023; 88:101958. [PMID: 37211318 DOI: 10.1016/j.arr.2023.101958] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
Aging represents the major risk factor for the onset and/or progression of various disorders including neurodegenerative diseases, metabolic disorders, and bone-related defects. As the average age of the population is predicted to exponentially increase in the coming years, understanding the molecular mechanisms underlying the development of aging-related diseases and the discovery of new therapeutic approaches remain pivotal. Well-reported hallmarks of aging are cellular senescence, genome instability, autophagy impairment, mitochondria dysfunction, dysbiosis, telomere attrition, metabolic dysregulation, epigenetic alterations, low-grade chronic inflammation, stem cell exhaustion, altered cell-to-cell communication and impaired proteostasis. With few exceptions, however, many of the molecular players implicated within these processes as well as their role in disease development remain largely unknown. RNA binding proteins (RBPs) are known to regulate gene expression by dictating at post-transcriptional level the fate of nascent transcripts. Their activity ranges from directing primary mRNA maturation and trafficking to modulation of transcript stability and/or translation. Accumulating evidence has shown that RBPs are emerging as key regulators of aging and aging-related diseases, with the potential to become new diagnostic and therapeutic tools to prevent or delay aging processes. In this review, we summarize the role of RBPs in promoting cellular senescence and we highlight their dysregulation in the pathogenesis and progression of the main aging-related diseases, with the aim of encouraging further investigations that will help to better disclose this novel and captivating molecular scenario.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| | | | - Annalisa Barbieri
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Lorenzo Rossi
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | | | - Ciro Esposito
- Department of Internal Medicine and Therapeutics, University of Pavia, Italy; Nephrology and dialysis unit, ICS S. Maugeri SPA SB Hospital, Pavia, Italy; High School in Geriatrics, University of Pavia, Italy
| | | | - Nicoletta Marchesi
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy.
| |
Collapse
|