1
|
Olfson E, Farhat LC, Liu W, Vitulano LA, Zai G, Lima MO, Parent J, Polanczyk GV, Cappi C, Kennedy JL, Fernandez TV. Rare de novo damaging DNA variants are enriched in attention-deficit/hyperactivity disorder and implicate risk genes. Nat Commun 2024; 15:5870. [PMID: 38997333 PMCID: PMC11245598 DOI: 10.1038/s41467-024-50247-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 06/29/2024] [Indexed: 07/14/2024] Open
Abstract
Research demonstrates the important role of genetic factors in attention-deficit/hyperactivity disorder (ADHD). DNA sequencing of families provides a powerful approach for identifying de novo (spontaneous) variants, leading to the discovery of hundreds of clinically informative risk genes for other childhood neurodevelopmental disorders. This approach has yet to be extensively leveraged in ADHD. We conduct whole-exome DNA sequencing in 152 families, comprising a child with ADHD and both biological parents, and demonstrate a significant enrichment of rare and ultra-rare de novo gene-damaging mutations in ADHD cases compared to unaffected controls. Combining these results with a large independent case-control DNA sequencing cohort (3206 ADHD cases and 5002 controls), we identify lysine demethylase 5B (KDM5B) as a high-confidence risk gene for ADHD and estimate that 1057 genes contribute to ADHD risk. Using our list of genes harboring ultra-rare de novo damaging variants, we show that these genes overlap with previously reported risk genes for other neuropsychiatric conditions and are enriched in several canonical biological pathways, suggesting early neurodevelopmental underpinnings of ADHD. This work provides insight into the biology of ADHD and demonstrates the discovery potential of DNA sequencing in larger parent-child trio cohorts.
Collapse
Affiliation(s)
- Emily Olfson
- Child Study Center, Yale University, New Haven, CT, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, USA.
| | - Luis C Farhat
- Child Study Center, Yale University, New Haven, CT, USA
- Division of Child & Adolescent Psychiatry, Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Wenzhong Liu
- Child Study Center, Yale University, New Haven, CT, USA
| | | | - Gwyneth Zai
- Tanenbaum Centre, Molecular Brain Sciences Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Monicke O Lima
- Division of Child & Adolescent Psychiatry, Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Justin Parent
- University of Rhode Island, Kingston, RI, USA
- Bradley/Hasbro Children's Research Center, E.P. Bradley Hospital, Providence, RI, USA
- Alpert Medical School of Brown University, Providence, RI, USA
| | - Guilherme V Polanczyk
- Division of Child & Adolescent Psychiatry, Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Carolina Cappi
- Department of Psychiatry at Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | - James L Kennedy
- Tanenbaum Centre, Molecular Brain Sciences Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Thomas V Fernandez
- Child Study Center, Yale University, New Haven, CT, USA.
- Department of Psychiatry, Yale University, New Haven, CT, USA.
| |
Collapse
|
2
|
Yheskel M, Hatch HM, Pedrosa E, Terry BK, Siebels A, Zheng X, Blok LR, Fencková M, Sidoli S, Schenck A, Zheng D, Lachman H, Secombe J. KDM5-mediated transcriptional activation of ribosomal protein genes alters translation efficiency to regulate mitochondrial metabolism in neurons. Nucleic Acids Res 2024; 52:6201-6219. [PMID: 38597673 PMCID: PMC11194071 DOI: 10.1093/nar/gkae261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/20/2024] [Accepted: 03/31/2024] [Indexed: 04/11/2024] Open
Abstract
Genes encoding the KDM5 family of transcriptional regulators are disrupted in individuals with intellectual disability (ID). To understand the link between KDM5 and ID, we characterized five Drosophila strains harboring missense alleles analogous to those observed in patients. These alleles disrupted neuroanatomical development, cognition and other behaviors, and displayed a transcriptional signature characterized by the downregulation of many ribosomal protein genes. A similar transcriptional profile was observed in KDM5C knockout iPSC-induced human glutamatergic neurons, suggesting an evolutionarily conserved role for KDM5 proteins in regulating this class of gene. In Drosophila, reducing KDM5 changed neuronal ribosome composition, lowered the translation efficiency of mRNAs required for mitochondrial function, and altered mitochondrial metabolism. These data highlight the cellular consequences of altered KDM5-regulated transcriptional programs that could contribute to cognitive and behavioral phenotypes. Moreover, they suggest that KDM5 may be part of a broader network of proteins that influence cognition by regulating protein synthesis.
Collapse
Affiliation(s)
- Matanel Yheskel
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Hayden A M Hatch
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Erika Pedrosa
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Bethany K Terry
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Aubrey A Siebels
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xiang Yu Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Laura E R Blok
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 Nijmegen, GA, The Netherlands
| | - Michaela Fencková
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 Nijmegen, GA, The Netherlands
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Ceske Budejovice 370 05, Czechia
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 Nijmegen, GA, The Netherlands
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Neurology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Herbert M Lachman
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Julie Secombe
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
3
|
Rogers MF, Marshall OJ, Secombe J. KDM5-mediated activation of genes required for mitochondrial biology is necessary for viability in Drosophila. Development 2023; 150:dev202024. [PMID: 37800333 PMCID: PMC10651110 DOI: 10.1242/dev.202024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/29/2023] [Indexed: 10/07/2023]
Abstract
Histone-modifying proteins play important roles in the precise regulation of the transcriptional programs that coordinate development. KDM5 family proteins interact with chromatin through demethylation of H3K4me3 as well as demethylase-independent mechanisms that remain less understood. To gain fundamental insights into the transcriptional activities of KDM5 proteins, we examined the essential roles of the single Drosophila Kdm5 ortholog during development. KDM5 performs crucial functions in the larval neuroendocrine prothoracic gland, providing a model to study its role in regulating key gene expression programs. Integrating genome binding and transcriptomic data, we identify that KDM5 regulates the expression of genes required for the function and maintenance of mitochondria, and we find that loss of KDM5 causes morphological changes to mitochondria. This is key to the developmental functions of KDM5, as expression of the mitochondrial biogenesis transcription factor Ets97D, homolog of GABPα, is able to suppress the altered mitochondrial morphology as well as the lethality of Kdm5 null animals. Together, these data establish KDM5-mediated cellular functions that are important for normal development and could contribute to KDM5-linked disorders when dysregulated.
Collapse
Affiliation(s)
- Michael F. Rogers
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Owen J. Marshall
- Menzies Institute for Medical Research, University of Tasmania, Hobart TAS 7000, Australia
| | - Julie Secombe
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
4
|
Fernandez TV, Williams ZP, Kline T, Rajendran S, Augustine F, Wright N, Sullivan CAW, Olfson E, Abdallah SB, Liu W, Hoffman EJ, Gupta AR, Singer HS. Primary complex motor stereotypies are associated with de novo damaging DNA coding mutations that identify KDM5B as a risk gene. PLoS One 2023; 18:e0291978. [PMID: 37788244 PMCID: PMC10547198 DOI: 10.1371/journal.pone.0291978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/10/2023] [Indexed: 10/05/2023] Open
Abstract
Motor stereotypies are common in children with autism spectrum disorder (ASD), intellectual disability, or sensory deprivation, as well as in typically developing children ("primary" stereotypies, pCMS). The precise pathophysiological mechanism for motor stereotypies is unknown, although genetic etiologies have been suggested. In this study, we perform whole-exome DNA sequencing in 129 parent-child trios with pCMS and 853 control trios (118 cases and 750 controls after quality control). We report an increased rate of de novo predicted-damaging DNA coding variants in pCMS versus controls, identifying KDM5B as a high-confidence risk gene and estimating 184 genes conferring risk. Genes harboring de novo damaging variants in pCMS probands show significant overlap with those in Tourette syndrome, ASD, and those in ASD probands with high versus low stereotypy scores. An exploratory analysis of these pCMS gene expression patterns finds clustering within the cortex and striatum during early mid-fetal development. Exploratory gene ontology and network analyses highlight functional convergence in calcium ion transport, demethylation, cell signaling, cell cycle and development. Continued sequencing of pCMS trios will identify additional risk genes and provide greater insights into biological mechanisms of stereotypies across diagnostic boundaries.
Collapse
Affiliation(s)
- Thomas V. Fernandez
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States America
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States America
| | - Zsanett P. Williams
- Department of Psychiatry, Vanderbilt University School of Nursing, Nashville, TN, United States America
| | - Tina Kline
- Departments of Neurology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States America
| | - Shreenath Rajendran
- Departments of Neurology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States America
| | - Farhan Augustine
- Departments of Neurology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States America
| | - Nicole Wright
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States America
| | - Catherine A. W. Sullivan
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States America
| | - Emily Olfson
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States America
| | - Sarah B. Abdallah
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States America
| | - Wenzhong Liu
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States America
| | - Ellen J. Hoffman
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States America
| | - Abha R. Gupta
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States America
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States America
| | - Harvey S. Singer
- Departments of Neurology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States America
| |
Collapse
|
5
|
Yheskel M, Sidoli S, Secombe J. Proximity labeling reveals a new in vivo network of interactors for the histone demethylase KDM5. Epigenetics Chromatin 2023; 16:8. [PMID: 36803422 PMCID: PMC9938590 DOI: 10.1186/s13072-023-00481-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/03/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND KDM5 family proteins are multi-domain regulators of transcription that when dysregulated contribute to cancer and intellectual disability. KDM5 proteins can regulate transcription through their histone demethylase activity in addition to demethylase-independent gene regulatory functions that remain less characterized. To expand our understanding of the mechanisms that contribute to KDM5-mediated transcription regulation, we used TurboID proximity labeling to identify KDM5-interacting proteins. RESULTS Using Drosophila melanogaster, we enriched for biotinylated proteins from KDM5-TurboID-expressing adult heads using a newly generated control for DNA-adjacent background in the form of dCas9:TurboID. Mass spectrometry analyses of biotinylated proteins identified both known and novel candidate KDM5 interactors, including members of the SWI/SNF and NURF chromatin remodeling complexes, the NSL complex, Mediator, and several insulator proteins. CONCLUSIONS Combined, our data shed new light on potential demethylase-independent activities of KDM5. In the context of KDM5 dysregulation, these interactions may play key roles in the alteration of evolutionarily conserved transcriptional programs implicated in human disorders.
Collapse
Affiliation(s)
- Matanel Yheskel
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Julie Secombe
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|