1
|
Pan Y, Xie F, Zeng W, Chen H, Chen Z, Xu D, Chen Y. T cell-mediated tumor killing sensitivity gene signature-based prognostic score for acute myeloid leukemia. Discov Oncol 2024; 15:121. [PMID: 38619693 PMCID: PMC11018597 DOI: 10.1007/s12672-024-00962-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Acute myeloid leukemia (AML) is an aggressive, heterogenous hematopoetic malignancies with poor long-term prognosis. T-cell mediated tumor killing plays a key role in tumor immunity. Here, we explored the prognostic performance and functional significance of a T-cell mediated tumor killing sensitivity gene (GSTTK)-based prognostic score (TTKPI). METHODS Publicly available transcriptomic data for AML were obtained from TCGA and NCBI-GEO. GSTTK were identified from the TISIDB database. Signature GSTTK for AML were identified by differential expression analysis, COX proportional hazards and LASSO regression analysis and a comprehensive TTKPI score was constructed. Prognostic performance of the TTKPI was examined using Kaplan-Meier survival analysis, Receiver operating curves, and nomogram analysis. Association of TTKPI with clinical phenotypes, tumor immune cell infiltration patterns, checkpoint expression patterns were analysed. Drug docking was used to identify important candidate drugs based on the TTKPI-component genes. RESULTS From 401 differentially expressed GSTTK in AML, 24 genes were identified as signature genes and used to construct the TTKPI score. High-TTKPI risk score predicted worse survival and good prognostic accuracy with AUC values ranging from 75 to 96%. Higher TTKPI scores were associated with older age and cancer stage, which showed improved prognostic performance when combined with TTKPI. High TTKPI was associated with lower naïve CD4 T cell and follicular helper T cell infiltrates and higher M2 macrophages/monocyte infiltration. Distinct patterns of immune checkpoint expression corresponded with TTKPI score groups. Three agents; DB11791 (Capmatinib), DB12886 (GSK-1521498) and DB14773 (Lifirafenib) were identified as candidates for AML. CONCLUSION A T-cell mediated killing sensitivity gene-based prognostic score TTKPI showed good accuracy in predicting survival in AML. TTKPI corresponded to functional and immunological features of the tumor microenvironment including checkpoint expression patterns and should be investigated for precision medicine approaches.
Collapse
Affiliation(s)
- Yiyun Pan
- Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
- Ganzhou Cancer Hospital, Gannan Medical University, No.19, Huayuan Road, Zhanggong Avenue, Ganzhou, Jiangxi, People's Republic of China
| | - FangFang Xie
- Ganzhou People's Hospital, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Wen Zeng
- Ganzhou Cancer Hospital, Gannan Medical University, No.19, Huayuan Road, Zhanggong Avenue, Ganzhou, Jiangxi, People's Republic of China
| | - Hailong Chen
- Ganzhou Cancer Hospital, Gannan Medical University, No.19, Huayuan Road, Zhanggong Avenue, Ganzhou, Jiangxi, People's Republic of China
| | - Zhengcong Chen
- Ganzhou Cancer Hospital, Gannan Medical University, No.19, Huayuan Road, Zhanggong Avenue, Ganzhou, Jiangxi, People's Republic of China
| | - Dechang Xu
- Ganzhou Cancer Hospital, Gannan Medical University, No.19, Huayuan Road, Zhanggong Avenue, Ganzhou, Jiangxi, People's Republic of China.
| | - Yijian Chen
- Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.
- The First Affiliated Hospital of Gannan Medical University, No.23, Qingnian Road, Zhanggong Avenue, Ganzhou, 8105640, Jiangxi, People's Republic of China.
| |
Collapse
|
2
|
Bose D, Banerjee N, Roy A, Sengupta P, Chatterjee S. Switchable tetraplex elements in the heterogeneous nuclear ribonucleoprotein K promoter: micro-environment dictated structural transitions of G/C rich elements. J Biomol Struct Dyn 2024:1-18. [PMID: 38235706 DOI: 10.1080/07391102.2024.2303378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
We have elucidated the hnRNP K promoter as a hotspot for tetraplex-based molecular switches receptive to micro-environmental stimuli. We have characterised the structural features of four tetraplex-forming loci and identified them as binding sites of transcription factors. These segments form either G-quadruplex or i-motif structures, the structural dynamicity of which has been studied in depth via several biophysical techniques. The tetraplexes display high dynamicity and are influenced by both pH and KCl concentrations in vitro. The loci complementary to these sequences form additional non-canonical secondary structures. In the cellular context, the most eminent observation of this study is the binding of hnRNP K to the i-motif forming sequences in its own promoter. We are the first to report a probable transcriptional autoregulatory function of hnRNP K in coordination with higher-order DNA structures. Herein, we also report the positive interaction of the endogenous tetraplexes with Sp1, a well-known transcriptional regulator. Treatment with tetraplex-specific small molecule ligands further uncovered G-quadruplexes' functioning as repressors and i-motifs as activators in this context. Together, our findings strongly indicate the critical regulatory role of the identified tetraplex elements in the hnRNP K promoter.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Debopriya Bose
- Department of Biological Sciences, Bose Institute, Kolkata, West Bengal, India
| | - Nilanjan Banerjee
- Department of Biological Sciences, Bose Institute, Kolkata, West Bengal, India
| | - Ananya Roy
- Department of Biological Sciences, Bose Institute, Kolkata, West Bengal, India
| | - Pallabi Sengupta
- Department of Medical Biochemistry and Biophysics, Kemihuset (K), Campus, Umeå, Umeå universitet, Umeå, Sweden
| | | |
Collapse
|