1
|
Tang C, Pan J, Li H, He B, Hong L, Teng X, Li D. Cyclosporin A protects trophoblasts from H 2O 2-induced oxidative injury via FAK-Src pathway. Biochem Biophys Res Commun 2019; 518:423-429. [PMID: 31445706 DOI: 10.1016/j.bbrc.2019.07.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 07/30/2019] [Indexed: 12/23/2022]
Abstract
Oxidative stress is associated with functional disorder of trophoblast cells. Our previous studies have demonstrated that cyclosporin A (CsA) promotes the activity of normal human trophoblast cells. We further investigated the role and mechanism of CsA on oxidative stress in trophoblast cells. JEG-3 cells were co-cultured with H2O2 and CsA. Cell viability and morphology were measured by MTT assay and inverted microscope. Reactive oxygen species (ROS) was analyzed by fluorescence microscopy. Cell mitochondrial membrane potential (MMP) was determined by flow cytometric analysis. Malondialdehyde (MDA) production, superoxide dismutase (SOD) and catalase (CAT) activities were examined using colorimetric assays. The expression and phosphorylation of FAK and Src kinase proteins were examined by western blotting. CsA increased JEG-3 cell viability and reduced the morphologic injury induced by H2O2 treatment. CsA decreased ROS and MDA production, increased SOD and CAT activities, and restored the MMP of H2O2 treated JEG-3 cells. CsA administration suppressed H2O2-induced reduction of FAK and Src phosphorylation. Blocking the activation of FAK or Src attenuated the protective effect of CsA on JEG-3 cells in H2O2-induced oxidative injury. CsA protects JEG-3 cells from H2O2-induced oxidative injury, and the FAK/Src signaling pathway plays an important role in this process.
Collapse
Affiliation(s)
- ChuanLing Tang
- Department of Reproductive Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China.
| | - JiaPing Pan
- Department of Reproductive Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - Hui Li
- Department of Reproductive Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - Bin He
- Department of Reproductive Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - Ling Hong
- Department of Reproductive Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - XiaoMing Teng
- Department of Reproductive Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - DaJin Li
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, 200011, China.
| |
Collapse
|
2
|
Xanthine Oxidase-Derived ROS Display a Biphasic Effect on Endothelial Cells Adhesion and FAK Phosphorylation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9346242. [PMID: 27528888 PMCID: PMC4978831 DOI: 10.1155/2016/9346242] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/21/2016] [Accepted: 06/29/2016] [Indexed: 11/17/2022]
Abstract
In pathological situations such as ischemia-reperfusion and acute respiratory distress syndrome, reactive oxygen species (ROS) are produced by different systems which are involved in endothelial cells injury, ultimately leading to severe organ dysfunctions. The aim of this work was to study the effect of ROS produced by hypoxanthine-xanthine oxidase (Hx-XO) on the adhesion of human umbilical vein endothelial cells (HUVEC) and on the signaling pathways involved. Results show that Hx-XO-derived ROS induced an increase in HUVEC adhesion in the early stages of the process (less than 30 min), followed by a decrease in adhesion in the later stages of the process. Interestingly, Hx-XO-derived ROS induced the same biphasic effect on the phosphorylation of the focal adhesion kinase (FAK), a nonreceptor tyrosine kinase critical for cell adhesion, but not on ERK1/2 phosphorylation. The biphasic effect was not seen with ERK1/2 where a decrease in phosphorylation only was observed. Wortmannin, a PI3-kinase inhibitor, inhibited ROS-induced cell adhesion and FAK phosphorylation. Orthovanadate, a protein tyrosine phosphatase inhibitor, and Resveratrol (Resv), an antioxidant agent, protected FAK and ERK1/2 from dephosphorylation and HUVEC from ROS-induced loss of adhesion. This study shows that ROS could have both stimulatory and inhibitory effects on HUVEC adhesion and FAK phosphorylation and suggests that PI3-kinase and tyrosine phosphatase control these effects.
Collapse
|
3
|
Kasahara T. [Study of cytokine signaling: the quest for immunomodulatory drugs interacting with cytokine production and activity]. YAKUGAKU ZASSHI 2015; 135:431-47. [PMID: 25759052 DOI: 10.1248/yakushi.14-00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
I have been engaged in research and education in the fields of immunology and biochemistry at a medical college and college of pharmacy for 40 years. The original reasons why I began studying cytokines and some of the interests that have motivated me to continue working in the field of cytokine research are described: 1) the roles of cytokines in various immunological and inflammatory diseases (e.g., chemokines in bacterial infections and inflammatory diseases, particularly the role of interleukin-5 and eotaxins in eosinophilia); 2) the role of focal adhesion kinase in antiapoptosis and metastasis of melanoma; 3) recent findings on the role of JAK2/STAT pathways, particularly how JAK2V617F mutation induces dysregulated proliferation and tumorigenesis; and 4) the interactions of various chemical compounds and natural products in cytokine gene activation and signaling. Previous discoveries and published findings by my research group are described, along with comments and discussion pertaining to recent developments in the field.
Collapse
Affiliation(s)
- Tadashi Kasahara
- Graduate School, International University of Health and Welfare; 1-3-3 Minamiaoyama, Minato-ku, Tokyo 107-0062, Japan; Keio University Faculty of Pharmacy; 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan; Division of Inflammation Research, Jichi Medical University; 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| |
Collapse
|
4
|
Gan-Lu-Yin Inhibits Proliferation and Migration of Murine WEHI-3 Leukemia Cells and Tumor Growth in BALB/C Allograft Tumor Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:684071. [PMID: 23573143 PMCID: PMC3613066 DOI: 10.1155/2013/684071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 02/04/2013] [Indexed: 01/16/2023]
Abstract
The aim of this study was to explore the antitumor effect of Gan-Lu-Yin (GLY), a traditional Chinese herbal formula, on leukemia. Ethanolic extract of GLY was applied to evaluate its regulatory mechanisms in proliferation, migration, and differentiation of WEHI-3 leukemic cells as well as antitumor effect on BALB/c mice model. The results showed that GLY markedly reduced cell proliferation and migration with induced differentiation of WEHI-3 cells. The expression level of phosphorylated FAK, Akt, ERK1/2, and Rb was decreased p21 expression while level was increased in WEHI-3 treated with GLY. The results of cell cycle analysis revealed that GLY treatment could markedly induce G1 phase arrest and decrease cell population in S phase. Moreover, experimental results demonstrated that GLY decreased the protein expression and enzyme activity of MMP-2 and MMP-9. GLY treatment also reduced WEHI-3 leukemic infiltration in liver and spleen and tumor growth in animal model. Accordingly, GLY demonstrated an inhibitory effect on tumor growth with a regulatory mechanism partially through inhibiting FAK, Akt, and ERK expression in WEHI-3 cells. GLY may provide a promising antileukemic approach in the clinical application.
Collapse
|
5
|
Schmidt AJ, Hemmeter UM, Krieg JC, Vedder H, Heiser P. Impact of haloperidol and quetiapine on the expression of genes encoding antioxidant enzymes in human neuroblastoma SH-SY5Y cells. J Psychiatr Res 2009; 43:818-23. [PMID: 19101687 DOI: 10.1016/j.jpsychires.2008.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 11/07/2008] [Accepted: 11/07/2008] [Indexed: 11/16/2022]
Abstract
Antipsychotics are known to alter antioxidant activities in vivo. Therefore, the aim of the present study was to examine in the human neuroblastoma SH-SY5Y cell line the impact of a typical (haloperidol) and an atypical (quetiapine) antipsychotic on the expression of genes encoding the key enzymes of the antioxidant metabolism (Cu, Zn superoxide dismutase; Mn superoxide dismutase; glutathione peroxidase; catalase) and enzymes of the glutathione metabolism (gamma-glutamyl cysteine synthetase, glutathione-S-transferase, gamma-glutamyltranspeptidase, glutathione reductase). The cells were incubated for 24h with 0.3, 3, 30 and 300microM haloperidol and quetiapine, respectively; mRNA levels were measured by polymerase chain reaction. In the present study, we observed mostly significant decreases of mRNA contents. With respect to the key pathways, we detected mainly effects on the mRNA levels of the hydrogen peroxide detoxifying enzymes. Among the enzymes of the glutathione metabolism, glutathione-S-transferase- and gamma-glutamyltranspeptidase-mRNA levels showed the most prominent effects. Taken together, our results demonstrate a significantly reduced expression of genes encoding for antioxidant enzymes after treatment with the antipsychotics, haloperidol and quetiapine.
Collapse
|
6
|
Effects of antidepressants on mRNA levels of antioxidant enzymes in human monocytic U-937 cells. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:1567-73. [PMID: 18573300 DOI: 10.1016/j.pnpbp.2008.05.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 05/23/2008] [Accepted: 05/29/2008] [Indexed: 11/24/2022]
Abstract
Alterations of antioxidant enzyme activities have been described in a number of psychiatric disorders including major depression. Subsequently, the present study examined the effects of different types of antidepressants (desipramine, imipramine, maprotiline and mirtazapine) in different concentrations (10(-5), 10(-6) and 10(-7) M) on the mRNA levels of various enzymes of the antioxidant system, including both intracellular superoxide dismutase isoforms, glutathione peroxidase and catalase as well as several enzymes of the glutathione metabolism in monocytic U-937 cells after short- and long-term treatment (2.5 and 24 h) via RT-PCR. Results indicated mainly short-term decreases in the mRNA levels of antioxidant enzymes after treatment with these substances in all the concentrations used. In addition, after long-term treatment, significant increases in the mRNA levels were seen in the cases of Cu, Zn superoxide dismutase, gamma-glutamyl-cysteine synthetase, glutathione-S-transferase and glutathione reductase, including the impacts of all the antidepressants used in concentrations of 10(-6) M and 10(-7) M. Based on the large number of significant effects of all types of antidepressants tested on various antioxidant enzymes, we suggest that antioxidant enzymes may represent important targets in the course of antidepressive treatment.
Collapse
|
7
|
Banjac A, Perisic T, Sato H, Seiler A, Bannai S, Weiss N, Kölle P, Tschoep K, Issels RD, Daniel PT, Conrad M, Bornkamm GW. The cystine/cysteine cycle: a redox cycle regulating susceptibility versus resistance to cell death. Oncogene 2007; 27:1618-28. [PMID: 17828297 DOI: 10.1038/sj.onc.1210796] [Citation(s) in RCA: 233] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The glutathione-dependent system is one of the key systems regulating cellular redox balance, and thus cell fate. Cysteine, typically present in its oxidized form cystine in the extracellular space, is regarded as the rate-limiting substrate for glutathione (GSH) synthesis. Cystine is transported into cells by the highly specific amino-acid antiporter system xc-. Since Burkitt's Lymphoma (BL) cells display limited uptake capacity for cystine, and are thus prone to oxidative stress-induced cell death, we stably expressed the substrate-specific subunit of system xc-, xCT, in HH514 BL cells. xCT-overexpressing cells became highly resistant to oxidative stress, particularly upon GSH depletion. Contrary to previous predictions, the increase of intracellular cysteine did not affect the cellular GSH pool, but concomitantly boosted extracellular cysteine concentrations. Even though cells were depleted of bulk GSH, xCT overexpression maintained cellular integrity by protecting against lipid peroxidation, a very early event in cell death progression. Our results show that system xc- protects against oxidative stress not by elevating intracellular GSH levels, but rather creates a reducing extracellular environment by driving a highly efficient cystine/cysteine redox cycle. Our findings show that the cystine/cysteine redox cycle by itself must be viewed as a discrete major regulator of cell survival.
Collapse
Affiliation(s)
- A Banjac
- GSF-Forschungszentrum für Umwelt und Gesundheit, Institut für Klinische Molekularbiologie und Tumorgenetik, München, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ryan JJ, Bateman HR, Stover A, Gomez G, Norton SK, Zhao W, Schwartz LB, Lenk R, Kepley CL. Fullerene nanomaterials inhibit the allergic response. THE JOURNAL OF IMMUNOLOGY 2007; 179:665-72. [PMID: 17579089 DOI: 10.4049/jimmunol.179.1.665] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fullerenes are a class of novel carbon allotropes that may have practical applications in biotechnology and medicine. Human mast cells (MC) and peripheral blood basophils are critical cells involved in the initiation and propagation of several inflammatory conditions, mainly type I hypersensitivity. We report an unanticipated role of fullerenes as a negative regulator of allergic mediator release that suppresses Ag-driven type I hypersensitivity. Human MC and peripheral blood basophils exhibited a significant inhibition of IgE dependent mediator release when preincubated with C(60) fullerenes. Protein microarray demonstrated that inhibition of mediator release involves profound reductions in the activation of signaling molecules involved in mediator release and oxidative stress. Follow-up studies demonstrated that the tyrosine phosphorylation of Syk was dramatically inhibited in Ag-challenged cells first incubated with fullerenes. In addition, fullerene preincubation significantly inhibited IgE-induced elevation in cytoplasmic reactive oxygen species levels. Furthermore, fullerenes prevented the in vivo release of histamine and drop in core body temperature in vivo using a MC-dependent model of anaphylaxis. These findings identify a new biological function for fullerenes and may represent a novel way to control MC-dependent diseases including asthma, inflammatory arthritis, heart disease, and multiple sclerosis.
Collapse
Affiliation(s)
- John J Ryan
- Department of Biology, Virginia Commonwealth University Health Systems, Richmond, VA 23294, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Hattori H, Imai H, Furuhama K, Sato O, Nakagawa Y. Induction of phospholipid hydroperoxide glutathione peroxidase in human polymorphonuclear neutrophils and HL60 cells stimulated with TNF-alpha. Biochem Biophys Res Commun 2005; 337:464-73. [PMID: 16223606 DOI: 10.1016/j.bbrc.2005.09.076] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Accepted: 09/13/2005] [Indexed: 11/15/2022]
Abstract
Phospholipid hydroperoxide glutathione peroxidase (PHGPx) is characterized as an important enzyme for protecting cells from oxidative stress-induced apoptosis and regulating the production of leukotrienes and prostanoids in cells overexpressing PHGPx. We studied whether the expression level of PHGPx fluctuates in polymorphonuclear leukocytes (PMNs) which were exposed to reactive oxygen species (ROS) and inflammatory cytokines at an inflammation site. Human peripheral PMNs up-regulated the expression level of PHGPx following culture with TNF-alpha, but not with IL-1beta, IL-8, and GRO. The up-regulated PHGPx expression was also observed in neutrophil-like cells that differentiated from the human leukemia cell line HL60 only after stimulation with TNF-alpha. However, macrophage-like differentiated HL60 cells and other cell lines, A498, ECV304, HeLa, U937, and HEK293, showed no increase in the PHGPx expression. This up-regulation of PHGPx was inhibited by treatment with the anti-oxidants, pyrrolidine dithiocarbamate, and N-acetyl-L-cysteine, and by inhibitors of NFkappaB and Src kinases. The stimulation of neutrophil-like differentiated HL60 cells with TNF-alpha induced activation of NFkappaB and c-Src kinase, and the activation was attenuated by treatment with the anti-oxidants. Up-regulation in neutrophil-like HL60 cells was also observed following exposure to H(2)O(2). These results indicate that activation of NFkappaB and/or Src kinases through ROS signaling may be involved in the up-regulation of the PHGPx in human PMNs stimulated by TNF-alpha.
Collapse
Affiliation(s)
- Hiroyuki Hattori
- School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
10
|
Utsubo R, Sonoda Y, Takahashi R, Iijima S, Aizu-Yokota E, Kasahara T. Proteome Analysis of Focal Adhesion Kinase (FAK)-Overexpressing Cells. Biol Pharm Bull 2004; 27:1735-41. [PMID: 15516715 DOI: 10.1248/bpb.27.1735] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We established several focal adhesion kinase (FAK) cDNA-transfected cells and found that FAK-transfected HL-60 (HL-60/FAK) cells are resistant to apoptosis induced with hydrogen peroxide, etoposide and radiation compared with the parental HL-60 or the vector-transfected (HL-60/Vect) cells. We carried out proteome analysis to study the mechanism of resistance to apoptosis in HL-60/FAK cells. Among 300 spots resolved in two-dimensional gels, ca. 10% of them were significantly increased in HL-60/FAK cells compared with HL-60/Vect cells, whereas ca. 2% of them were decreased or disappeared. These proteins were performed for further analysis by Western blots or N-terminal sequencing or mass spectrometry. Increased proteins included stress proteins such as hsp90, ribosomal proteins, and antioxidant enzymes such as peroxyredoxin 2. Some of these proteins are assumed to contribute to the antiapoptotic action of FAK.
Collapse
Affiliation(s)
- Ryoko Utsubo
- Department of Biochemistry, Kyoritsu University of Pharmacy, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|