1
|
Ventura G, Bianco M, Calvano CD, Losito I, Cataldi TRI. Tandem Mass Spectrometry in Untargeted Lipidomics: A Case Study of Peripheral Blood Mononuclear Cells. Int J Mol Sci 2024; 25:12077. [PMID: 39596146 PMCID: PMC11593930 DOI: 10.3390/ijms252212077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Peripheral blood mononuclear cells (PBMCs), including lymphocytes, are important components of the human immune system. These cells contain a diverse array of lipids, primarily glycerophospholipids (GPs) and sphingolipids (SPs), which play essential roles in cellular structure, signaling, and programmed cell death. This study presents a detailed analysis of GP and SP profiles in human PBMC samples using tandem mass spectrometry (MS/MS). Hydrophilic interaction liquid chromatography (HILIC) and electrospray ionization (ESI) coupled with linear ion-trap MS/MS were employed to investigate the diagnostic fragmentation patterns that aided in determining regiochemistry in complex lipid extracts. Specifically, the study explored the fragmentation patterns of various lipid species, including phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), their plasmalogen and lyso forms, phosphatidylserines (PSs), phosphatidylinositols (PIs), phosphatidylglycerols (PGs), sphingomyelins (SMs), and dihexosylceramides (Hex2Cer). Our comprehensive analysis led to the characterization of over 200 distinct lipid species, significantly expanding our understanding of PBMC lipidome complexity. A freely available spreadsheet tool for simulating MS/MS spectra of GPs is provided, enhancing the accessibility and reproducibility of this research. This study advances our knowledge of PBMC lipidomes and establishes a robust analytical framework for future investigations in lipidomics.
Collapse
Affiliation(s)
- Giovanni Ventura
- Department of Chemistry, and Interdepartmental Research Center SMART, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (C.D.C.); (I.L.); (T.R.I.C.)
| | - Mariachiara Bianco
- Department of Chemistry, and Interdepartmental Research Center SMART, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (C.D.C.); (I.L.); (T.R.I.C.)
| | | | | | | |
Collapse
|
2
|
Hormann FL, Sommer S, Heiles S. Formation and Tandem Mass Spectrometry of Doubly Charged Lipid-Metal Ion Complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37315187 DOI: 10.1021/jasms.3c00126] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Phospholipids are major components of most eukaryotic cell membranes. Changes in metabolic states are often accompanied by phospholipid structure variations. The structural changes of phospholipids are the hallmark of disease states, or specific lipid structures have been associated with distinct organisms. Prime examples are microorganisms that synthesize phospholipids with, for example, different branched chain fatty acids. Assignment and relative quantitation of structural isomers of phospholipids that arise from attachment of different fatty acids to the glycerophospholipid backbone are difficult with routine tandem mass spectrometry or with liquid chromatography without authentic standards. In this work, we report on the observation that all investigated phospholipid classes form doubly charged lipid-metal ion complexes during electrospray ionization (ESI) and show that these complexes can be used to assign lipid classes and fatty acid moieties, distinguish isomers of branched chain fatty acids, and relatively quantify these isomers in positive-ion mode. Use of water free methanol and addition of divalent metal salts (100 mol %) to ESI spray solutions afford highly abundant doubly charged lipid-metal ion complexes (up to 70 times of protonated compounds). Higher-energy collisional dissociation and collision-induced dissociation of doubly charged complexes yield a diverse set of lipid class-dependent fragment ions. In common for all lipid classes is the liberation of fatty acid-metal adducts that yield fragment ions from the fatty acid hydrocarbon chain upon activation. This ability is used to pinpoint sites of branching in saturated fatty acids and is showcased for free fatty acids as well as glycerophospholipids. The analytical utility of doubly charged phospholipid-metal ion complexes is demonstrated by distinguishing fatty acid branching-site isomers in phospholipid mixtures and relatively quantifying the corresponding isomeric compounds.
Collapse
Affiliation(s)
- Felix-Levin Hormann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Otto-Hahn-Straße 6b, 44139 Dortmund, Germany
- Lipidomics, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Simon Sommer
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Sven Heiles
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Otto-Hahn-Straße 6b, 44139 Dortmund, Germany
- Lipidomics, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| |
Collapse
|
3
|
Foged MM, Maeda K, Bilgin M. Profiling the Mammalian Lipidome by Quantitative Shotgun Lipidomics. Methods Mol Biol 2023; 2625:89-102. [PMID: 36653635 DOI: 10.1007/978-1-0716-2966-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The emerging field of lipidomics presents the systems biology approach to identify and quantify the full lipid repertoire of cells, tissues, and organisms. The importance of the lipidome is demonstrated by a number of biological studies on dysregulation of lipid metabolism in human diseases such as cancer, diabetes, and neurodegenerative diseases. Exploring changes and regulations in the huge networks of lipids and their metabolic pathways requires a lipidomics methodology: advanced mass spectrometry that resolves the complexity of the lipidome. Here, we report a comprehensive protocol of quantitative shotgun lipidomics that enables identification and quantification of hundreds of molecular lipid species, covering a wide range of lipid classes, extracted from cultured mammalian cells.
Collapse
Affiliation(s)
- Mads Møller Foged
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Kenji Maeda
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Mesut Bilgin
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark. .,Lipidomics Core Facility, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center , Copenhagen, Denmark.
| |
Collapse
|
4
|
Structural Characterization of Mono- and Dimethylphosphatidylethanolamines from Various Organisms Using a Complex Analytical Strategy Including Chiral Chromatography. Symmetry (Basel) 2022. [DOI: 10.3390/sym14030616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Two minor phospholipids, i.e., mono- and/or dimethylphosphatidylethanolamines, are widespread in many organisms, from bacteria to higher plants and animals. A molecular mixture of methyl-PE and dimethyl-PE was obtained from total lipids by liquid chromatography and further identified by mass spectrometry. Total methyl-PE and dimethyl-PE were cleaved by phospholipase C, and the resulting diacylglycerols, in the form of acetyl derivatives, were separated into alkyl-acyl, alkenyl-acyl, and diacylglycerols. Reversed-phase LC/MS allowed dozens of molecular species to be identified and further analyzed. This was performed on a chiral column, and identification by tandem positive ESI revealed that diacyl derivatives from all four bacteria were mixtures of both R and S enantiomers. The same applied to alkenyl-acyl derivatives of anaerobic bacteria. Analysis thus confirmed that some bacteria biosynthesize phospholipids having both sn-glycerol-3-phosphate and sn-glycerol-1-phosphate as precursors. These findings were further supported by data already published in GenBank. The use of chiral chromatography made it possible to prove that both enantiomers of glycerol phosphate of some molecular species of mono- and dimethylphosphatidylethanolamines are present. The result of the analysis can be interpreted that the cultured bacteria do not have homochiral membranes but, on the contrary, have an asymmetric, i.e., heterochiral membranes.
Collapse
|
5
|
Hu C, Luo W, Xu J, Han X. RECOGNITION AND AVOIDANCE OF ION SOURCE-GENERATED ARTIFACTS IN LIPIDOMICS ANALYSIS. MASS SPECTROMETRY REVIEWS 2022; 41:15-31. [PMID: 32997818 PMCID: PMC8287896 DOI: 10.1002/mas.21659] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 05/04/2023]
Abstract
Lipid research is attracting more and more attention as various key roles and novel biological functions of lipids have been demonstrated and discovered in the organism. Mass spectrometry (MS)-based lipidomics approaches are the most powerful and effective tools for analysis of cellular lipidomes with very high sensitivity and specificity. However, the artifacts generated from in-source fragmentation are always present in all kinds of ion sources, even soft ionization techniques (i.e., electrospray ionization and matrix-assisted laser desorption/ionization [MALDI]). These artifacts can cause many problems for lipidomics, especially when the fragment ions correspond to/are isomeric species of other endogenous lipid species in complex biological samples. These commonly observed artifacts could lead to misannotation, false identification, and consequently, incorrect attribution of phenotypes, and will have negative impact on any MS-based lipidomics research including but not limited to biomarker discovery, drug development, etc. Liquid chromatography-MS, shotgun lipidomics, and MALDI-MS imaging are three representative lipidomics approaches in which ion source-generated artifacts are all manifested and are comprehensively summarized in this article. The strategies on how to avoid/reduce the artifacts of in-source fragmentation on lipidomics analysis are also discussed in detail. We believe that with the recognition and avoidance of ion source-generated artifacts, MS-based lipidomics approaches will provide better accuracy on comprehensive analysis of biological samples and will make greater contribution to the research on metabolism and translational/precision medicine (collectively termed functional lipidomics). © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Changfeng Hu
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, 548 Bingwen Road, Hangzhou, Zhejiang 310053, China
| | - Wenqing Luo
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, 548 Bingwen Road, Hangzhou, Zhejiang 310053, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003 China
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229 USA
- Department of Medicine – Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229 USA
| |
Collapse
|
6
|
Sprenger RR, Hermansson M, Neess D, Becciolini LS, Sørensen SB, Fagerberg R, Ecker J, Liebisch G, Jensen ON, Vance DE, Færgeman NJ, Klemm RW, Ejsing CS. Lipid molecular timeline profiling reveals diurnal crosstalk between the liver and circulation. Cell Rep 2021; 34:108710. [PMID: 33535053 DOI: 10.1016/j.celrep.2021.108710] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/29/2020] [Accepted: 01/08/2021] [Indexed: 12/18/2022] Open
Abstract
Diurnal regulation of whole-body lipid metabolism plays a vital role in metabolic health. Although changes in lipid levels across the diurnal cycle have been investigated, the system-wide molecular responses to both short-acting fasting-feeding transitions and longer-timescale circadian rhythms have not been explored in parallel. Here, we perform time-series multi-omics analyses of liver and plasma revealing that the majority of molecular oscillations are entrained by adaptations to fasting, food intake, and the postprandial state. By developing algorithms for lipid structure enrichment analysis and lipid molecular crosstalk between tissues, we find that the hepatic phosphatidylethanolamine (PE) methylation pathway is diurnally regulated, giving rise to two pools of oscillating phosphatidylcholine (PC) molecules in the circulation, which are coupled to secretion of either very low-density lipoprotein (VLDL) or high-density lipoprotein (HDL) particles. Our work demonstrates that lipid molecular timeline profiling across tissues is key to disentangling complex metabolic processes and provides a critical resource for the study of whole-body lipid metabolism.
Collapse
Affiliation(s)
- Richard R Sprenger
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Martin Hermansson
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Ditte Neess
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Lena Sokol Becciolini
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Signe Bek Sørensen
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Rolf Fagerberg
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Josef Ecker
- ZIEL-Institute for Food & Health, Research Group Lipid Metabolism, Technical University of Munich, Freising, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Ole N Jensen
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Dennis E Vance
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, AB, Canada
| | - Nils J Færgeman
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Robin W Klemm
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Christer S Ejsing
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
7
|
Khan MJ, Codreanu SG, Goyal S, Wages PA, Gorti SKK, Pearson MJ, Uribe I, Sherrod SD, McLean JA, Porter NA, Robinson RAS. Evaluating a targeted multiple reaction monitoring approach to global untargeted lipidomic analyses of human plasma. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8911. [PMID: 32738001 PMCID: PMC9126483 DOI: 10.1002/rcm.8911] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/20/2020] [Accepted: 07/25/2020] [Indexed: 05/04/2023]
Abstract
RATIONALE The Lipidyzer platform was recently updated on a SCIEX QTRAP 6500+ mass spectrometer and offers a targeted lipidomics assay including 1150 different lipids. We evaluated this targeted approach using human plasma samples and compared the results against a global untargeted lipidomics method using a high-resolution Q Exactive HF Orbitrap mass spectrometer. METHODS Lipids from human plasma samples (N = 5) were extracted using a modified Bligh-Dyer approach. A global untargeted analysis was performed using a Thermo Orbitrap Q Exactive HF mass spectrometer, followed by data analysis using Progenesis QI software. Multiple reaction monitoring (MRM)-based targeted analysis was performed using a QTRAP 6500+ mass spectrometer, followed by data analysis using SCIEX OS software. The samples were injected on three separate days to assess reproducibility for both approaches. RESULTS Overall, 465 lipids were identified from 11 lipid classes in both approaches, of which 159 were similar between the methods, 168 lipids were unique to the MRM approach, and 138 lipids were unique to the untargeted approach. Phosphatidylcholine and phosphatidylethanolamine species were the most commonly identified using the untargeted approach, while triacylglycerol species were the most commonly identified using the targeted MRM approach. The targeted MRM approach had more consistent relative abundances across the three days than the untargeted approach. Overall, the coefficient of variation for inter-day comparisons across all lipid classes was ∼ 23% for the untargeted approach and ∼ 9% for the targeted MRM approach. CONCLUSIONS The targeted MRM approach identified similar numbers of lipids to a conventional untargeted approach, but had better representation of 11 lipid classes commonly identified by both approaches. Based on the separation methods employed, the conventional untargeted approach could better detect phosphatidylcholine and sphingomyelin lipid classes. The targeted MRM approach had lower inter-day variability than the untargeted approach when tested using a small group of plasma samples. These studies highlight the advantages in using targeted MRM approaches for human plasma lipidomics analysis.
Collapse
Affiliation(s)
- Mostafa J Khan
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| | - Simona G Codreanu
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
- Center for Innovative Technology, Vanderbilt University, Nashville, TN, 37235, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37235, USA
| | - Sandeep Goyal
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| | - Phillip A Wages
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| | | | | | - Isabel Uribe
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Stacy D Sherrod
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
- Center for Innovative Technology, Vanderbilt University, Nashville, TN, 37235, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37235, USA
| | - John A McLean
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
- Center for Innovative Technology, Vanderbilt University, Nashville, TN, 37235, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37235, USA
| | - Ned A Porter
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37235, USA
| | - Renã A S Robinson
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37235, USA
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, 37235, USA
| |
Collapse
|
8
|
Peng B, Kopczynski D, Pratt BS, Ejsing CS, Burla B, Hermansson M, Benke PI, Tan SH, Chan MY, Torta F, Schwudke D, Meckelmann SW, Coman C, Schmitz OJ, MacLean B, Manke MC, Borst O, Wenk MR, Hoffmann N, Ahrends R. LipidCreator workbench to probe the lipidomic landscape. Nat Commun 2020; 11:2057. [PMID: 32345972 PMCID: PMC7188904 DOI: 10.1038/s41467-020-15960-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022] Open
Abstract
Mass spectrometry (MS)-based targeted lipidomics enables the robust quantification of selected lipids under various biological conditions but comprehensive software tools to support such analyses are lacking. Here we present LipidCreator, a software that fully supports targeted lipidomics assay development. LipidCreator offers a comprehensive framework to compute MS/MS fragment masses for over 60 lipid classes. LipidCreator provides all functionalities needed to define fragments, manage stable isotope labeling, optimize collision energy and generate in silico spectral libraries. We validate LipidCreator assays computationally and analytically and prove that it is capable to generate large targeted experiments to analyze blood and to dissect lipid-signaling pathways such as in human platelets.
Collapse
Affiliation(s)
- Bing Peng
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139, Dortmund, Germany
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Dominik Kopczynski
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139, Dortmund, Germany
| | - Brian S Pratt
- University of Washington, Department of Genome Sciences, WA, 98195, Seattle, USA
| | - Christer S Ejsing
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-, 5230, Odense, Denmark
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Bo Burla
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, 117456, Singapore, Singapore
| | - Martin Hermansson
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-, 5230, Odense, Denmark
- Wihuri Research Institute, 00290, Helsinki, Finland
| | - Peter Imre Benke
- Singapore Lipidomics Incubator (SLING), Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117596, Singapore, Singapore
| | - Sock Hwee Tan
- Department of Medicine, Yong Loo Lin School of Medicine, National University Hospital, 119228, Singapore, Singapore
- Cardiovascular Research Institute, National University of Singapore, 117599, Singapore, Singapore
| | - Mark Y Chan
- Department of Medicine, Yong Loo Lin School of Medicine, National University Hospital, 119228, Singapore, Singapore
- Cardiovascular Research Institute, National University of Singapore, 117599, Singapore, Singapore
- National University Heart Centre, National University Health System, 117599, Singapore, Singapore
| | - Federico Torta
- Singapore Lipidomics Incubator (SLING), Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117596, Singapore, Singapore
| | - Dominik Schwudke
- Research Center Borstel, Leibniz Lung Center, Borstel, Germany
- German Center for Infection Research (DZIF), 38124, Braunschweig, Germany
- Airway Research Center North Member of the German Center for Lung Research (DZL), 22927, Großhansdorf, Germany
| | - Sven W Meckelmann
- Applied Analytical Chemistry, University of Duisburg-Essen, 45141, Essen, Germany
| | - Cristina Coman
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139, Dortmund, Germany
- Department of Analytical Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| | - Oliver J Schmitz
- Applied Analytical Chemistry, University of Duisburg-Essen, 45141, Essen, Germany
| | - Brendan MacLean
- University of Washington, Department of Genome Sciences, WA, 98195, Seattle, USA
| | - Mailin-Christin Manke
- Department of Cardiology and Cardiovascular Medicine, University of Tübingen, 72076, Tübingen, Germany
| | - Oliver Borst
- Department of Cardiology and Cardiovascular Medicine, University of Tübingen, 72076, Tübingen, Germany
| | - Markus R Wenk
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, 117456, Singapore, Singapore
- Singapore Lipidomics Incubator (SLING), Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117596, Singapore, Singapore
| | - Nils Hoffmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139, Dortmund, Germany
| | - Robert Ahrends
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139, Dortmund, Germany.
- Department of Analytical Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria.
| |
Collapse
|
9
|
Nielsen IØ, Vidas Olsen A, Dicroce-Giacobini J, Papaleo E, Andersen KK, Jäättelä M, Maeda K, Bilgin M. Comprehensive Evaluation of a Quantitative Shotgun Lipidomics Platform for Mammalian Sample Analysis on a High-Resolution Mass Spectrometer. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:894-907. [PMID: 32129994 DOI: 10.1021/jasms.9b00136] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Shotgun lipidomics is a powerful tool that enables simultaneous and fast quantification of diverse lipid classes through mass spectrometry based analyses of directly infused crude lipid extracts. We present here a shotgun lipidomics platform established to quantify 38 lipid classes belonging to four lipid categories present in mammalian samples and show the fine-tuning and comprehensive evaluation of its experimental parameters and performance. We first determined for all the targeted lipid classes the collision energy levels optimal for the recording of their lipid class- and species-specific fragment ions and fine-tuned the energy levels applied in the platform. We then performed a series of titrations to define the boundaries of linear signal response for the targeted lipid classes, and demonstrated that the dynamic quantification range spanned more than 3 orders of magnitude and reached sub picomole levels for 35 lipid classes. The platform identified 273, 261, and 287 lipid species in brain, plasma, and cultured fibroblast samples, respectively, at the respective optimal working sample amounts. The platform properly quantified the majority of these identified lipid species, while lipid species measured to be below the limit of quantification were efficiently removed from the data sets by the use of statistical analyses of data reproducibility or a cutoff threshold. Finally, we demonstrated that a series of parameters of cell culture conditions influence lipidomics outcomes, including confluency, medium supplements, and use of transfection reagents. The present study provides a guideline for setting up and using a simple and efficient platform for quantitatively exploring the mammalian lipidome.
Collapse
Affiliation(s)
- Inger Ødum Nielsen
- Unit for Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen DK-2100, Denmark
| | - André Vidas Olsen
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen DK-2100, Denmark
| | - Jano Dicroce-Giacobini
- Unit for Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen DK-2100, Denmark
| | - Elena Papaleo
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen DK-2100, Denmark
- Translational Disease Systems Biology, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Klaus Kaae Andersen
- Unit for Statistics and Epidemiology, Danish Cancer Society Research Center, Copenhagen DK-2100, Denmark
| | - Marja Jäättelä
- Unit for Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen DK-2100, Denmark
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Kenji Maeda
- Unit for Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen DK-2100, Denmark
| | - Mesut Bilgin
- Unit for Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen DK-2100, Denmark
| |
Collapse
|
10
|
Józefczuk E, Nosalski R, Saju B, Crespo E, Szczepaniak P, Guzik TJ, Siedlinski M. Cardiovascular Effects of Pharmacological Targeting of Sphingosine Kinase 1. Hypertension 2020; 75:383-392. [PMID: 31838904 PMCID: PMC7055939 DOI: 10.1161/hypertensionaha.119.13450] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/11/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023]
Abstract
High blood pressure is a risk factor for cardiovascular diseases. Ang II (angiotensin II), a key pro-hypertensive hormone, mediates target organ consequences such as endothelial dysfunction and cardiac hypertrophy. S1P (sphingosine-1-phosphate), produced by Sphk1 (sphingosine kinase 1), plays a pivotal role in the pathogenesis of hypertension and downstream organ damage, as it controls vascular tone and regulates cardiac remodeling. Accordingly, we aimed to examine if pharmacological inhibition of Sphk1 using selective inhibitor PF543 can represent a useful vasoprotective and cardioprotective anti-hypertensive strategy in vivo. PF543 was administered intraperitoneally throughout a 14-day Ang II-infusion in C57BL6/J male mice. Pharmacological inhibition of Sphk1 improved endothelial function of arteries of hypertensive mice that could be mediated via decrease in eNOS (endothelial nitric oxide synthase) phosphorylation at T495. This effect was independent of blood pressure. Importantly, PF543 also reduced cardiac hypertrophy (heart to body weight ratio, 5.6±0.2 versus 6.4±0.1 versus 5.9±0.2 mg/g; P<0.05 for Sham, Ang II+placebo, and Ang II+PF543-treated mice, respectively). Mass spectrometry revealed that PF543 elevated cardiac sphingosine, that is, Sphk1 substrate, content in vivo. Mechanistically, RNA-Seq indicated a decreased expression of cardiac genes involved in actin/integrin organization, S1pr1 signaling, and tissue remodeling. Indeed, downregulation of Rock1 (Rho-associated coiled-coil containing protein kinase 1), Stat3 (signal transducer and activator of transcription 3), PKC (protein kinase C), and ERK1/2 (extracellular signal-regulated kinases 1/2) level/phosphorylation by PF543 was observed. In summary, pharmacological inhibition of Sphk1 partially protects against Ang II-induced cardiac hypertrophy and endothelial dysfunction. Therefore, it may represent a promising target for harnessing residual cardiovascular risk in hypertension.
Collapse
Affiliation(s)
- Ewelina Józefczuk
- From the Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland (E.J., R.N., P.S., T.J.G., M.S.)
| | - Ryszard Nosalski
- From the Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland (E.J., R.N., P.S., T.J.G., M.S.)
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasglow, United Kingdom (R.N., B.S., E.C., T.J.G.)
| | - Blessy Saju
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasglow, United Kingdom (R.N., B.S., E.C., T.J.G.)
| | - Eva Crespo
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasglow, United Kingdom (R.N., B.S., E.C., T.J.G.)
| | - Piotr Szczepaniak
- From the Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland (E.J., R.N., P.S., T.J.G., M.S.)
| | - Tomasz Jan Guzik
- From the Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland (E.J., R.N., P.S., T.J.G., M.S.)
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasglow, United Kingdom (R.N., B.S., E.C., T.J.G.)
| | - Mateusz Siedlinski
- From the Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland (E.J., R.N., P.S., T.J.G., M.S.)
| |
Collapse
|
11
|
Lin Q, Zhang D, Xia Y. Analysis of ether glycerophosphocholines at the level of CC locations from human plasma. Analyst 2020; 145:513-522. [DOI: 10.1039/c9an01515a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Near-complete structural characterization is achieved for ether PCs by coupling offline Paternò–Büchi derivatization with MS/MS.
Collapse
Affiliation(s)
- Qiaohong Lin
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Donghui Zhang
- Department of Precision Instrument
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| |
Collapse
|
12
|
Flores-Romero H, Ros U, García-Sáez AJ. A lipid perspective on regulated cell death. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 351:197-236. [PMID: 32247580 DOI: 10.1016/bs.ircmb.2019.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lipids are fundamental to life as structural components of cellular membranes and for signaling. They are also key regulators of different cellular processes such as cell division, proliferation, and death. Regulated cell death (RCD) requires the engagement of lipids and lipid metabolism for the initiation and execution of its killing machinery. The permeabilization of lipid membranes is a hallmark of RCD that involves, for each kind of cell death, a unique lipid profile. While the permeabilization of the mitochondrial outer membrane allows the release of apoptotic factors to the cytosol during apoptosis, permeabilization of the plasma membrane facilitates the release of intracellular content in other nonapoptotic types of RCD like necroptosis and ferroptosis. Lipids and lipid membranes are important accessory molecules required for the activation of protein executors of cell death such as BAX in apoptosis and MLKL in necroptosis. Peroxidation of membrane phospholipids and the subsequent membrane destabilization is a prerequisite to ferroptosis. Here, we discuss how lipids are essential players in apoptosis, the most common form of RCD, and also their role in necroptosis and ferroptosis. Altogether, we aim to highlight the contribution of lipids and membrane dynamics in cell death regulation.
Collapse
Affiliation(s)
- Hector Flores-Romero
- Interfaculty Institute of Biochemistry, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Uris Ros
- Interfaculty Institute of Biochemistry, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Ana J García-Sáez
- Interfaculty Institute of Biochemistry, Eberhard-Karls-Universität Tübingen, Tübingen, Germany.
| |
Collapse
|
13
|
Zhang W, Zhang D, Chen Q, Wu J, Ouyang Z, Xia Y. Online photochemical derivatization enables comprehensive mass spectrometric analysis of unsaturated phospholipid isomers. Nat Commun 2019; 10:79. [PMID: 30622271 PMCID: PMC6325166 DOI: 10.1038/s41467-018-07963-8] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 11/30/2018] [Indexed: 11/09/2022] Open
Abstract
Mass spectrometry-based lipidomics is the primary tool for the structural analysis of lipids but the effective localization of carbon-carbon double bonds (C=C) in unsaturated lipids to distinguish C=C location isomers remains challenging. Here, we develop a large-scale lipid analysis platform by coupling online C=C derivatization through the Paternò-Büchi reaction with liquid chromatography-tandem mass spectrometry. This provides rich information on lipid C=C location isomers, revealing C=C locations for more than 200 unsaturated glycerophospholipids in bovine liver among which we identify 55 groups of C=C location isomers. By analyzing tissue samples of patients with breast cancer and type 2 diabetes plasma samples, we find that the ratios of C=C isomers are much less affected by interpersonal variations than their individual abundances, suggesting that isomer ratios may be used for the discovery of lipid biomarkers.
Collapse
Affiliation(s)
- Wenpeng Zhang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry and State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China.,Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Donghui Zhang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry and State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Qinhua Chen
- Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei Province, 442000, China
| | - Junhan Wu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry and State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Zheng Ouyang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry and State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China. .,Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907, USA.
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry and State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China. .,Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907, USA.
| |
Collapse
|
14
|
Zhang W, Zhang D, Chen Q, Wu J, Ouyang Z, Xia Y. Online photochemical derivatization enables comprehensive mass spectrometric analysis of unsaturated phospholipid isomers. Nat Commun 2019. [PMID: 30622271 DOI: 10.1038/s41467-01807963-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Mass spectrometry-based lipidomics is the primary tool for the structural analysis of lipids but the effective localization of carbon-carbon double bonds (C=C) in unsaturated lipids to distinguish C=C location isomers remains challenging. Here, we develop a large-scale lipid analysis platform by coupling online C=C derivatization through the Paternò-Büchi reaction with liquid chromatography-tandem mass spectrometry. This provides rich information on lipid C=C location isomers, revealing C=C locations for more than 200 unsaturated glycerophospholipids in bovine liver among which we identify 55 groups of C=C location isomers. By analyzing tissue samples of patients with breast cancer and type 2 diabetes plasma samples, we find that the ratios of C=C isomers are much less affected by interpersonal variations than their individual abundances, suggesting that isomer ratios may be used for the discovery of lipid biomarkers.
Collapse
Affiliation(s)
- Wenpeng Zhang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry and State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
- Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Donghui Zhang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry and State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Qinhua Chen
- Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei Province, 442000, China
| | - Junhan Wu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry and State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Zheng Ouyang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry and State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China.
- Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907, USA.
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry and State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China.
- Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907, USA.
| |
Collapse
|
15
|
Ellis SR, Soltwisch J, Paine MRL, Dreisewerd K, Heeren RMA. Laser post-ionisation combined with a high resolving power orbitrap mass spectrometer for enhanced MALDI-MS imaging of lipids. Chem Commun (Camb) 2018; 53:7246-7249. [PMID: 28573274 DOI: 10.1039/c7cc02325a] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Coupling laser post-ionisation with a high resolving power MALDI Orbitrap mass spectrometer has realised an up to ∼100-fold increase in the sensitivity and enhanced the chemical coverage for MALDI-MS imaging of lipids relative to conventional MALDI. This could constitute a major breakthrough for biomedical research.
Collapse
Affiliation(s)
- S R Ellis
- M4I, The Maastricht Multimodal Molecular Imaging Institute, University of Maastricht, 6229 ER Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|
16
|
Lipidomics in research on yeast membrane lipid homeostasis. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:797-799. [PMID: 28219720 DOI: 10.1016/j.bbalip.2017.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 11/21/2022]
Abstract
Mass spectrometry is increasingly used in research on membrane lipid homeostasis, both in analyses of the steady state lipidome at the level of molecular lipid species, and in pulse-chase approaches employing stable isotope-labeled lipid precursors addressing the dynamics of lipid metabolism. Here my experience with, and view on mass spectrometry-based lipid analysis is presented, with emphasis on aspects of quantification of membrane lipid composition of the yeast Saccharomyces cerevisiae. This article is part of a Special Issue entitled: BBALIP_Lipidomics Opinion Articles edited by Sepp Kohlwein.
Collapse
|
17
|
Bilgin M, Nylandsted J, Jäättelä M, Maeda K. Quantitative Profiling of Lysosomal Lipidome by Shotgun Lipidomics. Methods Mol Biol 2017; 1594:19-34. [PMID: 28456974 DOI: 10.1007/978-1-4939-6934-0_2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent studies have illuminated novel roles of lysosomes that go far beyond simple catabolism and function in the coordination of cellular metabolism and signaling. Promising therapeutic strategies emerge from knowledge in the molecular mechanisms and physiological roles of lipid metabolism in lysosomes. Global monitoring of the function and dysregulation of lysosomal lipid metabolism requires a methodology that resolves the complexity of lysosomal lipidome by quantitatively detecting hundreds of lipid species of diverse physicochemical properties. We describe here a detailed protocol that couples isolation of superparamagnetic iron dextran-loaded lysosomes from cultured mammalian cell lines with quantitative mass spectrometry-based shotgun lipidomics.
Collapse
Affiliation(s)
- Mesut Bilgin
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, DK -2100, Copenhagen, Denmark.
| | - Jesper Nylandsted
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, DK -2100, Copenhagen, Denmark
| | - Marja Jäättelä
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, DK -2100, Copenhagen, Denmark
| | - Kenji Maeda
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, DK -2100, Copenhagen, Denmark.
| |
Collapse
|
18
|
Nielsen IØ, Maeda K, Bilgin M. Global Monitoring of the Mammalian Lipidome by Quantitative Shotgun Lipidomics. Methods Mol Biol 2017; 1609:123-139. [PMID: 28660579 DOI: 10.1007/978-1-4939-6996-8_12] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The emerging field of lipidomics presents the systems biology approach to identify and quantify the full lipid repertoire of cells, tissues, and organisms. The importance of the lipidome is demonstrated by a number of biological studies on dysregulation of lipid metabolism in human diseases such as cancer, diabetes, and neurodegenerative diseases. Exploring changes and regulations in the huge networks of lipids and their metabolic pathways requires a lipidomics methodology: Advanced mass spectrometry that resolves the complexity of the lipidome. Here, we report a comprehensive protocol of quantitative shotgun lipidomics that enables identification and quantification of hundreds of molecular lipid species, covering a wide range of lipid classes, extracted from cultured mammalian cells.
Collapse
Affiliation(s)
- Inger Ødum Nielsen
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, 2100, Denmark
| | - Kenji Maeda
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, 2100, Denmark
| | - Mesut Bilgin
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, 2100, Denmark.
| |
Collapse
|
19
|
Wang M, Wang C, Han RH, Han X. Novel advances in shotgun lipidomics for biology and medicine. Prog Lipid Res 2016; 61:83-108. [PMID: 26703190 PMCID: PMC4733395 DOI: 10.1016/j.plipres.2015.12.002] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/01/2015] [Accepted: 12/01/2015] [Indexed: 12/14/2022]
Abstract
The field of lipidomics, as coined in 2003, has made profound advances and been rapidly expanded. The mass spectrometry-based strategies of this analytical methodology-oriented research discipline for lipid analysis are largely fallen into three categories: direct infusion-based shotgun lipidomics, liquid chromatography-mass spectrometry-based platforms, and matrix-assisted laser desorption/ionization mass spectrometry-based approaches (particularly in imagining lipid distribution in tissues or cells). This review focuses on shotgun lipidomics. After briefly introducing its fundamentals, the major materials of this article cover its recent advances. These include the novel methods of lipid extraction, novel shotgun lipidomics strategies for identification and quantification of previously hardly accessible lipid classes and molecular species including isomers, and novel tools for processing and interpretation of lipidomics data. Representative applications of advanced shotgun lipidomics for biological and biomedical research are also presented in this review. We believe that with these novel advances in shotgun lipidomics, this approach for lipid analysis should become more comprehensive and high throughput, thereby greatly accelerating the lipidomics field to substantiate the aberrant lipid metabolism, signaling, trafficking, and homeostasis under pathological conditions and their underpinning biochemical mechanisms.
Collapse
Affiliation(s)
- Miao Wang
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute; Orlando, FL 32827, USA
| | - Chunyan Wang
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute; Orlando, FL 32827, USA
| | - Rowland H Han
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute; Orlando, FL 32827, USA
| | - Xianlin Han
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute; Orlando, FL 32827, USA; College of Basic Medical Sciences, Zhejiang Chinese Medical University, 548 Bingwen Road, Hangzhou, Zhejiang 310053, China.
| |
Collapse
|
20
|
Quantitative Profiling of Long-Chain Bases by Mass Tagging and Parallel Reaction Monitoring. PLoS One 2015; 10:e0144817. [PMID: 26660097 PMCID: PMC4684364 DOI: 10.1371/journal.pone.0144817] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 11/24/2015] [Indexed: 11/19/2022] Open
Abstract
Long-chain bases (LCBs) are both intermediates in sphingolipid metabolism and potent signaling molecules that control cellular processes. To understand how regulation of sphingolipid metabolism and levels of individual LCB species impinge upon physiological and pathophysiological processes requires sensitive and specific assays for monitoring these molecules. Here we describe a shotgun lipidomics method for quantitative profiling of LCB molecules. The method employs a "mass-tag" strategy where LCBs are chemically derivatized with deuterated methyliodide (CD3I) to produce trimethylated derivatives having a positively charged quaternary amine group. This chemical derivatization minimizes unwanted in-source fragmentation of LCB analytes and prompts a characteristic trimethylaminium fragment ion that enables sensitive and quantitative profiling of LCB molecules by parallel reaction monitoring on a hybrid quadrupole time-of-flight mass spectrometer. Notably, the strategy provides, for the first time, a routine for monitoring endogenous 3-ketosphinganine molecules and distinguishing them from more abundant isomeric sphingosine molecules. To demonstrate the efficacy of the methodology we report an in-depth characterization of the LCB composition of yeast mutants with defective sphingolipid metabolism and the absolute levels of LCBs in mammalian cells. The strategy is generic, applicable to other types of mass spectrometers and can readily be applied as an additional routine in workflows for global lipidome quantification and for functional studies of sphingolipid metabolism.
Collapse
|
21
|
Wang M, Kim GH, Wei F, Chen H, Altarejos J, Han X. Improved method for quantitative analysis of methylated phosphatidylethanolamine species and its application for analysis of diabetic-mouse liver samples. Anal Bioanal Chem 2015; 407:5021-32. [PMID: 25725579 DOI: 10.1007/s00216-015-8534-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/16/2015] [Accepted: 02/02/2015] [Indexed: 10/23/2022]
Abstract
N-monomethyl phosphatidylethanolamine (MMPE) and N,N-dimethyl phosphatidylethanolamine (DMPE) species are intermediates of phosphatidylcholine (PC) de-novo biosynthesis through methylation of phosphatidylethanolamine (PE). This synthesis pathway for PC is especially important in the liver when choline is deficient in the diet. Despite some efforts focused on the analysis of MMPE and DMPE species, a cost-effective and high-throughput method for determination of individual MMPE and DMPE species, including their regioisomeric structures, is still missing. Therefore we adopted and improved the "mass-tag" strategy for determining these PE-like species by methylating PE, MMPE, and DMPE molecules with deuterated methyl iodide to generate PC molecules with nine, six, and three deuterium atoms, respectively. On the basis of the principles of multidimensional mass-spectrometry-based shotgun lipidomics we could directly identify and quantify these methylated PE species, including their fatty-acyl chains and regiospecific positions. The method provided remarkable sensitivity, with a limit of detection at 0.5 fmol μL(-1), high specificity, and a broad linear-dynamics range of >2500 folds. By applying this method to liver samples from streptozotocin (STZ)-induced diabetic mice and controls, we found that the levels of PC species tended to decrease and the amounts of PE species tended to increase in the liver of STZ-induced diabetic mice compared with controls, but no significant changes in MMPE and DMPE species were determined. However, remodeling of fatty-acyl chains in the determined lipids was observed in the liver of STZ-induced diabetic mice, with reduction in 16:1 and increases in 18:2, 18:1, and 18:0 acyl chains. These results indicated the improved method to be a powerful tool to reveal the function of the PC de-novo biosynthesis pathway through methylation of PE species in biological systems.
Collapse
Affiliation(s)
- Miao Wang
- Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, 6400 Sanger Road, Orlando, FL, 32827, USA
| | | | | | | | | | | |
Collapse
|
22
|
Brügger B. Lipidomics: analysis of the lipid composition of cells and subcellular organelles by electrospray ionization mass spectrometry. Annu Rev Biochem 2014; 83:79-98. [PMID: 24606142 DOI: 10.1146/annurev-biochem-060713-035324] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lipidomics aims to quantitatively define lipid classes, including their molecular species, in biological systems. Lipidomics has experienced rapid progress, mainly because of continuous technical advances in instrumentation that are now enabling quantitative lipid analyses with an unprecedented level of sensitivity and precision. The still-growing category of lipids includes a broad diversity of chemical structures with a wide range of physicochemical properties. Reflecting this diversity, different methods and strategies are being applied to the quantification of lipids. Here, I review state-of-the-art electrospray ionization tandem mass spectrometric approaches and direct infusion to quantitatively assess lipid compositions of cells and subcellular fractions. Finally, I discuss a few examples of the power of mass spectrometry-based lipidomics in addressing cell biological questions.
Collapse
Affiliation(s)
- Britta Brügger
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany;
| |
Collapse
|
23
|
Husen P, Tarasov K, Katafiasz M, Sokol E, Vogt J, Baumgart J, Nitsch R, Ekroos K, Ejsing CS. Analysis of lipid experiments (ALEX): a software framework for analysis of high-resolution shotgun lipidomics data. PLoS One 2013; 8:e79736. [PMID: 24244551 PMCID: PMC3820610 DOI: 10.1371/journal.pone.0079736] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 09/24/2013] [Indexed: 11/21/2022] Open
Abstract
Global lipidomics analysis across large sample sizes produces high-content datasets that require dedicated software tools supporting lipid identification and quantification, efficient data management and lipidome visualization. Here we present a novel software-based platform for streamlined data processing, management and visualization of shotgun lipidomics data acquired using high-resolution Orbitrap mass spectrometry. The platform features the ALEX framework designed for automated identification and export of lipid species intensity directly from proprietary mass spectral data files, and an auxiliary workflow using database exploration tools for integration of sample information, computation of lipid abundance and lipidome visualization. A key feature of the platform is the organization of lipidomics data in ”database table format” which provides the user with an unsurpassed flexibility for rapid lipidome navigation using selected features within the dataset. To demonstrate the efficacy of the platform, we present a comparative neurolipidomics study of cerebellum, hippocampus and somatosensory barrel cortex (S1BF) from wild-type and knockout mice devoid of the putative lipid phosphate phosphatase PRG-1 (plasticity related gene-1). The presented framework is generic, extendable to processing and integration of other lipidomic data structures, can be interfaced with post-processing protocols supporting statistical testing and multivariate analysis, and can serve as an avenue for disseminating lipidomics data within the scientific community. The ALEX software is available at www.msLipidomics.info.
Collapse
Affiliation(s)
- Peter Husen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | | - Maciej Katafiasz
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Elena Sokol
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Johannes Vogt
- Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jan Baumgart
- Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Robert Nitsch
- Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Kim Ekroos
- Zora Biosciences Oy, Espoo, Finland
- * E-mail: (CSE); (KE)
| | - Christer S. Ejsing
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- * E-mail: (CSE); (KE)
| |
Collapse
|
24
|
Sandra K, Sandra P. Lipidomics from an analytical perspective. Curr Opin Chem Biol 2013; 17:847-53. [DOI: 10.1016/j.cbpa.2013.06.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 06/11/2013] [Indexed: 01/28/2023]
|
25
|
Yamada T, Uchikata T, Sakamoto S, Yokoi Y, Fukusaki E, Bamba T. Development of a lipid profiling system using reverse-phase liquid chromatography coupled to high-resolution mass spectrometry with rapid polarity switching and an automated lipid identification software. J Chromatogr A 2013; 1292:211-8. [DOI: 10.1016/j.chroma.2013.01.078] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 10/18/2012] [Accepted: 01/17/2013] [Indexed: 12/14/2022]
|
26
|
Checks and balances in membrane phospholipid class and acyl chain homeostasis, the yeast perspective. Prog Lipid Res 2013; 52:374-94. [PMID: 23631861 DOI: 10.1016/j.plipres.2013.04.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 03/28/2013] [Accepted: 04/16/2013] [Indexed: 11/24/2022]
Abstract
Glycerophospholipids are the most abundant membrane lipid constituents in most eukaryotic cells. As a consequence, phospholipid class and acyl chain homeostasis are crucial for maintaining optimal physical properties of membranes that in turn are crucial for membrane function. The topic of this review is our current understanding of membrane phospholipid homeostasis in the reference eukaryote Saccharomyces cerevisiae. After introducing the physical parameters of the membrane that are kept in optimal range, the properties of the major membrane phospholipids and their contributions to membrane structure and dynamics are summarized. Phospholipid metabolism and known mechanisms of regulation are discussed, including potential sensors for monitoring membrane physical properties. Special attention is paid to processes that maintain the phospholipid class specific molecular species profiles, and to the interplay between phospholipid class and acyl chain composition when yeast membrane lipid homeostasis is challenged. Based on the reviewed studies, molecular species selectivity of the lipid metabolic enzymes, and mass action in acyl-CoA metabolism are put forward as important intrinsic contributors to membrane lipid homeostasis.
Collapse
|
27
|
Plasma membrane--endoplasmic reticulum contact sites regulate phosphatidylcholine synthesis. EMBO Rep 2013; 14:434-40. [PMID: 23519169 DOI: 10.1038/embor.2013.36] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 02/08/2013] [Accepted: 03/01/2013] [Indexed: 11/08/2022] Open
Abstract
Synthesis of phospholipids, sterols and sphingolipids is thought to occur at contact sites between the endoplasmic reticulum (ER) and other organelles because many lipid-synthesizing enzymes are enriched in these contacts. In only a few cases have the enzymes been localized to contacts in vivo and in no instances have the contacts been demonstrated to be required for enzyme function. Here, we show that plasma membrane (PM)--ER contact sites in yeast are required for phosphatidylcholine synthesis and regulate the activity of the phosphatidylethanolamine N-methyltransferase enzyme, Opi3. Opi3 activity requires Osh3, which localizes to PM-ER contacts where it might facilitate in trans catalysis by Opi3. Thus, membrane contact sites provide a structural mechanism to regulate lipid synthesis.
Collapse
|
28
|
Zhang L, Díaz–Díaz N, Zarringhalam K, Hermansson M, Somerharju P, Chuang J. Dynamics of the ethanolamine glycerophospholipid remodeling network. PLoS One 2012; 7:e50858. [PMID: 23251394 PMCID: PMC3519547 DOI: 10.1371/journal.pone.0050858] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/29/2012] [Indexed: 12/18/2022] Open
Abstract
Acyl chain remodeling in lipids is a critical biochemical process that plays a central role in disease. However, remodeling remains poorly understood, despite massive increases in lipidomic data. In this work, we determine the dynamic network of ethanolamine glycerophospholipid (PE) remodeling, using data from pulse-chase experiments and a novel bioinformatic network inference approach. The model uses a set of ordinary differential equations based on the assumptions that (1) sn1 and sn2 acyl positions are independently remodeled; (2) remodeling reaction rates are constant over time; and (3) acyl donor concentrations are constant. We use a novel fast and accurate two-step algorithm to automatically infer model parameters and their values. This is the first such method applicable to dynamic phospholipid lipidomic data. Our inference procedure closely fits experimental measurements and shows strong cross-validation across six independent experiments with distinct deuterium-labeled PE precursors, demonstrating the validity of our assumptions. In constrast, fits of randomized data or fits using random model parameters are worse. A key outcome is that we are able to robustly distinguish deacylation and reacylation kinetics of individual acyl chain types at the sn1 and sn2 positions, explaining the established prevalence of saturated and unsaturated chains in the respective positions. The present study thus demonstrates that dynamic acyl chain remodeling processes can be reliably determined from dynamic lipidomic data.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | | | - Kourosh Zarringhalam
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Martin Hermansson
- Institute of Biomedicine, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland
| | - Pentti Somerharju
- Institute of Biomedicine, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland
| | - Jeffrey Chuang
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
29
|
Nguyen TT, Lewandowska A, Choi JY, Markgraf DF, Junker M, Bilgin M, Ejsing CS, Voelker DR, Rapoport TA, Shaw JM. Gem1 and ERMES do not directly affect phosphatidylserine transport from ER to mitochondria or mitochondrial inheritance. Traffic 2012; 13:880-90. [PMID: 22409400 PMCID: PMC3648210 DOI: 10.1111/j.1600-0854.2012.01352.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 03/08/2012] [Accepted: 03/12/2012] [Indexed: 11/27/2022]
Abstract
In yeast, a protein complex termed the ER-Mitochondria Encounter Structure (ERMES) tethers mitochondria to the endoplasmic reticulum. ERMES proteins are implicated in a variety of cellular functions including phospholipid synthesis, mitochondrial protein import, mitochondrial attachment to actin, polarized mitochondrial movement into daughter cells during division, and maintenance of mitochondrial DNA (mtDNA). The mitochondrial-anchored Gem1 GTPase has been proposed to regulate ERMES functions. Here, we show that ERMES and Gem1 have no direct role in the transport of phosphatidylserine (PS) from the ER to mitochondria during the synthesis of phosphatidylethanolamine (PE), as PS to PE conversion is not affected in ERMES or gem1 mutants. In addition, we report that mitochondrial inheritance defects in ERMES mutants are a secondary consequence of mitochondrial morphology defects, arguing against a primary role for ERMES in mitochondrial association with actin and mitochondrial movement. Finally, we show that ERMES complexes are long-lived, and do not depend on the presence of Gem1. Our findings suggest that the ERMES complex may have primarily a structural role in maintaining mitochondrial morphology.
Collapse
Affiliation(s)
- Tammy T Nguyen
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|