1
|
He W, Xu C, Mao D, Zheng Y, Wang N, Wang M, Mao N, Wang T, Li Y. Recent advances in pyroptosis, liver disease, and traditional Chinese medicine: A review. Phytother Res 2023; 37:5473-5494. [PMID: 37622684 DOI: 10.1002/ptr.7989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
In recent years, the incidence of liver disease has increased, becoming a major cause of death. Various liver diseases are intricately linked to pyroptosis, which is one of the most common forms of programmed cell death. As a powerful weapon in the fight against liver diseases, traditional Chinese medicine (TCM) can affect pyroptosis via a number of routes, including the classical, nucleotide oligomerization domain-like receptors protein 3/caspase-1/gasdermin D (GSDMD) pathway, the nonclassical lipopolysaccharide/caspase-11/GSDMD pathway, the ROS/caspase-3/gasdermin E pathway, the caspase-9/caspase-3/GSDMD pathway, and the Apaf-1/caspase-11/caspase-3 pathway. In this review, we provide an overview of pyroptosis, the interplay between pyroptosis and liver diseases, and the mechanisms through which TCM regulates pyroptosis in liver diseases. The information used in the text was collected and compiled from the databases of PubMed, Web of Science, Scopus, CNKI, and Wanfang Data up to June 2023. The search was not limited with regard to the language and country of the articles. Research and review articles were included, and papers with duplicate results or unrelated content were excluded. We examined the current understanding of the relationship between pyroptosis and liver diseases as well as the advances in TCM interventions to provide a resource for the identification of potential targets for TCM in the treatment of liver diseases.
Collapse
Affiliation(s)
- Wenxing He
- Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Canli Xu
- Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Dewen Mao
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yang Zheng
- Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Na Wang
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Minggang Wang
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Nan Mao
- Department of Acupuncture-Moxibustion and Tuina, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Ting Wang
- The First Clinical Medical College, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yanjie Li
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
2
|
Cross-Regulation of the Cellular Redox System, Oxygen, and Sphingolipid Signalling. Metabolites 2023; 13:metabo13030426. [PMID: 36984866 PMCID: PMC10054022 DOI: 10.3390/metabo13030426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Redox-active mediators are now appreciated as powerful molecules to regulate cellular dynamics such as viability, proliferation, migration, cell contraction, and relaxation, as well as gene expression under physiological and pathophysiological conditions. These molecules include the various reactive oxygen species (ROS), and the gasotransmitters nitric oxide (NO∙), carbon monoxide (CO), and hydrogen sulfide (H2S). For each of these molecules, direct targets have been identified which transmit the signal from the cellular redox state to a cellular response. Besides these redox mediators, various sphingolipid species have turned out as highly bioactive with strong signalling potential. Recent data suggest that there is a cross-regulation existing between the redox mediators and sphingolipid molecules that have a fundamental impact on a cell’s fate and organ function. This review will summarize the effects of the different redox-active mediators on sphingolipid signalling and metabolism, and the impact of this cross-talk on pathophysiological processes. The relevance of therapeutic approaches will be highlighted.
Collapse
|
3
|
RBM15-mediated N6-methyladenosine modification affects COVID-19 severity by regulating the expression of multitarget genes. Cell Death Dis 2021; 12:732. [PMID: 34301919 PMCID: PMC8298984 DOI: 10.1038/s41419-021-04012-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 01/08/2023]
Abstract
Severe coronavirus disease 2019 (COVID-19) is characterized by symptoms of lymphopenia and multiorgan damage, but the underlying mechanisms remain unclear. To explore the function of N6-methyladenosine (m6A) modifications in COVID-19, we performed microarray analyses to comprehensively characterize the m6A epitranscriptome. The results revealed distinct global m6A profiles in severe and mild COVID-19 patients. Programmed cell death and inflammatory response were the major biological processes modulated by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Further, RBM15, a major m6A methyltransferase, was significantly elevated and positively correlated with disease severity. Silencing RBM15 drastically reduced lymphocyte death in vitro. Knockdown of RBM15 remarkably suppressed the expression levels of multitarget genes related to programmed cell death and inflammatory response. This study shows that SARS-CoV-2 infection alters the m6A epitranscriptome of lymphocytes, particularly in the case of severe patients. RBM15 regulated host immune response to SARS-CoV-2 by elevating m6A modifications of multitarget genes. These findings indicate that RBM15 can serve as a target for the treatment of COVID-19.
Collapse
|
4
|
Human antigen R: A potential therapeutic target for liver diseases. Pharmacol Res 2020; 155:104684. [PMID: 32045667 DOI: 10.1016/j.phrs.2020.104684] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 02/08/2023]
Abstract
Human antigen R (HuR), also known as HuA and embryonic lethal abnormal vision-like 1 (ELAVL1), is a ubiquitously expressed RNA binding protein and functions as an RNA regulator and mediates the expression of various proteins by diverse post-transcriptional mechanisms. HuR has been well characterized in the inflammatory responses and in the development of various cancers. The importance of HuR-mediated roles in cell signaling, inflammation, fibrogenesis and cancer development in the liver has attracted a great deal of attention. However, there is still a substantial gap between the current understanding of the potential roles of HuR in the progression of liver disease and whether HuR can be targeted for the treatment of liver diseases. In this review, we introduce the function and mechanistic characterization of HuR, and then focus on the physiopathological roles of HuR in the development of different liver diseases, including hepatic inflammation, alcoholic liver diseases, non-alcoholic fatty liver diseases, viral hepatitis, liver fibrosis and liver cancers. We also summarize existing approaches targeting HuR function. In conclusion, although characterizing the liver-specific HuR function and demonstrating the multi-level regulative networks of HuR in the liver are still required, emerging evidence supports the notion that HuR represents a potential therapeutic target for the treatment of chronic liver diseases.
Collapse
|
5
|
Glaser UG, Fandrey J. Sphingolipids in inflammatory hypoxia. Biol Chem 2019; 399:1169-1174. [PMID: 29908122 DOI: 10.1515/hsz-2018-0173] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/04/2018] [Indexed: 12/30/2022]
Abstract
Hypoxia due to rapid tumor growth with impaired neovascularization and inflammation resulting from immune cell activation are hallmarks of cancer. Hypoxia-inducible factors control transcriptional adaptation in response to low oxygen conditions, both in tumor and immune cells. In addition, sphingolipids become increasingly recognized as important cell mediators in tumor and inflammatory hypoxia. Recent studies have identified acid sphingomyelinase (ASM), a central enzyme in the sphingolipid metabolism, as a regulator of several types of stress stimuli pathways and an important player in the tumor microenvironment. Therefore, this review will address the connection between the hypoxic response and the ASM/ceramide system in the context of inflammatory hypoxia.
Collapse
Affiliation(s)
- Ulrike G Glaser
- Institut für Physiologie, Universität Duisburg-Essen, D-45122 Essen, Germany
| | - Joachim Fandrey
- Institut für Physiologie, Universität Duisburg-Essen, D-45122 Essen, Germany
| |
Collapse
|
6
|
Wu Y, Zhuang J, Zhao D, Xu C. Interaction between caspase-3 and caspase-5 in the stretch-induced programmed cell death in the human periodontal ligament cells. J Cell Physiol 2019; 234:13571-13581. [PMID: 30604868 DOI: 10.1002/jcp.28035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 11/30/2018] [Indexed: 12/22/2022]
Abstract
In our previous studies, programmed cell death (PCD) was induced in human periodontal ligament (PDL) cells, through activation of caspase-3 and upregulation of CASP5 gene (encoding caspase-5 protein), in response to mechanical stretch loading. The aim of this study is to explore the relationship between the inflammatory caspase, caspase-5, and the apoptotic executioner protein, caspase-3, in human PDL cells. Here, we found that cyclic stretching upregulated the activity and the protein expression level of caspase-3 and -5 and the addition of the caspase-3 inhibitor or caspase-5 inhibitor significantly inhibited the stretch-induced PCD. Meanwhile, the inhibition of caspase-5 inhibited the activation of caspase-3 and vice versa. The result of coimmunoprecipitation also demonstrated that the expression of caspase-3 was immunoprecipitated with caspase-5. Thus, our study revealed that the in vitro application of cyclic stretching induced PCD by activation of caspase-3 and -5 in human PDL cells, and these two caspases could interact with each other after mechanical stretch loading. The study may facilitate further studies on the mechanism of stretch-induced PCD and help us understand the force-related periodontal homeostasis and remodeling better.
Collapse
Affiliation(s)
- Yaqin Wu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Jiabao Zhuang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Dan Zhao
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Chun Xu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| |
Collapse
|
7
|
Ogawa M, Kanda T, Higuchi T, Takahashi H, Kaneko T, Matsumoto N, Nirei K, Yamagami H, Matsuoka S, Kuroda K, Moriyama M. Possible association of arrestin domain-containing protein 3 and progression of non-alcoholic fatty liver disease. Int J Med Sci 2019; 16:909-921. [PMID: 31341404 PMCID: PMC6643132 DOI: 10.7150/ijms.34245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/03/2019] [Indexed: 12/22/2022] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) is increasing worldwide. Several effective drugs for these diseases are now in development and under clinical trials. It is important to reveal the mechanism of the development of NAFLD and NASH. We investigated the role of arrestin domain-containing protein 3 (ARRDC3), which is linked to obesity in men and regulates body mass, adiposity and energy expenditure, in the progression of NAFLD and NASH. We performed knockdown of endogenous ARRDC3 in human hepatocytes and examined the inflammasome-associated gene expression by real-time PCR-based array. We also examined the effect of conditioned medium from endogenous ARRDC3-knockdown-hepatocytes on the apoptosis of hepatic stellate cells. We observed that free acids enhanced the expression of ARRDC3 in hepatocytes. Knockdown of ARRDC3 could lead to the inhibition of inflammasome-associated gene expression in hepatocytes. We also observed that conditioned medium from endogenous ARRDC3-knockdown-hepatocytes enhances the apoptosis of hepatic stellate cells. ARRDC3 has a role in the progression of NAFLD and NASH and is one of the targets for the development of the effective treatment of NAFLD and NASH.
Collapse
Affiliation(s)
- Masahiro Ogawa
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Tatsuo Kanda
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Teruhisa Higuchi
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Hiroshi Takahashi
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Tomohiro Kaneko
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Naoki Matsumoto
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Kazushige Nirei
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Hiroaki Yamagami
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Shunichi Matsuoka
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Kazumichi Kuroda
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Mitsuhiko Moriyama
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| |
Collapse
|
8
|
Cyclic-stretch induces apoptosis in human periodontal ligament cells by activation of caspase-5. Arch Oral Biol 2017; 73:129-135. [DOI: 10.1016/j.archoralbio.2016.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 08/24/2016] [Accepted: 10/11/2016] [Indexed: 11/18/2022]
|
9
|
Wu Y, Zhao D, Zhuang J, Zhang F, Xu C. Caspase-8 and Caspase-9 Functioned Differently at Different Stages of the Cyclic Stretch-Induced Apoptosis in Human Periodontal Ligament Cells. PLoS One 2016; 11:e0168268. [PMID: 27942018 PMCID: PMC5152893 DOI: 10.1371/journal.pone.0168268] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 11/29/2016] [Indexed: 11/19/2022] Open
Abstract
Background Human periodontal ligament (PDL) cells underwent apoptosis after mechanical stretch loading. However, the exact signalling pathway remains unknown. This study aimed to elucidate how the apoptotic caspases functioned in the cyclic stretch-induced apoptosis in human PDL cells. Materials and Methods In the present study, 20% cyclic stretch was selected to load the cells for 6 or 24 h. The following parameters were analyzed: apoptotic rates, the protein levels of caspase-3, -7, -8 and -9 and the activities of caspase-8 and -9. Subsequently, the influences of caspase-8 and caspase-9 inhibitors on the apoptotic rate and the protein level of the activated caspase-3 were assessed as well. Results The apoptotic rates increased in response to cyclic stretch, but the cells entered different apoptotic stages after 6 and 24 h stretches. Caspase-3, -7, -8 and -9 were all activated after stretch loading. The stretch-induced apoptosis and the protein level of the activated caspase-3 were inhibited after inhibiting both caspase-8 and caspase-9 in both 6 and 24 h stretched cells and after inhibiting caspase-9 in 24 h stretched cells. Conclusion Caspase-8 and -9 functioned differently at different apoptotic stages in human PDL cells after cyclic stretch.
Collapse
Affiliation(s)
- Yaqin Wu
- Department of Prosthodontics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Dan Zhao
- Department of Prosthodontics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jiabao Zhuang
- Department of Prosthodontics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Fuqiang Zhang
- Department of Prosthodontics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Chun Xu
- Department of Prosthodontics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- * E-mail:
| |
Collapse
|
10
|
Essential Roles of RNA-binding Protein HuR in Activation of Hepatic Stellate Cells Induced by Transforming Growth Factor-β1. Sci Rep 2016; 6:22141. [PMID: 26912347 PMCID: PMC4766441 DOI: 10.1038/srep22141] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/08/2016] [Indexed: 11/08/2022] Open
Abstract
RNA-binding protein HuR mediates transforming growth factor (TGF)-β1-induced profibrogenic actions. Up-regulation of Sphingosine kinase 1 (SphK1) is involved in TGF-β1-induced activation of hepatic stellate cells (HSCs) in liver fibrogenesis. However, the molecular mechanism of TGF-β1 regulates SphK1 remains unclear. This study was designed to investigate the role of HuR in TGF-β1-induced SphK1 expression and identify a new molecular mechanism in liver fibrogenensis. In vivo, HuR expression was increased, translocated to cytoplasm, and bound to SphK1 mRNA in carbon tetrachloride- and bile duct ligation-induced mouse fibrotic liver. HuR mRNA expression had a positive correlation with mRNA expressions of SphK1 and fibrotic markers, α-smooth muscle actin (α-SMA) and Collagen α1(I), respectively. In vitro, up-regulation of SphK1 and activation of HSCs stimulated by TGF-β1 depended on HuR cytoplasmic accumulation. The effects of TGF-β1 were diminished when HuR was silenced or HuR cytoplasmic translocation was blocked. Meanwhile, overexpression of HuR mimicked the effects of TGF-β1. Furthermore, TGF-β1 prolonged half-life of SphK1 mRNA by promoting its binding to HuR. Pharmacological or siRNA-induced SphK1 inhibition abrogated HuR-mediated HSC activation. In conclusion, our data suggested that HuR bound to SphK1 mRNA and played a crucial role in TGF-β1-induced HSC activation.
Collapse
|
11
|
Abstract
Studies over the past two decades have identified ceramide as a multifunctional central molecule in the sphingolipid biosynthetic pathway. Given its diverse tumor suppressive activities, molecular understanding of ceramide action will produce fundamental insights into processes that limit tumorigenesis and may identify key molecular targets for therapeutic intervention. Ceramide can be activated by a diverse array of stresses such as heat shock, genotoxic damage, oxidative stress and anticancer drugs. Ceramide triggers a variety of tumor suppressive and anti-proliferative cellular programs such as apoptosis, autophagy, senescence, and necroptosis by activating or repressing key effector molecules. Defects in ceramide generation and metabolism in cancer contribute to tumor cell survival and resistance to chemotherapy. The potent and versatile anticancer activity profile of ceramide has motivated drug development efforts to (re-)activate ceramide in established tumors. This review focuses on our current understanding of the tumor suppressive functions of ceramide and highlights the potential downstream targets of ceramide which are involved in its tumor suppressive action.
Collapse
|
12
|
Acute and chronic immunomodulatory changes in rat liver after fetal and perinatal asphyxia. J Dev Orig Health Dis 2015; 5:98-108. [PMID: 24847696 DOI: 10.1017/s2040174413000561] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Hypoxic-ischemic encephalopathy (HIE) caused by fetal and perinatal asphyxia is an important cause of mortality in the neonatal period. Not only will asphyxia affect the brain but also other organs such as the liver and kidneys. Interestingly, it has been shown that liver damage is proportional to the severity of the asphyctic insult, implying an association between liver impairment and HIE. Accordingly, we investigated in an established rat model the acute and chronic hepatic response to both fetal (FA) and perinatal asphyxia (PA). In addition, we assessed whether fetal asphyctic preconditioning (PC) would have any beneficial effect on the liver. Inflammation, ceramide signaling and hepatocellular damage were analyzed in the livers of newborn and adult rats at several short- and long-term time points after both FA and PA. We found that although FA induced an acute inflammatory response, apoptotic mRNA levels and oxidative DNA damage were decreased at 96 h post FA. Whereas increased IL-6 and IL-10 mRNA levels were observed after PA, the combination of FA and PA (PC) attenuated the inflammatory response. Moreover, 6 h after PA anti-apoptotic genes were downregulated and associated with less lipid peroxidation, while preconditioned animals were comparable to controls. In summary, asphyctic PC seems to have an acute protective effect on the liver by modulating the inflammatory, apoptotic and anti-oxidative response. More insight into the hepatic response to asphyxia is necessary, as disturbed hepatic function is associated with metabolic diseases in later life.
Collapse
|
13
|
Abstract
Lipid metabolism is regulated by multiple signaling pathways, and generates a variety of bioactive lipid molecules. These bioactive lipid molecules known as signaling molecules, such as fatty acid, eicosanoids, diacylglycerol, phosphatidic acid, lysophophatidic acid, ceramide, sphingosine, sphingosine-1-phosphate, phosphatidylinositol-3 phosphate, and cholesterol, are involved in the activation or regulation of different signaling pathways. Lipid metabolism participates in the regulation of many cellular processes such as cell growth, proliferation, differentiation, survival, apoptosis, inflammation, motility, membrane homeostasis, chemotherapy response, and drug resistance. Bioactive lipid molecules promote apoptosis via the intrinsic pathway by modulating mitochondrial membrane permeability and activating different enzymes including caspases. In this review, we discuss recent data in the fields of lipid metabolism, lipid-mediated apoptosis, and cancer therapy. In conclusion, understanding the underlying molecular mechanism of lipid metabolism and the function of different lipid molecules could provide the basis for cancer cell death rationale, discover novel and potential targets, and develop new anticancer drugs for cancer therapy.
Collapse
|
14
|
p38 mitogen-activated protein kinase/activator protein-1 involved in serum deprivation-induced human alkaline ceramidase 2 upregulation. Biomed Rep 2014; 3:225-229. [PMID: 25798247 DOI: 10.3892/br.2014.394] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 11/14/2014] [Indexed: 12/26/2022] Open
Abstract
Our previous study revealed that serum deprivation upregulated human alkaline ceramidase 2 (haCER2) activity and mRNA in HeLa cells, but the mechanism remains unknown. In the present study, serum deprivation also upregulated haCER2 activity in HepG2 human hepatoma cell line cells due to an increase in haCER2 mRNA, in which mRNA transcription, not mRNA stability, is involved. Furthermore, p38 mitogen-activated protein kinase (MAPK)/activator protein-1 (AP-1) signaling pathway is involved in haCER2 mRNA upregulation by serum deprivation, and this mechanism may explain why haCER2 is upregulated in human liver cancer. In conclusion, p38 MAPK, AP-1 or haCER2 may be used as targets in liver cancer therapy.
Collapse
|
15
|
Zhu Q, Kang J, Miao H, Feng Y, Xiao L, Hu Z, Liao DF, Huang Y, Jin J, He S. Low-dose cytokine-induced neutral ceramidase secretion from INS-1 cells via exosomes and its anti-apoptotic effect. FEBS J 2014; 281:2861-70. [PMID: 24798654 DOI: 10.1111/febs.12826] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 04/14/2014] [Accepted: 04/28/2014] [Indexed: 12/19/2022]
Abstract
It has been reported that the effect of inflammatory cytokines on β-cell destruction in type 1 diabetes is concentration-dependent. However, the underlying mechanisms remain unclear. In the present study, we found that a high concentration of cytokines promoted apoptosis in the rat β-cell line INS-1, whereas a low concentration of cytokines had no effect. We also found that cytokines at a low concentration stimulated neutral ceramidase (NCDase) release via exosomes from INS-1 cells, whereas cytokines at a high concentration inhibited NCDase release. Furthermore, the results showed that the NCDase-containing exosomes isolated from the culture medium of INS-1 cells treated with cytokines at a low concentration inhibited apoptosis induced by a high concentration of cytokines. Finally, the results also showed that the protective action of NCDase in the exosomes on apoptosis was mediated by the generation of sphingosine 1-phosphate (S1P) and its interaction with S1P receptor 2. Taken together, these findings revealed a novel NCDase-S1P-phosphate-S1P receptor 2-dependent mechanism by which a low level of inflammatory cytokines protects pancreatic β-cells from apoptosis induced by a high level of inflammatory cytokines.
Collapse
Affiliation(s)
- Qun Zhu
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Jiangsu, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|