1
|
HDL, ApoA-I and ApoE-Mimetic Peptides: Potential Broad Spectrum Agent for Clinical Use? Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-021-10352-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
2
|
Wu J, Zhang H, Chen X, Chai J, Hu Y, Xiong W, Lu W, Tian M, Chen X, Xu X. FM-CATH, A Novel Cathelicidin From Fejervarya Multistriata, Shows Therapeutic Potential for Treatment of CLP-Induced Sepsis. Front Pharmacol 2021; 12:731056. [PMID: 34483941 PMCID: PMC8415707 DOI: 10.3389/fphar.2021.731056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022] Open
Abstract
Sepsis is an exacerbated inflammatory reaction induced by severe infection. As important defensive molecules in innate immunity, several AMPs are reported to prevent septic shock. In this study, we characterized a novel cathelicidin, FM-CATH, from the frog skin of F. multistriata. FM-CATH was found to adopt an amphipathic α-helix structural in membrane-mimetic environments and possess favorable antimicrobial effects against bacteria and fungus. In addition, it triggered the agglutination of bacteria. It could also strongly bind to LPS and LTA. Additionally, FM-CATH affected the enzymatic activities of thrombin, plasmin, β-tryptase, and tPA, leading to coagulation inhibition in vitro and in vivo. Finally, we observed that FM-CATH improved survival rate and inhibited pathological alteration, bacterial count, serum biochemistry, and pro-inflammatory cytokine expression in the cecal ligation and puncture-induced sepsis mice. Taken together, these findings suggest that FM-CATH might be served as a promising agent for the treatment of sepsis.
Collapse
Affiliation(s)
- Jiena Wu
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Haiyun Zhang
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoxin Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jinwei Chai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yunrui Hu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Weichen Xiong
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Wancheng Lu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Maolin Tian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xin Chen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xueqing Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Nankar SA, Bulani Y, Sharma SS, Pande AH. ApoE-Derived Peptides Attenuated Diabetes-Induced Oxidative Stress and Inflammation. Protein Pept Lett 2020; 27:193-200. [PMID: 31577194 DOI: 10.2174/0929866526666191002112655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Peptides derived from the apolipoproteins (apo-mimetic peptides) have emerged as a potential candidate for the treatment of various inflammatory conditions. Our previous results have shown that peptides derived from human apolipoprotein-E interact with various pro-inflammatory lipids and inhibit their inflammatory functions in cellular assays. OBJECTIVE In this study, two apoE-derived peptides were selected to investigate their antiinflammatory and anti-oxidative effects in streptozotocin-induced diabetic model of inflammation and oxidative stress. METHODS The peptides were injected intraperitoneally into the streptozotocin-induced diabetic rats and their anti-inflammatory and anti-oxidative effects were evaluated by monitoring various oxidative and inflammatory markers. RESULTS Administration of 4F, E5 and E8 peptides decreased the oxidative and inflammatory markers in STZ-induced diabetic rats to different extent, while had no significant effect on the other diabetic parameters (viz. total body weight of animals and increased blood glucose level). E5 peptide was found to be relatively more effective than 4F and E8 peptides in decreasing inflammation and oxidative stress. CONCLUSION E5 peptide can be developed as a potential candidate for inflammatory conditions.
Collapse
Affiliation(s)
- Sunil A Nankar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali - 160 062, Punjab, India
| | - Yogesh Bulani
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali - 160062, Punjab, India
| | - Shyam S Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali - 160062, Punjab, India
| | - Abhay H Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali - 160 062, Punjab, India
| |
Collapse
|
4
|
Bacterial Endotoxins and Their Role in Periparturient Diseases of Dairy Cows: Mucosal Vaccine Perspectives. DAIRY 2020. [DOI: 10.3390/dairy1010006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
During the periparturient period there is a significant increase in the incidence of multiple metabolic and infectious diseases in dairy cows. Dairy cows are fed high-grain diets immediately after calving to support production of large amounts of milk. Mounting evidence indicates these types of diets are associated with the release of high amounts of endotoxins in the rumen fluid. If infected, the udder and uterus additionally become important sources of endotoxins during the postpartum period. There is increasing evidence that endotoxins translocate from rumen, uterus, or udder into the systemic circulation and trigger chronic low-grade inflammatory conditions associated with multiple diseases including fatty liver, mastitis, retained placenta, metritis, laminitis, displaced abomasum, milk fever, and downer cow syndrome. Interestingly, endotoxin-related diseases are triggered by a bacterial component and not by a specific bacterium. This makes prevention of these type of diseases different from classical infectious diseases. Prevention of translocation of endotoxins into the host systemic circulation needs to take priority and this could be achieved with a new approach: mucosal vaccination. In this review article, we discuss all the aforementioned issues in detail and also report some of our trials with regards to mucosal vaccination of periparturient dairy cows.
Collapse
|
5
|
Huebbe P, Rimbach G. Evolution of human apolipoprotein E (APOE) isoforms: Gene structure, protein function and interaction with dietary factors. Ageing Res Rev 2017. [PMID: 28647612 DOI: 10.1016/j.arr.2017.06.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Apolipoprotein E (APOE) is a member of the vertebrate protein family of exchangeable apolipoproteins that is characterized by amphipathic α-helices encoded by multiple nucleotide tandem repeats. Its equivalent in flying insects - apolipophorin-III - shares structural and functional commonalities with APOE, suggesting the possibility of an evolutionary relationship between the proteins. In contrast to all other known species, human APOE is functionally polymorphic and possesses three major allelic variants (ε4, ε3 and ε2). The present review examines the current knowledge on APOE gene structure, phylogeny and APOE protein topology as well as its human isoforms. The ε4 allele is associated with an increased age-related disease risk but is also the ancestral form. Despite increased mortality in the elderly, ε4 has not become extinct and is the second-most common allele worldwide after ε3. APOE ε4, moreover, shows a non-random geographical distribution, and similarly, the ε2 allele is not homogenously distributed among ethnic populations. This likely suggests the existence of selective forces that are driving the evolution of human APOE isoforms, which may include differential interactions with dietary factors. To that effect, micronutrients such as vitamin D and carotenoids or dietary macronutrient composition are elucidated with respect to APOE evolution.
Collapse
Affiliation(s)
- Patricia Huebbe
- Institute of Human Nutrition and Food Science, University of Kiel, H. Rodewald Str. 6, 24118 Kiel, Germany.
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, University of Kiel, H. Rodewald Str. 6, 24118 Kiel, Germany.
| |
Collapse
|
6
|
Angeles TS, Hudkins RL. Recent advances in targeting the fatty acid biosynthetic pathway using fatty acid synthase inhibitors. Expert Opin Drug Discov 2016; 11:1187-1199. [PMID: 27701891 DOI: 10.1080/17460441.2016.1245286] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Elevated lipogenesis has been associated with a variety of diseases including obesity, cancer and nonalcoholic fatty liver disease (NAFLD). Fatty acid synthase (FASN) plays a pivotal role in de novo lipogenesis, making this multi-catalytic protein an attractive target for therapeutic intervention. Recently, the first FASN inhibitor successfully advanced through the drug development process and entered clinical evaluation in oncology. Areas covered: This review discusses the biological roles of FASN in three prominent disease areas: cancer, obesity-related disorders and NAFLD. Recent advances in drug discovery strategies and design of newer FASN inhibitors are also highlighted. Expert opinion: Despite the abundance of evidence linking the lipogenic pathway to cancer, progression of FASN-targeted molecules has been rather slow and challenging and no compounds have moved past the preclinical phase. The landscape has recently changed with the recent advancement of the first FASN inhibitor into clinical evaluation for solid tumors. Needless to say, the successful translation into the clinical setting will open opportunities for expanding the therapeutic utility of FASN inhibitors not just in oncology but in other diseases associated with elevated lipogenesis such as obesity, type 2 diabetes, and NAFLD.
Collapse
Affiliation(s)
- Thelma S Angeles
- a Discovery and Product Development , Teva Branded Pharmaceutical Products R&D, Inc ., West Chester , PA , USA
| | - Robert L Hudkins
- a Discovery and Product Development , Teva Branded Pharmaceutical Products R&D, Inc ., West Chester , PA , USA
| |
Collapse
|
7
|
Adaptive immunity against gut microbiota enhances apoE-mediated immune regulation and reduces atherosclerosis and western-diet-related inflammation. Sci Rep 2016; 6:29353. [PMID: 27383250 PMCID: PMC4935993 DOI: 10.1038/srep29353] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/16/2016] [Indexed: 01/11/2023] Open
Abstract
Common features of immune-metabolic and inflammatory diseases such as metabolic syndrome, diabetes, obesity and cardiovascular diseases are an altered gut microbiota composition and a systemic pro-inflammatory state. We demonstrate that active immunization against the outer membrane protein of bacteria present in the gut enhances local and systemic immune control via apoE-mediated immune-modulation. Reduction of western-diet-associated inflammation was obtained for more than eighteen weeks after immunization. Immunized mice had reduced serum cytokine levels, reduced insulin and fasting glucose concentrations; and gene expression in both liver and visceral adipose tissue confirmed a reduced inflammatory steady-state after immunization. Moreover, both gut and atherosclerotic plaques of immunized mice showed reduced inflammatory cells and an increased M2 macrophage fraction. These results suggest that adaptive responses directed against microbes present in our microbiota have systemic beneficial consequences and demonstrate the key role of apoE in this mechanism that could be exploited to treat immune-metabolic diseases.
Collapse
|
8
|
Nankar SA, Pande AH. Properties of apolipoprotein E derived peptide modulate their lipid-binding capacity and influence their anti-inflammatory function. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:620-9. [PMID: 24486429 DOI: 10.1016/j.bbalip.2014.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 12/07/2013] [Accepted: 01/03/2014] [Indexed: 11/28/2022]
Abstract
Apolipoprotein-derived peptides are promising candidates for the treatment of various inflammatory conditions. The beneficial effects of these peptides are based on multiple mechanisms; prominent among them being high-affinity binding to pro-inflammatory oxidized phospholipids (Ox-PLs) and facilitating their sequestration/metabolism/clearance in the body. This indicates that peptides which can bind exclusively to Ox-PLs without recognizing normal, non-oxidized phospholipids (non-Ox-PLs) will be more potent anti-inflammatory agent than that of the peptides that bind to both Ox-PLs and non-Ox-PLs. In order to develop such Ox-PL-specific peptides, the knowledge about the properties (molecular determinants) of peptides that govern their Ox-PL preference is a must. In this study we have synthesized eleven peptides corresponding to the conserved regions of human apolipoprotein E and compared their biochemical properties, lipid-binding specificities, and anti-inflammatory properties. Our results show that these peptides exhibit considerably different specificities towards non-Ox-PL and different species of Ox-PLs. Some of these peptides bind exclusively to the Ox-PLs and inhibit the pro-inflammatory function of Ox-PLs in human blood. Biochemical characterization revealed that the peptides possess substantially different properties. Our results suggest that physicochemical properties of peptides play an important role in their lipid-binding specificity.
Collapse
Affiliation(s)
- Sunil A Nankar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Abhay H Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India.
| |
Collapse
|