1
|
Quasmi MN, Kumar D, Jangra A. Effects of dietary acrylamide on kidney and liver health: Molecular mechanisms and pharmacological implications. Toxicol Rep 2025; 14:101859. [PMID: 39758802 PMCID: PMC11699442 DOI: 10.1016/j.toxrep.2024.101859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025] Open
Abstract
Acrylamide (AA) has raised concerns throughout the world in recent years because of its potential negative effects on human health. Numerous researches on humans and animals have connected a high dietary exposure to AA to a possible risk of cancer. Additionally, higher consumption of acrylamide has also been associated with dysfunctioning of various organ systems from nervous system to the reproductive system. Acrylamide is primarily metabolised into the glycidamide inside the body which gets accumulated in different tissues including kidney and liver, and chronic exposure to this can lead to the nephrotoxicity and hepatotoxicity through different molecular mechanisms. This review summarizes the various sources, formation and metabolism of the dietary acrylamide along with the different molecular mechanisms such as oxidative stress, inflammation, DNA damage, autophagy, mitochondrial dysfunction and morphological changes in nephron and hepatocytes through which acrylamide exerts its deleterious effect on kidney and liver causing nephrotoxicity and hepatotoxicity. This review summarizes various animal and cellular studies that demonstrate AA-induced nephrotoxicity and hepatotoxicity. Lastly, the article emphasizes on underlying protective molecular mechanisms of various pharmacological interventions against acrylamide induced hepatotoxicity and nephrotoxicity.
Collapse
Affiliation(s)
- Mohammed Nazish Quasmi
- Department of Pharmaceutical Sciences, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendragarh, India
| | - Dinesh Kumar
- Department of Pharmaceutical Sciences, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendragarh, India
| | - Ashok Jangra
- Department of Pharmaceutical Sciences, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendragarh, India
| |
Collapse
|
2
|
Jia N, Ganesan D, Guan H, Jeong YY, Han S, Rajapaksha G, Nissenbaum M, Kusnecov AW, Cai Q. Mitochondrial bioenergetics stimulates autophagy for pathological MAPT/Tau clearance in tauopathy neurons. Autophagy 2025; 21:54-79. [PMID: 39171695 DOI: 10.1080/15548627.2024.2392408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024] Open
Abstract
Hyperphosphorylation and aggregation of MAPT (microtubule-associated protein tau) is a pathogenic hallmark of tauopathies and a defining feature of Alzheimer disease (AD). Pathological MAPT/tau is targeted by macroautophagy/autophagy for clearance after being sequestered within autophagosomes, but autophagy dysfunction is indicated in tauopathy. While mitochondrial bioenergetic deficits have been shown to precede MAPT/tau pathology in tauopathy brains, it is unclear whether energy metabolism deficiency is involved in the pathogenesis of autophagy defects. Here, we reveal that stimulation of anaplerotic metabolism restores defective oxidative phosphorylation (OXPHOS) in tauopathy neurons which, strikingly, leads to pronounced MAPT/tau clearance by boosting autophagy functionality through enhancements of mitochondrial biosynthesis and supply of phosphatidylethanolamine for autophagosome biogenesis. Furthermore, early anaplerotic stimulation of OXPHOS elevates autophagy activity and attenuates MAPT/tau pathology, thereby counteracting memory impairment in tauopathy mice. Taken together, our study sheds light on a pivotal role of mitochondrial bioenergetic deficiency in tauopathy-related autophagy defects and suggests a new therapeutic strategy to prevent the buildup of pathological MAPT/tau in AD and other tauopathy diseases.Abbreviation: AA: antimycin A; AD, Alzheimer disease; ATP, adenosine triphosphate; AV, autophagosome/autophagic vacuole; AZ, active zone; Baf-A1: bafilomycin A1; CHX, cycloheximide; COX, cytochrome c oxidase; DIV, days in vitro; DRG, dorsal root ganglion; ETN, ethanolamine; FRET, Förster/fluorescence resonance energy transfer; FTD, frontotemporal dementia; Gln, glutamine; HA: hydroxylamine; HsMAPT/Tau, human MAPT; IMM, inner mitochondrial membrane; LAMP1, lysosomal-associated membrane protein 1; LIs, lysosomal inhibitors; MDAV, mitochondria-derived autophagic vacuole; MmMAPT/Tau, murine MAPT; NFT, neurofibrillary tangle; OCR, oxygen consumption rate; Omy: oligomycin; OXPHOS, oxidative phosphorylation; PPARGC1A/PGC-1alpha: peroxisome proliferative activated receptor, gamma, coactivator 1 alpha; PE, phosphatidylethanolamine; phospho-MAPT/tau, hyperphosphorylated MAPT; PS, phosphatidylserine; PISD, phosphatidylserine decarboxylase;SQSTM1/p62, sequestosome 1; STX1, syntaxin 1; SYP, synaptophysin; Tg, transgenic; TCA, tricarboxylic acid; TEM, transmission electron microscopy.
Collapse
Affiliation(s)
- Nuo Jia
- Department of Cell Biology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Dhasarathan Ganesan
- Department of Cell Biology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Hongyuan Guan
- Department of Cell Biology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Yu Young Jeong
- Department of Cell Biology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Sinsuk Han
- Department of Cell Biology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Gavesh Rajapaksha
- Department of Cell Biology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Marialaina Nissenbaum
- Department of Psychology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Alexander W Kusnecov
- Department of Psychology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Qian Cai
- Department of Cell Biology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
3
|
Peikert K, Spranger A, Miltenberger-Miltenyi G, Glaß H, Falkenburger B, Klose C, Tyteca D, Hermann A. Phosphatidylethanolamines are the Main Lipid Class Altered in Red Blood Cells from Patients with VPS13A Disease/Chorea-Acanthocytosis. Mov Disord 2024. [PMID: 39665525 DOI: 10.1002/mds.30086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/27/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND VPS13A disease is an ultra-rare disorder caused by loss of function mutations in VPS13A characterized by striatal degeneration and by red blood cell (RBC) acanthocytosis. VPS13A is a bridge-like protein mediating lipid transfer at membrane contact sites. OBJECTIVES To assess the lipid composition of patient-derived RBCs. METHODS RBCs collected from 5 VPS13A disease patients and 12 control subjects were analyzed by mass spectrometry (lipidomics). RESULTS While we found no significant differences in the overall lipid class level, alterations in certain species were detected: phosphatidylethanolamine species with both longer chain length and higher unsaturation were increased in VPS13A disease samples. Specific ceramide, phosphatidylcholine, and sphingomyelin species were also altered. CONCLUSIONS The presented alterations of particular lipid species in RBCs in VPS13A disease may contribute to (1) the understanding of acanthocyte formation, and (2) future biomarker identification. Lipid distribution seems to play a key role in the pathophysiology of VPS13A disease. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Kevin Peikert
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, Rostock, Germany
- United Neuroscience Campus Lund-Rostock (UNC), Rostock, Germany
| | - Adrian Spranger
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | | | - Hannes Glaß
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Björn Falkenburger
- Department of Neurology, Technische Universität Dresden, Dresden, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Dresden, Germany
| | | | | | - Andreas Hermann
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, Rostock, Germany
- United Neuroscience Campus Lund-Rostock (UNC), Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, Rostock, Germany
| |
Collapse
|
4
|
Li J, Wei Y, Wang Y, Zhang Y, Xu Y, Ma H, Ma L, Zeng Q. Metabolomics study of APETx2 post-conditioning on myocardial ischemia-reperfusion injury. Front Pharmacol 2024; 15:1470142. [PMID: 39712499 PMCID: PMC11658994 DOI: 10.3389/fphar.2024.1470142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024] Open
Abstract
Background Acid-sensing ion channels are activated during myocardial ischemia and are implicated in the mechanism of myocardial ischemia-reperfusion injury (MIRI). Acid-sensing ion channel 3 (ASIC3), the most pH-sensitive member of the ASIC family, is highly expressed in myocardial tissues. However, the role of ASIC3 in MIRI and its precise effects on the myocardial metabolome remain unclear. These unknowns might be related to the cardioprotective effects observed with APETx2 post-conditioning. Method Rat hearts subjected to Langendorff perfusion were randomly assigned to the normal (Nor) group, ischemia/reperfusion (I/R) group, ASIC3 blockade (AP) group. Rat hearts in group AP were treated with the ASIC3-specific inhibitor APETx2 (630 nM). Molecular and morphological changes were observed to elucidate the role of ASIC3 in MIRI. Bioinformatics analyses identified differential metabolites and pathways associated with APETx2 post-conditioning. Results APETx2 post-conditioning stabilized hemodynamics in the isolated rat heart model of MIRI. It also reduced myocardial infarct size, mitigated mitochondrial damage at the ultrastructural level, and improved markers of myocardial injury and oxidative stress. Further more, we observed that phosphatidylcholine, phosphatidylethanolamine, citric acid, cyanidin 5-O-beta-D-glucoside, and L-aspartic acid decreased after MIRI. The levels of these metabolites were partially restored by APETx2 post-conditioning. These metabolites are primarily involved in autophagy and endogenous cannabinoid signaling pathways. Conclusion ASIC3 is potentially a key player in MIRI. APETx2 post-conditioning may improve MIRI through specific metabolic changes. This study provides valuable data for future research on the metabolic mechanisms underlying the effects of APETx2 post-conditioning in MIRI.
Collapse
Affiliation(s)
- Jing Li
- Department of Anesthesiology, The Affiliated Baiyun Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
- School of Anesthesiology, Guizhou Medical University, Guiyang, Guizhou Province, China
- School of Anesthesiology, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Yiyong Wei
- Department of Anesthesiology, Affiliated Shenzhen Women and Children’s Hospital (Longgang) of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Shenzhen, Guangdong Province, China
| | - Yi Wang
- School of Anesthesiology, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Yue Zhang
- School of Anesthesiology, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Ying Xu
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Huanhuan Ma
- School of Anesthesiology, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Lulin Ma
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Qingfan Zeng
- Department of Anesthesiology, The Affiliated Baiyun Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
- School of Anesthesiology, Guizhou Medical University, Guiyang, Guizhou Province, China
| |
Collapse
|
5
|
Tong B, Ba Y, Li Z, Yang C, Su K, Qi H, Zhang D, Liu X, Wu Y, Chen Y, Ling J, Zhang J, Yin X, Yu P. Targeting dysregulated lipid metabolism for the treatment of Alzheimer's disease and Parkinson's disease: Current advancements and future prospects. Neurobiol Dis 2024; 196:106505. [PMID: 38642715 DOI: 10.1016/j.nbd.2024.106505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/02/2024] [Accepted: 04/14/2024] [Indexed: 04/22/2024] Open
Abstract
Alzheimer's and Parkinson's diseases are two of the most frequent neurological diseases. The clinical features of AD are memory decline and cognitive dysfunction, while PD mainly manifests as motor dysfunction such as limb tremors, muscle rigidity abnormalities, and slow gait. Abnormalities in cholesterol, sphingolipid, and glycerophospholipid metabolism have been demonstrated to directly exacerbate the progression of AD by stimulating Aβ deposition and tau protein tangles. Indirectly, abnormal lipids can increase the burden on brain vasculature, induce insulin resistance, and affect the structure of neuronal cell membranes. Abnormal lipid metabolism leads to PD through inducing accumulation of α-syn, dysfunction of mitochondria and endoplasmic reticulum, and ferroptosis. Great progress has been made in targeting lipid metabolism abnormalities for the treatment of AD and PD in recent years, like metformin, insulin, peroxisome proliferator-activated receptors (PPARs) agonists, and monoclonal antibodies targeting apolipoprotein E (ApoE). This review comprehensively summarizes the involvement of dysregulated lipid metabolism in the pathogenesis of AD and PD, the application of Lipid Monitoring, and emerging lipid regulatory drug targets. A better understanding of the lipidological bases of AD and PD may pave the way for developing effective prevention and treatment methods for neurodegenerative disorders.
Collapse
Affiliation(s)
- Bin Tong
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China; School of Ophthalmology and Optometry of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Yaoqi Ba
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China; School of Ophthalmology and Optometry of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Zhengyang Li
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China; The First Clinical Medical College of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Caidi Yang
- The First Clinical Medical College of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Kangtai Su
- The First Clinical Medical College of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Haodong Qi
- The First Clinical Medical College of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Deju Zhang
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China; Center for Clinical Precision Medicine, Jiujiang University, Jiujiang, China; Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiao Liu
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China; Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yuting Wu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Yixuan Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Jitao Ling
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Jing Zhang
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China; Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China.
| | - Xiaoping Yin
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China; Center for Clinical Precision Medicine, Jiujiang University, Jiujiang, China.
| | - Peng Yu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China.
| |
Collapse
|
6
|
Russo S, De Rasmo D, Rossi R, Signorile A, Lobasso S. SS-31 treatment ameliorates cardiac mitochondrial morphology and defective mitophagy in a murine model of Barth syndrome. Sci Rep 2024; 14:13655. [PMID: 38871974 DOI: 10.1038/s41598-024-64368-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/07/2024] [Indexed: 06/15/2024] Open
Abstract
Barth syndrome (BTHS) is a lethal rare genetic disorder, which results in cardiac dysfunction, severe skeletal muscle weakness, immune issues and growth delay. Mutations in the TAFAZZIN gene, which is responsible for the remodeling of the phospholipid cardiolipin (CL), lead to abnormalities in mitochondrial membrane, including alteration of mature CL acyl composition and the presence of monolysocardiolipin (MLCL). The dramatic increase in the MLCL/CL ratio is the hallmark of patients with BTHS, which is associated with mitochondrial bioenergetics dysfunction and altered membrane ultrastructure. There are currently no specific therapies for BTHS. Here, we showed that cardiac mitochondria isolated from TAFAZZIN knockdown (TazKD) mice presented abnormal ultrastructural membrane morphology, accumulation of vacuoles, pro-fission conditions and defective mitophagy. Interestingly, we found that in vivo treatment of TazKD mice with a CL-targeted small peptide (named SS-31) was able to restore mitochondrial morphology in tafazzin-deficient heart by affecting specific proteins involved in dynamic process and mitophagy. This agrees with our previous data showing an improvement in mitochondrial respiratory efficiency associated with increased supercomplex organization in TazKD mice under the same pharmacological treatment. Taken together our findings confirm the beneficial effect of SS-31 in the amelioration of tafazzin-deficient dysfunctional mitochondria in a BTHS animal model.
Collapse
Affiliation(s)
- Silvia Russo
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Pl. G. Cesare 11, 70124, Bari, Italy
| | - Domenico De Rasmo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM) , National Research Council (CNR), Bari, Italy
| | - Roberta Rossi
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Bari, Italy
| | - Anna Signorile
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Pl. G. Cesare 11, 70124, Bari, Italy.
| | - Simona Lobasso
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Pl. G. Cesare 11, 70124, Bari, Italy.
| |
Collapse
|
7
|
Steinmetz T, Thomas J, Reimann L, Himmelreich AK, Schulz SR, Golombek F, Castiglione K, Jäck HM, Brodesser S, Warscheid B, Mielenz D. Identification of TFG- and Autophagy-Regulated Proteins and Glycerophospholipids in B Cells. J Proteome Res 2024; 23:1615-1633. [PMID: 38649144 PMCID: PMC11077586 DOI: 10.1021/acs.jproteome.3c00713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 04/25/2024]
Abstract
Autophagy supervises the proteostasis and survival of B lymphocytic cells. Trk-fused gene (TFG) promotes autophagosome-lysosome flux in murine CH12 B cells, as well as their survival. Hence, quantitative proteomics of CH12tfgKO and WT B cells in combination with lysosomal inhibition should identify proteins that are prone to lysosomal degradation and contribute to autophagy and B cell survival. Lysosome inhibition via NH4Cl unexpectedly reduced a number of proteins but increased a large cluster of translational, ribosomal, and mitochondrial proteins, independent of TFG. Hence, we propose a role for lysosomes in ribophagy in B cells. TFG-regulated proteins include CD74, BCL10, or the immunoglobulin JCHAIN. Gene ontology (GO) analysis reveals that proteins regulated by TFG alone, or in concert with lysosomes, localize to mitochondria and membrane-bound organelles. Likewise, TFG regulates the abundance of metabolic enzymes, such as ALDOC and the fatty acid-activating enzyme ACOT9. To test consequently for a function of TFG in lipid metabolism, we performed shotgun lipidomics of glycerophospholipids. Total phosphatidylglycerol is more abundant in CH12tfgKO B cells. Several glycerophospholipid species with similar acyl side chains, such as 36:2 phosphatidylethanolamine and 36:2 phosphatidylinositol, show a dysequilibrium. We suggest a role for TFG in lipid homeostasis, mitochondrial functions, translation, and metabolism in B cells.
Collapse
Affiliation(s)
- Tobit
D. Steinmetz
- Division
of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Zentrum, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Jana Thomas
- Division
of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Zentrum, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Lena Reimann
- CIBSS
Centre for Integrative Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - Ann-Kathrin Himmelreich
- Division
of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Zentrum, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Sebastian R. Schulz
- Division
of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Zentrum, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Florian Golombek
- Chair
of Bioprocess Engineering, Technical Faculty, FAU Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Kathrin Castiglione
- Chair
of Bioprocess Engineering, Technical Faculty, FAU Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Hans-Martin Jäck
- Division
of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Zentrum, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
- FAU
Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, D-91054 Erlangen, Germany
| | - Susanne Brodesser
- Cologne
Excellence Cluster on Cellular Stress Responses in Aging-associated
Diseases (CECAD), University of Köln, D-50931 Köln, Germany
| | - Bettina Warscheid
- CIBSS
Centre for Integrative Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
- Department
of Biochemistry, Theodor Boveri-Institute, Biocenter, University of Würzburg, D-97074 Würzburg, Germany
| | - Dirk Mielenz
- Division
of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Zentrum, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
- FAU
Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, D-91054 Erlangen, Germany
| |
Collapse
|
8
|
Degli Esposti M. Did mitophagy follow the origin of mitochondria? Autophagy 2024; 20:985-993. [PMID: 38361280 PMCID: PMC11135861 DOI: 10.1080/15548627.2024.2307215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/30/2023] [Accepted: 01/13/2024] [Indexed: 02/17/2024] Open
Abstract
Mitophagy is the process of selective autophagy that removes superfluous and dysfunctional mitochondria. Mitophagy was first characterized in mammalian cells and is now recognized to follow several pathways including basal forms in specific organs. Mitophagy pathways are regulated by multiple, often interconnected factors. The present review aims to streamline this complexity and evaluate common elements that may define the evolutionary origin of mitophagy. Key issues surrounding mitophagy signaling at the mitochondrial surface may fundamentally derive from mitochondrial membrane dynamics. Elements of such membrane dynamics likely originated during the endosymbiosis of the alphaproteobacterial ancestor of our mitochondria but underwent an evolutionary leap forward in basal metazoa that determined the currently known variations in mitophagy signaling.Abbreviations: AGPAT, 1-acylglycerol-3-phosphate O-acyltransferase; ATG, autophagy related; BCL2L13, BCL2 like 13; BNIP3, BCL2 interacting protein 3; BNIP3L, BCL2 interacting protein 3 like; CALCOCO, calcium binding and coiled-coil domain; CL, cardiolipin; ER, endoplasmic reticulum; ERMES, ER-mitochondria encounter structure; FBXL4, F-box and leucine rich repeat protein 4; FUNDC1, FUN14 domain containing 1; GABARAPL1, GABA type A receptor associated protein like 1; HIF, hypoxia inducible factor; IMM, inner mitochondrial membrane; LBPA/BMP, lysobisphosphatidic acid; LIR, LC3-interacting region; LPA, lysophosphatidic acid; MAM, mitochondria-associated membranes; MAP1LC3/LC3, microtubule associated protein 1 light chain 3; MCL, monolysocardiolipin; ML, maximum likelihood; NBR1, NBR1 autophagy cargo receptor; OMM, outer mitochondrial membrane; PA, phosphatidic acid; PACS2, phosphofurin acidic cluster sorting protein 2; PC/PLC, phosphatidylcholine; PE, phosphatidylethanolamine; PHB2, prohibitin 2; PINK1, PTEN induced kinase 1; PtdIns, phosphatidylinositol; SAR, Stramenopiles, Apicomplexa and Rhizaria; TAX1BP1, Tax1 binding protein 1; ULK1, unc-51 like autophagy activating kinase 1; VDAC/porin, voltage dependent anion channel.
Collapse
Affiliation(s)
- Mauro Degli Esposti
- Center for Genomic Sciences, UNAM Campus de Morelos, Cuernavaca, Morelos, Mexico
| |
Collapse
|
9
|
Ren Q, Sun Q, Fu J. Dysfunction of autophagy in high-fat diet-induced non-alcoholic fatty liver disease. Autophagy 2024; 20:221-241. [PMID: 37700498 PMCID: PMC10813589 DOI: 10.1080/15548627.2023.2254191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/24/2023] [Indexed: 09/14/2023] Open
Abstract
ABBREVIATIONS ACOX1: acyl-CoA oxidase 1; ADH5: alcohol dehydrogenase 5 (class III), chi polypeptide; ADIPOQ: adiponectin, C1Q and collagen domain containing; ATG: autophagy related; BECN1: beclin 1; CRTC2: CREB regulated transcription coactivator 2; ER: endoplasmic reticulum; F2RL1: F2R like trypsin receptor 1; FA: fatty acid; FOXO1: forkhead box O1; GLP1R: glucagon like peptide 1 receptor; GRK2: G protein-coupled receptor kinase 2; GTPase: guanosine triphosphatase; HFD: high-fat diet; HSCs: hepatic stellate cells; HTRA2: HtrA serine peptidase 2; IRGM: immunity related GTPase M; KD: knockdown; KDM6B: lysine demethylase 6B; KO: knockout; LAMP2: lysosomal associated membrane protein 2; LAP: LC3-associated phagocytosis; LDs: lipid droplets; Li KO: liver-specific knockout; LSECs: liver sinusoidal endothelial cells; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAP3K5: mitogen-activated protein kinase kinase kinase 5; MED1: mediator complex subunit 1; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin complex 1; NAFLD: non-alcoholic fatty liver disease; NASH: non-alcoholic steatohepatitis; NFE2L2: NFE2 like bZIP transcription factor 2; NOS3: nitric oxide synthase 3; NR1H3: nuclear receptor subfamily 1 group H member 3; OA: oleic acid; OE: overexpression; OSBPL8: oxysterol binding protein like 8; PA: palmitic acid; RUBCNL: rubicon like autophagy enhancer; PLIN2: perilipin 2; PLIN3: perilipin 3; PPARA: peroxisome proliferator activated receptor alpha; PRKAA2/AMPK: protein kinase AMP-activated catalytic subunit alpha 2; RAB: member RAS oncogene family; RPTOR: regulatory associated protein of MTOR complex 1; SCD: stearoyl-CoA desaturase; SIRT1: sirtuin 1; SIRT3: sirtuin 3; SNARE: soluble N-ethylmaleimide-sensitive factor attachment protein receptor; SQSTM1/p62: sequestosome 1; SREBF1: sterol regulatory element binding transcription factor 1;SREBF2: sterol regulatory element binding transcription factor 2; STING1: stimulator of interferon response cGAMP interactor 1; STX17: syntaxin 17; TAGs: triacylglycerols; TFEB: transcription factor EB; TP53/p53: tumor protein p53; ULK1: unc-51 like autophagy activating kinase 1; VMP1: vacuole membrane protein 1.
Collapse
Affiliation(s)
- Qiannan Ren
- Department of Endocrinology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Qiming Sun
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junfen Fu
- Department of Endocrinology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
10
|
Ye J, Zhang J, Zhu Y, Wang L, Jiang X, Liu B, He G. Targeting autophagy and beyond: Deconvoluting the complexity of Beclin-1 from biological function to cancer therapy. Acta Pharm Sin B 2023; 13:4688-4714. [PMID: 38045051 PMCID: PMC10692397 DOI: 10.1016/j.apsb.2023.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/05/2023] [Accepted: 08/02/2023] [Indexed: 12/05/2023] Open
Abstract
Beclin-1 is the firstly-identified mammalian protein of the autophagy machinery, which functions as a molecular scaffold for the assembly of PI3KC3 (class III phosphatidylinositol 3 kinase) complex, thus controlling autophagy induction and other cellular trafficking events. Notably, there is mounting evidence establishing the implications of Beclin-1 in diverse tumorigenesis processes, including tumor suppression and progression as well as resistance to cancer therapeutics and CSC (cancer stem-like cell) maintenance. More importantly, Beclin-1 has been confirmed as a potential target for the treatment of multiple cancers. In this review, we provide a comprehensive survey of the structure, functions, and regulations of Beclin-1, and we discuss recent advances in understanding the controversial roles of Beclin-1 in oncology. Moreover, we focus on summarizing the targeted Beclin-1-regulating strategies in cancer therapy, providing novel insights into a promising strategy for regulating Beclin-1 to improve cancer therapeutics in the future.
Collapse
Affiliation(s)
- Jing Ye
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Zhang
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanghui Zhu
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lian Wang
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease Related Molecular Network, Chengdu 610041, China
| | - Xian Jiang
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Liu
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gu He
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease Related Molecular Network, Chengdu 610041, China
| |
Collapse
|
11
|
Sun H, Zhang J, Ye Q, Jiang T, Liu X, Zhang X, Zeng F, Li J, Zheng Y, Han X, Su C, Shi Y. LPGAT1 controls MEGDEL syndrome by coupling phosphatidylglycerol remodeling with mitochondrial transport. Cell Rep 2023; 42:113214. [PMID: 37917582 PMCID: PMC10729602 DOI: 10.1016/j.celrep.2023.113214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/21/2023] [Accepted: 09/19/2023] [Indexed: 11/04/2023] Open
Abstract
Phosphatidylglycerol (PG) is a mitochondrial phospholipid required for mitochondrial cristae structure and cardiolipin synthesis. PG must be remodeled to its mature form at the endoplasmic reticulum (ER) after mitochondrial biosynthesis to achieve its biological functions. Defective PG remodeling causes MEGDEL (non-alcohol fatty liver disease and 3-methylglutaconic aciduria with deafness, encephalopathy, and Leigh-like) syndrome through poorly defined mechanisms. Here, we identify LPGAT1, an acyltransferase that catalyzes PG remodeling, as a candidate gene for MEGDEL syndrome. We show that PG remodeling by LPGAT1 at the ER is closely coordinated with mitochondrial transport through interaction with the prohibitin/TIMM14 mitochondrial import motor. Accordingly, ablation of LPGAT1 or TIMM14 not only causes aberrant fatty acyl compositions but also ER retention of newly remodeled PG, leading to profound loss in mitochondrial crista structure and respiration. Consequently, genetic deletion of the LPGAT1 in mice leads to cardinal features of MEGDEL syndrome, including 3-methylglutaconic aciduria, deafness, dilated cardiomyopathy, and premature death, which are highly reminiscent of those caused by TIMM14 mutations in humans.
Collapse
Affiliation(s)
- Haoran Sun
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Jun Zhang
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX 78229, USA
| | - Qianqian Ye
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China; Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX 78229, USA
| | - Ting Jiang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Xueling Liu
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Xiaoyang Zhang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Fanyu Zeng
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China; Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX 78229, USA
| | - Jie Li
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Yue Zheng
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Xianlin Han
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX 78229, USA
| | - Chuan Su
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Yuguang Shi
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
12
|
Dalen KT, Li Y. Regulation of lipid droplets and cholesterol metabolism in adrenal cortical cells. VITAMINS AND HORMONES 2023; 124:79-136. [PMID: 38408810 DOI: 10.1016/bs.vh.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The adrenal gland is composed of two distinctly different endocrine moieties. The interior medulla consists of neuroendocrine chromaffin cells that secrete catecholamines like adrenaline and noradrenaline, while the exterior cortex consists of steroidogenic cortical cells that produce steroid hormones, such as mineralocorticoids (aldosterone), glucocorticoids (cortisone and cortisol) and androgens. Synthesis of steroid hormones in cortical cells requires substantial amounts of cholesterol, which is the common precursor for steroidogenesis. Cortical cells may acquire cholesterol from de novo synthesis and uptake from circulating low- and high-density lipoprotein particles (LDL and HDL). As cholesterol is part of the plasma membrane in all mammalian cells and an important regulator of membrane fluidity, cellular levels of free cholesterol are tightly regulated. To ensure a robust supply of cholesterol for steroidogenesis and to avoid cholesterol toxicity, cortical cells store large amounts of cholesterol as cholesteryl esters in intracellular lipid droplets. Cortical steroidogenesis relies on both mobilization of cholesterol from lipid droplets and constant uptake of circulating cholesterol to replenish lipid droplet stores. This chapter will describe mechanisms involved in cholesterol uptake, cholesteryl ester synthesis, lipid droplet formation, hydrolysis of stored cholesteryl esters, as well as their impact on steroidogenesis. Additionally, animal models and human diseases characterized by altered cortical cholesteryl ester storage, with or without abnormal steroidogenesis, will be discussed.
Collapse
Affiliation(s)
- Knut Tomas Dalen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway; The Norwegian Transgenic Center, Institute of Basic Medical Sciences, University of Oslo, Norway.
| | - Yuchuan Li
- Department of Hepato-Pancreato-Biliary Surgery, Institute of Clinical Medicine, University of Oslo, Norway
| |
Collapse
|
13
|
Zhang J, Liu X, Nie J, Shi Y. Restoration of mitophagy ameliorates cardiomyopathy in Barth syndrome. Autophagy 2022; 18:2134-2149. [PMID: 34985382 PMCID: PMC9466615 DOI: 10.1080/15548627.2021.2020979] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Barth syndrome (BTHS) is an X-linked genetic disorder caused by mutations in the TAFAZZIN/Taz gene which encodes a transacylase required for cardiolipin remodeling. Cardiolipin is a mitochondrial signature phospholipid that plays a pivotal role in maintaining mitochondrial membrane structure, respiration, mtDNA biogenesis, and mitophagy. Mutations in the TAFAZZIN gene deplete mature cardiolipin, leading to mitochondrial dysfunction, dilated cardiomyopathy, and premature death in BTHS patients. Currently, there is no effective treatment for this debilitating condition. In this study, we showed that TAFAZZIN deficiency caused hyperactivation of MTORC1 signaling and defective mitophagy, leading to accumulation of autophagic vacuoles and dysfunctional mitochondria in the heart of Tafazzin knockdown mice, a rodent model of BTHS. Consequently, treatment of TAFAZZIN knockdown mice with rapamycin, a potent inhibitor of MTORC1, not only restored mitophagy, but also mitigated mitochondrial dysfunction and dilated cardiomyopathy. Taken together, these findings identify MTORC1 as a novel therapeutic target for BTHS, suggesting that pharmacological restoration of mitophagy may provide a novel treatment for BTHS.Abbreviations: BTHS: Barth syndrome; CCCP: carbonyl cyanide 3-chlorophenylhydrazone; CL: cardiolipin; EIF4EBP1/4E-BP1: eukaryotic translation initiation factor 4E binding protein 1; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; KD: knockdown; KO: knockout; LAMP1: lysosomal-associated membrane protein 1; LV: left ventricle; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MEFs: mouse embryonic fibroblasts; MTORC1: mechanistic target of rapamycin kinase complex 1; OCR: oxygen consumption rate; PE: phosphatidylethanolamine; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PINK1: PTEN induced putative kinase 1; PRKN/Parkin: parkin RBR E3 ubiquitin protein ligase; qRT-PCR: quantitative real-time polymerase chain reaction; RPS6KB/S6K: ribosomal protein S6 kinase beta; SQSTM1/p62: sequestosome 1; TLCL: tetralinoleoyl cardiolipin; WT: wild-type.
Collapse
Affiliation(s)
- Jun Zhang
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Xueling Liu
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jia Nie
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yuguang Shi
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, People’s Republic of China,CONTACT Yuguang Shi Joe R. & Teresa Lozano Long Distinguished Chair in Metabolic Biology, Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center, San Antonio 4939 Charles Katz Drive, San Antonio, TX78229, USA
| |
Collapse
|
14
|
Navarro-Lérida I, Aragay AM, Asensio A, Ribas C. Gq Signaling in Autophagy Control: Between Chemical and Mechanical Cues. Antioxidants (Basel) 2022; 11:1599. [PMID: 36009317 PMCID: PMC9405508 DOI: 10.3390/antiox11081599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
All processes in human physiology relies on homeostatic mechanisms which require the activation of specific control circuits to adapt the changes imposed by external stimuli. One of the critical modulators of homeostatic balance is autophagy, a catabolic process that is responsible of the destruction of long-lived proteins and organelles through a lysosome degradative pathway. Identification of the mechanism underlying autophagic flux is considered of great importance as both protective and detrimental functions are linked with deregulated autophagy. At the mechanistic and regulatory levels, autophagy is activated in response to diverse stress conditions (food deprivation, hyperthermia and hypoxia), even a novel perspective highlight the potential role of physical forces in autophagy modulation. To understand the crosstalk between all these controlling mechanisms could give us new clues about the specific contribution of autophagy in a wide range of diseases including vascular disorders, inflammation and cancer. Of note, any homeostatic control critically depends in at least two additional and poorly studied interdependent components: a receptor and its downstream effectors. Addressing the selective receptors involved in autophagy regulation is an open question and represents a new area of research in this field. G-protein coupled receptors (GPCRs) represent one of the largest and druggable targets membrane receptor protein superfamily. By exerting their action through G proteins, GPCRs play fundamental roles in the control of cellular homeostasis. Novel studies have shown Gαq, a subunit of heterotrimeric G proteins, as a core modulator of mTORC1 and autophagy, suggesting a fundamental contribution of Gαq-coupled GPCRs mechanisms in the control of this homeostatic feedback loop. To address how GPCR-G proteins machinery integrates the response to different stresses including oxidative conditions and mechanical stimuli, could provide deeper insight into new signaling pathways and open potential and novel therapeutic strategies in the modulation of different pathological conditions.
Collapse
Affiliation(s)
- Inmaculada Navarro-Lérida
- Molecular Biology Department and Center of Molecular Biology “Severo Ochoa”, CSIC-UAM, 28049 Madrid, Spain
- Health Research Institute “La Princesa”, 28006 Madrid, Spain
- Center for Biomedical Research in Cardiovascular Diseases Network (CIBERCV), ISCIII, 28029 Madrid, Spain
- Connexion Cancer-CSIC, 28006 Madrid, Spain
| | - Anna M. Aragay
- Department of Biology, Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), 08028 Barcelona, Spain
| | - Alejandro Asensio
- Molecular Biology Department and Center of Molecular Biology “Severo Ochoa”, CSIC-UAM, 28049 Madrid, Spain
- Health Research Institute “La Princesa”, 28006 Madrid, Spain
- Center for Biomedical Research in Cardiovascular Diseases Network (CIBERCV), ISCIII, 28029 Madrid, Spain
- Connexion Cancer-CSIC, 28006 Madrid, Spain
| | - Catalina Ribas
- Molecular Biology Department and Center of Molecular Biology “Severo Ochoa”, CSIC-UAM, 28049 Madrid, Spain
- Health Research Institute “La Princesa”, 28006 Madrid, Spain
- Center for Biomedical Research in Cardiovascular Diseases Network (CIBERCV), ISCIII, 28029 Madrid, Spain
- Connexion Cancer-CSIC, 28006 Madrid, Spain
| |
Collapse
|
15
|
Liu X, Zhang J, Li J, Song C, Shi Y. Pharmacological Inhibition of ALCAT1 Mitigates Amyotrophic Lateral Sclerosis by Attenuating SOD1 Protein Aggregation. Mol Metab 2022; 63:101536. [PMID: 35772643 PMCID: PMC9287437 DOI: 10.1016/j.molmet.2022.101536] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/11/2022] Open
Abstract
Objective Mutations in the copper-zinc superoxide dismutase (SOD1) gene cause familial amyotrophic lateral sclerosis (ALS), a progressive fatal neuromuscular disease characterized by motor neurons death and severe skeletal muscle degeneration. However, there is no effective treatment for this debilitating disease, since the underlying cause for the pathogenesis remains poorly understood. Here, we investigated a role of acyl-CoA:lysocardiolipin acyltransferase 1 (ALCAT1), an acyltransferase that promotes mitochondrial dysfunction in age-related diseases by catalyzing pathological remodeling of cardiolipin, in promoting the development of ALS in the SOD1G93A transgenic mice. Methods Using SOD1G93A transgenic mice with targeted deletion of the ALCAT1 gene and treated with Dafaglitapin (Dafa), a very potent and highly selective ALCAT1 inhibitor, we determined whether ablation or pharmaceutical inhibition of ALCAT1 by Dafa would mitigate ALS and the underlying pathogenesis by preventing pathological remodeling of cardiolipin, oxidative stress, and mitochondrial dysfunction by multiple approaches, including lifespan analysis, behavioral tests, morphological and functional analysis of skeletal muscle, electron microscopic and Seahorse analysis of mitochondrial morphology and respiration, western blot analysis of the SOD1G93A protein aggregation, and lipidomic analysis of cardiolipin content and acyl composition in mice spinal cord. Results ALCAT1 protein expression is potently upregulated in the skeletal muscle of the SOD1G93A mice. Consequently, ablation or pharmacological inhibition of ALCAT1 by Dafa attenuates motor neuron dysfunction, neuronal inflammation, and skeletal muscle atrophy in SOD1G93A mice by preventing SOD1G93A protein aggregation, mitochondrial dysfunction, and pathological CL remodeling, leading to moderate extension of lifespan in the SOD1G93A transgenic mice. Conclusions ALCAT1 promotes the development of ALS by linking SOD1G93A protein aggregation to mitochondrial dysfunction, implicating Dafa as a potential treatment for this debilitating disorder. ALCAT1 is potently upregulated in the skeletal muscle of SOD1G93A mice, a mouse model of amyotrophic lateral sclerosis. Upregulated ALCAT1 promotes SOD1G93A protein aggregation through oxidative stress and pathological cardiolipin remodeling. Inactivation of ALCAT1 attenuates neuronal mitochondrial dysfunction and extends the lifespan of SOD1G93A mice. Targeting ALCAT1 as a potential strategy for the treatment of amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Xueling Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China; Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jun Zhang
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jie Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Chengjie Song
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yuguang Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China; Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
16
|
Zhang J, Shi Y. In Search of the Holy Grail: Toward a Unified Hypothesis on Mitochondrial Dysfunction in Age-Related Diseases. Cells 2022; 11:cells11121906. [PMID: 35741033 PMCID: PMC9221202 DOI: 10.3390/cells11121906] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 12/15/2022] Open
Abstract
Cardiolipin (CL) is a mitochondrial signature phospholipid that plays a pivotal role in mitochondrial dynamics, membrane structure, oxidative phosphorylation, mtDNA bioenergetics, and mitophagy. The depletion or abnormal acyl composition of CL causes mitochondrial dysfunction, which is implicated in the pathogenesis of aging and age-related disorders. However, the molecular mechanisms by which mitochondrial dysfunction causes age-related diseases remain poorly understood. Recent development in the field has identified acyl-CoA:lysocardiolipin acyltransferase 1 (ALCAT1), an acyltransferase upregulated by oxidative stress, as a key enzyme that promotes mitochondrial dysfunction in age-related diseases. ALCAT1 catalyzes CL remodeling with very-long-chain polyunsaturated fatty acids, such as docosahexaenoic acid (DHA). Enrichment of DHA renders CL highly sensitive to oxidative damage by reactive oxygen species (ROS). Oxidized CL becomes a new source of ROS in the form of lipid peroxides, leading to a vicious cycle of oxidative stress, CL depletion, and mitochondrial dysfunction. Consequently, ablation or the pharmacological inhibition of ALCAT1 have been shown to mitigate obesity, type 2 diabetes, heart failure, cardiomyopathy, fatty liver diseases, neurodegenerative diseases, and cancer. The findings suggest that age-related disorders are one disease (aging) manifested by different mitochondrion-sensitive tissues, and therefore should be treated as one disease. This review will discuss a unified hypothesis on CL remodeling by ALCAT1 as the common denominator of mitochondrial dysfunction, linking mitochondrial dysfunction to the development of age-related diseases.
Collapse
Affiliation(s)
| | - Yuguang Shi
- Correspondence: ; Tel.: +1-210-450-1363; Fax: +1-210-562-6150
| |
Collapse
|
17
|
Liu YJ, Hounye AH, Wang Z, Liu X, Yi J, Qi M. Identification and Validation of Three Autophagy-Related Long Noncoding RNAs as Prognostic Signature in Cholangiocarcinoma. Front Oncol 2021; 11:780601. [PMID: 34926294 PMCID: PMC8674813 DOI: 10.3389/fonc.2021.780601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Cholangiocarcinoma (CCA) is featured by common occurrence and poor prognosis. Autophagy is a biological process that has been extensively involved in the progression of tumors. Long noncoding RNAs (lncRNAs) have been discovered to be critical in diagnosing and predicting various tumors. It may be valuable to elaborate autophagy-related lncRNAs (ARlncRNAs) in CCA, and indeed, there are still few studies concerning the role of ARlncRNAs in CCA. Here, a prognostic ARlncRNA signature was constructed to predict the survival outcome of CCA patients. Through identification, three differentially expressed ARlncRNAs (DEARlncRNAs), including CHRM3.AS2, MIR205HG, and LINC00661, were screened and were considered predictive signatures. Furthermore, the overall survival (OS) of patients with high-risk scores was significantly lower than that of patients with low scores. Interestingly, the risk score was an independent factor for the OS of patients with CCA. Moreover, receiver operating characteristic (ROC) curve analysis showed that the screened and constructed prognosis signature for 1 year (AUC = 0.884), 3 years (AUC =0.759), and 5 years (AUC = 0.788) presented a high score of accuracy in predicting OS of CCA patients. Gene set enrichment analysis (GSEA) revealed that the three DEARlncRNAs were significantly enriched in CCA-related signaling pathways, including “pathways of basal cell carcinoma”, “glycerolipid metabolism”, etc. Quantitative real-time PCR (qRT-PCR) showed that expressions of CHRM3.AS2, MIR205HG, and LINC00661 were higher in CCA tissues than those in normal tissues, similar to the trends detected in the CCA dataset. Furthermore, Pearson’s analysis reported an intimate correlation of the risk score with immune cell infiltration, indicating a predictive value of the signature for the efficacy of immunotherapy. In addition, the screened lncRNAs were found to have the ability to modulate the expression of mRNAs by interacting with miRNAs based on the established lncRNA-miRNA-mRNA network. In conclusion, our study develops a novel nomogram with good reliability and accuracy to predict the OS of CCA patients, providing a significant guiding value for developing tailored therapy for CCA patients.
Collapse
Affiliation(s)
- Ya Jun Liu
- Department of Gastroenterology, Xiangya Hospital Central South University, Changsha, China
| | | | - Zheng Wang
- School of Mathematics and Statistics, Central South University, Changsha, China.,Information Science and Engineering School, Hunan First Normal University, Changsha, China
| | - Xiaowei Liu
- Department of Gastroenterology, Xiangya Hospital Central South University, Changsha, China
| | - Jun Yi
- Department of Gastroenterology, Xiangya Hospital Central South University, Changsha, China
| | - Min Qi
- Department of Plastic Surgery, Xiangya Hospital Central South University, Changsha, China
| |
Collapse
|
18
|
Dai Y, Tang H, Pang S. The Crucial Roles of Phospholipids in Aging and Lifespan Regulation. Front Physiol 2021; 12:775648. [PMID: 34887779 PMCID: PMC8650052 DOI: 10.3389/fphys.2021.775648] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/19/2021] [Indexed: 01/04/2023] Open
Abstract
Phospholipids are major membrane lipids that consist of lipid bilayers. This basic cellular structure acts as a barrier to protect the cell against various environmental insults and more importantly, enables multiple cellular processes to occur in subcellular compartments. Numerous studies have linked the complexity of membrane lipids to signal transductions, organelle functions, as well as physiological processes, and human diseases. Recently, crucial roles for membrane lipids in the aging process are beginning to emerge. In this study, we summarized current advances in our understanding of the relationship between membrane lipids and aging with an emphasis on phospholipid species. We surveyed how major phospholipid species change with age in different organisms and tissues, and some common patterns of membrane lipid change during aging were proposed. Further, the functions of different phospholipid molecules in regulating healthspan and lifespan, as well as their potential mechanisms of action, were also discussed.
Collapse
Affiliation(s)
- Yucan Dai
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Haiqing Tang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Shanshan Pang
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
19
|
Iriondo MN, Etxaniz A, Antón Z, Montes LR, Alonso A. Molecular and mesoscopic geometries in autophagosome generation. A review. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183731. [PMID: 34419487 DOI: 10.1016/j.bbamem.2021.183731] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 01/18/2023]
Abstract
Autophagy is an essential process in cell self-repair and survival. The centre of the autophagic event is the generation of the so-called autophagosome (AP), a vesicle surrounded by a double membrane (two bilayers). The AP delivers its cargo to a lysosome, for degradation and re-use of the hydrolysis products as new building blocks. AP formation is a very complex event, requiring dozens of specific proteins, and involving numerous instances of membrane biogenesis and architecture, including membrane fusion and fission. Many stages of AP generation can be rationalised in terms of curvature, both the molecular geometry of lipids interpreted in terms of 'intrinsic curvature', and the overall mesoscopic curvature of the whole membrane, as observed with microscopy techniques. The present contribution intends to bring together the worlds of biophysics and cell biology of autophagy, in the hope that the resulting cross-pollination will generate abundant fruit.
Collapse
Affiliation(s)
- Marina N Iriondo
- Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, 48940 Leioa, Spain
| | - Asier Etxaniz
- Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, 48940 Leioa, Spain
| | - Zuriñe Antón
- Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, 48940 Leioa, Spain
| | - L Ruth Montes
- Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, 48940 Leioa, Spain
| | - Alicia Alonso
- Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, 48940 Leioa, Spain.
| |
Collapse
|
20
|
Lavrova AV, Gretskaya NM, Bezuglov VV. Role of Oxidative Stress in the Etiology of Parkinson’s Disease: Advanced Therapeutic Products. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021050307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Hassanpour M, Cheraghi O, Rahbarghazi R, Nouri M. Autophagy stimulation delayed biological aging and decreased cardiac differentiation in rabbit mesenchymal stem cells. J Cardiovasc Thorac Res 2021; 13:234-240. [PMID: 34630972 PMCID: PMC8493233 DOI: 10.34172/jcvtr.2021.43] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/18/2021] [Indexed: 12/02/2022] Open
Abstract
Introduction: Cardiovascular disease (CVD) is a type of disease that affects the function of cardiac-vascular tissues. This study aimed to consider the possible effects of autophagy, as an intrinsic catabolic pathway of cells, on the differentiation and aging process of mesenchymal stem cells (MSCs). Methods: In this study, bone marrow-derived MSCs were obtained from rabbit bone marrow aspirates. The stemness feature was confirmed by using flow cytometry analysis Cells at passage three were treated with 50 μM Metformin and 15μM hydroxychloroquine (HCQ) for 72 hours. The intracellular accumulation of autophagolysosomes was imaged using LysoTracker staining. Protein levels of autophagy (LC3II/I ratio), aging (Klotho, PARP-1, and Sirt-1) effectors, and cardiomyocyte-like phenotype (α-actinin) were studied by western blotting. Results: Based on our findings, flow cytometry analysis showed that the obtained cells expressed CD44 and CD133 strongly, and CD31 and CD34 dimly, showing a typical characteristic of MSCs. Our data confirmed an increased LC3II/I ratio in the metformin-received group compared to the untreated and HCQ-treated cells (P < 0.05). Besides, we showed that the incubation of rabbit MSCs with HCQ increased cellular aging by induction of PARP-1 while Metformin increased rejuvenating factor Sirt-1 comparing with the normal group (P < 0.05). Western blotting data showed that the autophagy stimulation response in rabbit MSCs postponed the biological aging and decreased the differentiation potential to the cardiac cells by diminishing α-actinin comparing with control cells (P < 0.05). Conclusion: In summary, for the informants in this study, it could be noted that autophagy inhibition/stimulation could alter rabbit MSCs aging and differentiation capacity.
Collapse
Affiliation(s)
- Mehdi Hassanpour
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Omid Cheraghi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Reza Rahbarghazi
- Department of Applied Cell Science, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Yan Y, Zhou Y, Li J, Zheng Z, Hu Y, Li L, Wu W. Sulforaphane downregulated fatty acid synthase and inhibited microtubule-mediated mitophagy leading to apoptosis. Cell Death Dis 2021; 12:917. [PMID: 34620841 PMCID: PMC8497537 DOI: 10.1038/s41419-021-04198-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/29/2021] [Accepted: 09/17/2021] [Indexed: 12/19/2022]
Abstract
We previously demonstrated that sulforaphane (SFN) inhibited autophagy leading to apoptosis in human non-small cell lung cancer (NSCLC) cells, but the underlying subcellular mechanisms were unknown. Hereby, high-performance liquid chromatography-tandem mass spectrometry uncovered that SFN regulated the production of lipoproteins, and microtubule- and autophagy-associated proteins. Further, highly expressed fatty acid synthase (FASN) contributed to cancer malignancy and poor prognosis. Results showed that SFN depolymerized microtubules, downregulated FASN, and decreased its binding to α-tubulin; SFN downregulated FASN, acetyl CoA carboxylase (ACACA), and ATP citrate lyase (ACLY) via activating proteasomes and downregulating transcriptional factor SREBP1; SFN inhibited the interactions among α-tubulin and FASN, ACACA, and ACLY; SFN decreased the amount of intracellular fatty acid (FA) and mitochondrial phospholipids; and knockdown of FASN decreased mitochondrial membrane potential (ΔΨm) and increased reactive oxygen species, mitochondrial abnormality, and apoptosis. Further, SFN downregulated mitophagy-associated proteins Bnip3 and NIX, and upregulated mitochondrial LC3 II/I. Transmission electron microscopy showed mitochondrial abnormality and accumulation of mitophagosomes in response to SFN. Combined with mitophagy inducer CCCP or autophagosome–lysosome fusion inhibitor Bafilomycin A1, we found that SFN inhibited mitophagosome–lysosome fusion leading to mitophagosome accumulation. SFN reduced the interaction between NIX and LC3 II/I, and reversed CCCP-caused FA increase. Furthermore, knockdown of α-tubulin downregulated NIX and BNIP3 production, and upregulated LC3 II/I. Besides, SFN reduced the interaction and colocalization between α-tubulin and NIX. Thus, SFN might cause apoptosis via inhibiting microtubule-mediated mitophagy. These results might give us a new insight into the mechanisms of SFN-caused apoptosis in the subcellular level.
Collapse
Affiliation(s)
- Yuting Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Tumor Invasion and Metastasis, Beijing, China.,State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Beijing, 100037, China
| | - Yan Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Tumor Invasion and Metastasis, Beijing, China
| | - Juntao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Tumor Invasion and Metastasis, Beijing, China
| | - Zhongnan Zheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Tumor Invasion and Metastasis, Beijing, China
| | - Yabin Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Tumor Invasion and Metastasis, Beijing, China
| | - Lei Li
- Central Laboratory, Capital Medical University, Beijing, China.,Capital Medical University, No. 10, Xitoutiao, Beijing, 100069, China
| | - Wei Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China. .,Beijing Key Laboratory for Tumor Invasion and Metastasis, Beijing, China.
| |
Collapse
|
23
|
Jia D, Zhang J, Nie J, Andersen JP, Rendon S, Zheng Y, Liu X, Tian Z, Shi Y. Cardiolipin remodeling by ALCAT1 links hypoxia to coronary artery disease by promoting mitochondrial dysfunction. Mol Ther 2021; 29:3498-3511. [PMID: 34111561 DOI: 10.1016/j.ymthe.2021.06.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/30/2021] [Accepted: 06/01/2021] [Indexed: 11/26/2022] Open
Abstract
Cardiolipin is a mitochondrial signature phospholipid that plays a pivotal role in maintaining cardiac health. A loss of tetralinoleoyl cardiolipin (TLCL), the predominant cardiolipin species in the healthy mammalian heart, is implicated in the pathogenesis of coronary heart disease (CHD) through poorly defined mechanisms. Here, we identified acyl-coenzyme A:lysocardiolipin acyltransferase-1 (ALCAT1) as the missing link between hypoxia and CHD in an animal model of myocardial infarction (MI). ALCAT1 is an acyltransferase that promotes mitochondrial dysfunction in aging-related diseases by catalyzing pathological remodeling of cardiolipin. In support of a causative role of ALCAT1 in CHD, we showed that ALCAT1 expression was potently upregulated by MI, linking myocardial hypoxia to oxidative stress, TLCL depletion, and mitochondrial dysfunction. Accordingly, ablation of the ALCAT1 gene or pharmacological inhibition of the ALCAT1 enzyme by Dafaglitapin (Dafa), a potent and highly specific ALCAT1 inhibitor, not only restored TLCL levels but also mitochondrial respiration by attenuating signal transduction pathways mediated by hypoxia-inducible factor 1α (HIF-1α). Consequently, ablation or pharmacological inhibition of ALCAT1 by Dafa effectively mitigated CHD and its underlying pathogenesis, including dilated cardiomyopathy, left ventricle dysfunction, myocardial inflammation, fibrosis, and apoptosis. Together, the findings have provided the first proof-of-concept studies for targeting ALCAT1 as an effective treatment for CHD.
Collapse
Affiliation(s)
- Dandan Jia
- Institute of Sports and Exercise Biology, School of Physical Education, Shaanxi Normal University, Xi'an, Shaanxi 710119, China; Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Dr., San Antonio, TX 78229, USA
| | - Jun Zhang
- Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Dr., San Antonio, TX 78229, USA; Perenna Pharmaceuticals, Inc., 14785 Omicron Drive, San Antonio, TX 78245, USA
| | - Jia Nie
- Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Dr., San Antonio, TX 78229, USA
| | - John-Paul Andersen
- Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Dr., San Antonio, TX 78229, USA
| | - Samantha Rendon
- Perenna Pharmaceuticals, Inc., 14785 Omicron Drive, San Antonio, TX 78245, USA
| | - Yue Zheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Xueling Liu
- Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Dr., San Antonio, TX 78229, USA; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Zhenjun Tian
- Institute of Sports and Exercise Biology, School of Physical Education, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| | - Yuguang Shi
- Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Dr., San Antonio, TX 78229, USA; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
24
|
Ramos VDM, Kowaltowski AJ, Kakimoto PA. Autophagy in Hepatic Steatosis: A Structured Review. Front Cell Dev Biol 2021; 9:657389. [PMID: 33937257 PMCID: PMC8081956 DOI: 10.3389/fcell.2021.657389] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/16/2021] [Indexed: 01/18/2023] Open
Abstract
Steatosis is the accumulation of neutral lipids in the cytoplasm. In the liver, it is associated with overeating and a sedentary lifestyle, but may also be a result of xenobiotic toxicity and genetics. Non-alcoholic fatty liver disease (NAFLD) defines an array of liver conditions varying from simple steatosis to inflammation and fibrosis. Over the last years, autophagic processes have been shown to be directly associated with the development and progression of these conditions. However, the precise role of autophagy in steatosis development is still unclear. Specifically, autophagy is necessary for the regulation of basic metabolism in hepatocytes, such as glycogenolysis and gluconeogenesis, response to insulin and glucagon signaling, and cellular responses to free amino acid contents. Also, genetic knockout models for autophagy-related proteins suggest a critical relationship between autophagy and hepatic lipid metabolism, but some results are still ambiguous. While autophagy may seem necessary to support lipid oxidation in some contexts, other evidence suggests that autophagic activity can lead to lipid accumulation instead. This structured literature review aims to critically discuss, compare, and organize results over the last 10 years regarding rodent steatosis models that measured several autophagy markers, with genetic and pharmacological interventions that may help elucidate the molecular mechanisms involved.
Collapse
Affiliation(s)
| | | | - Pamela A. Kakimoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
25
|
Maresca A, Carelli V. Molecular Mechanisms behind Inherited Neurodegeneration of the Optic Nerve. Biomolecules 2021; 11:496. [PMID: 33806088 PMCID: PMC8064499 DOI: 10.3390/biom11040496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 01/01/2023] Open
Abstract
Inherited neurodegeneration of the optic nerve is a paradigm in neurology, as many forms of isolated or syndromic optic atrophy are encountered in clinical practice. The retinal ganglion cells originate the axons that form the optic nerve. They are particularly vulnerable to mitochondrial dysfunction, as they present a peculiar cellular architecture, with axons that are not myelinated for a long intra-retinal segment, thus, very energy dependent. The genetic landscape of causative mutations and genes greatly enlarged in the last decade, pointing to common pathways. These mostly imply mitochondrial dysfunction, which leads to a similar outcome in terms of neurodegeneration. We here critically review these pathways, which include (1) complex I-related oxidative phosphorylation (OXPHOS) dysfunction, (2) mitochondrial dynamics, and (3) endoplasmic reticulum-mitochondrial inter-organellar crosstalk. These major pathogenic mechanisms are in turn interconnected and represent the target for therapeutic strategies. Thus, their deep understanding is the basis to set and test new effective therapies, an urgent unmet need for these patients. New tools are now available to capture all interlinked mechanistic intricacies for the pathogenesis of optic nerve neurodegeneration, casting hope for innovative therapies to be rapidly transferred into the clinic and effectively cure inherited optic neuropathies.
Collapse
Affiliation(s)
- Alessandra Maresca
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, 40139 Bologna, Italy;
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, 40139 Bologna, Italy;
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40139 Bologna, Italy
| |
Collapse
|
26
|
Zimmermann A, Madreiter-Sokolowski C, Stryeck S, Abdellatif M. Targeting the Mitochondria-Proteostasis Axis to Delay Aging. Front Cell Dev Biol 2021; 9:656201. [PMID: 33777963 PMCID: PMC7991595 DOI: 10.3389/fcell.2021.656201] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/22/2021] [Indexed: 01/18/2023] Open
Abstract
Human life expectancy continues to grow globally, and so does the prevalence of age-related chronic diseases, causing a huge medical and economic burden on society. Effective therapeutic options for these disorders are scarce, and even if available, are typically limited to a single comorbidity in a multifaceted dysfunction that inevitably affects all organ systems. Thus, novel therapies that target fundamental processes of aging itself are desperately needed. In this article, we summarize current strategies that successfully delay aging and related diseases by targeting mitochondria and protein homeostasis. In particular, we focus on autophagy, as a fundamental proteostatic process that is intimately linked to mitochondrial quality control. We present genetic and pharmacological interventions that effectively extend health- and life-span by acting on specific mitochondrial and pro-autophagic molecular targets. In the end, we delve into the crosstalk between autophagy and mitochondria, in what we refer to as the mitochondria-proteostasis axis, and explore the prospect of targeting this crosstalk to harness maximal therapeutic potential of anti-aging interventions.
Collapse
Affiliation(s)
- Andreas Zimmermann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.,Field of Excellence BioHealth - University of Graz, Graz, Austria
| | | | - Sarah Stryeck
- Institute of Interactive Systems and Data Science, Graz University of Technology, Graz, Austria
| | - Mahmoud Abdellatif
- Department of Cardiology, Medical University of Graz, Graz, Austria.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.,Centre de Recherche des Cordeliers, Equipe Labellisée Par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
| |
Collapse
|
27
|
Bennett JP, Onyango IG. Energy, Entropy and Quantum Tunneling of Protons and Electrons in Brain Mitochondria: Relation to Mitochondrial Impairment in Aging-Related Human Brain Diseases and Therapeutic Measures. Biomedicines 2021; 9:225. [PMID: 33671585 PMCID: PMC7927033 DOI: 10.3390/biomedicines9020225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 11/16/2022] Open
Abstract
Adult human brains consume a disproportionate amount of energy substrates (2-3% of body weight; 20-25% of total glucose and oxygen). Adenosine triphosphate (ATP) is a universal energy currency in brains and is produced by oxidative phosphorylation (OXPHOS) using ATP synthase, a nano-rotor powered by the proton gradient generated from proton-coupled electron transfer (PCET) in the multi-complex electron transport chain (ETC). ETC catalysis rates are reduced in brains from humans with neurodegenerative diseases (NDDs). Declines of ETC function in NDDs may result from combinations of nitrative stress (NS)-oxidative stress (OS) damage; mitochondrial and/or nuclear genomic mutations of ETC/OXPHOS genes; epigenetic modifications of ETC/OXPHOS genes; or defects in importation or assembly of ETC/OXPHOS proteins or complexes, respectively; or alterations in mitochondrial dynamics (fusion, fission, mitophagy). Substantial free energy is gained by direct O2-mediated oxidation of NADH. Traditional ETC mechanisms require separation between O2 and electrons flowing from NADH/FADH2 through the ETC. Quantum tunneling of electrons and much larger protons may facilitate this separation. Neuronal death may be viewed as a local increase in entropy requiring constant energy input to avoid. The ATP requirement of the brain may partially be used for avoidance of local entropy increase. Mitochondrial therapeutics seeks to correct deficiencies in ETC and OXPHOS.
Collapse
Affiliation(s)
| | - Isaac G. Onyango
- International Clinical Research Center, St. Anne’s University Hospital, CZ-65691 Brno, Czech Republic;
| |
Collapse
|
28
|
Li Y, Khanal P, Norheim F, Hjorth M, Bjellaas T, Drevon CA, Vaage J, Kimmel AR, Dalen KT. Plin2 deletion increases cholesteryl ester lipid droplet content and disturbs cholesterol balance in adrenal cortex. J Lipid Res 2021; 62:100048. [PMID: 33582145 PMCID: PMC8044703 DOI: 10.1016/j.jlr.2021.100048] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 12/21/2022] Open
Abstract
Cholesteryl esters (CEs) are the water-insoluble transport and storage form of cholesterol. Steroidogenic cells primarily store CEs in cytoplasmic lipid droplet (LD) organelles, as contrasted to the majority of mammalian cell types that predominantly store triacylglycerol (TAG) in LDs. The LD-binding Plin2 binds to both CE- and TAG-rich LDs, and although Plin2 is known to regulate degradation of TAG-rich LDs, its role for regulation of CE-rich LDs is unclear. To investigate the role of Plin2 in the regulation of CE-rich LDs, we performed histological and molecular characterization of adrenal glands from Plin2+/+ and Plin2-/- mice. Adrenal glands of Plin2-/- mice had significantly enlarged organ size, increased size and numbers of CE-rich LDs in cortical cells, elevated cellular unesterified cholesterol levels, and increased expression of macrophage markers and genes facilitating reverse cholesterol transport. Despite altered LD storage, mobilization of adrenal LDs and secretion of corticosterone induced by adrenocorticotropic hormone stimulation or starvation were similar in Plin2+/+ and Plin2-/- mice. Plin2-/- adrenals accumulated ceroid-like structures rich in multilamellar bodies in the adrenal cortex-medulla boundary, which increased with age, particularly in females. Finally, Plin2-/- mice displayed unexpectedly high levels of phosphatidylglycerols, which directly paralleled the accumulation of these ceroid-like structures. Our findings demonstrate an important role of Plin2 for regulation of CE-rich LDs and cellular cholesterol balance in the adrenal cortex.
Collapse
Affiliation(s)
- Yuchuan Li
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Prabhat Khanal
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway; Faculty of Biosciences and Aquaculture, Nord University, Steinkjer, Norway
| | - Frode Norheim
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marit Hjorth
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - Christian A Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway; VITAS AS, Oslo, Norway
| | - Jarle Vaage
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Research and Development, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
| | - Alan R Kimmel
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD, USA
| | - Knut Tomas Dalen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway; The Norwegian Transgenic Center, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
29
|
Song D, Xu C, Holck AL, Liu R. Acrylamide inhibits autophagy, induces apoptosis and alters cellular metabolic profiles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111543. [PMID: 33396091 DOI: 10.1016/j.ecoenv.2020.111543] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 06/12/2023]
Abstract
Acrylamide (ACR) is generated during thermal processing of carbohydrate-rich foods at high temperature and can directly enter the body through ingestion, inhalation and skin contact. The toxicity of ACR has been widely studied. The main results of these studies show that exposure to ACR can cause neurotoxicity in both animals and humans, and show reproductive toxicity and carcinogenicity in rodent animal models. However, the mechanism of toxicity of ACR has not been studied by metabolomics approaches, and the effect of ACR on autophagy remains unknown. Here, U2OS cell were treated with ACR 6 and 24 h and collected for further study. We have demonstrated that ACR inhibited autophagic flux, and increased ROS content. Accumulation of ROS resulted in increase of apoptosis rates and secretion of inflammatory factors. In addition, significant differences in metabolic profiles were observed between ACR treated and control cells according to multiple analysis models. A total of 73 key differential metabolites were identified. They were involved in multiple metabolic pathways. Among them, exposure to ACR caused glycolysis/gluconeogenesis attenuation by decreasing levels of glycolytic intermediates, reduced the rate of the TCA cycle, while elevating levels of several amino acid metabolites and lipid metabolites. In summary, our study provides useful evidence of cytotoxicity caused by ACR via metabolomics and multiple bioanalytic methods.
Collapse
Affiliation(s)
- Dan Song
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China; College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Chao Xu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Askild L Holck
- Norwegian Institute of Food, Fisheries and Aquaculture Research (NOFIMA), P.O. Box 210, N-1431 Aas, Norway
| | - Rong Liu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China; National center for international research on animal gut nutrition, Nanjing, China; Jiangsu collaborative innovation center of meat production and processing, Nanjing, China.
| |
Collapse
|
30
|
Cheng L, Han T, Zhang Z, Yi P, Zhang C, Zhang S, Peng W. Identification and Validation of Six Autophagy-related Long Non-coding RNAs as Prognostic Signature in Colorectal Cancer. Int J Med Sci 2021; 18:88-98. [PMID: 33390777 PMCID: PMC7738973 DOI: 10.7150/ijms.49449] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/22/2020] [Indexed: 12/27/2022] Open
Abstract
Colorectal cancer (CRC) is a commonly occurring tumour with poor prognosis. Autophagy-related long non-coding RNAs (lncRNAs) have received much attention as biomarkers for cancer prognosis and diagnosis. However, few studies have focused on their prognostic predictive value specifically in CRC. This research aimed to construct a robust autophagy-related lncRNA prognostic signature for CRC. Autophagy-related lncRNAs from The Cancer Genome Atlas database were screened using univariate Cox, LASSO, and multivariate Cox regression analyses, and the resulting key lncRNAs were used to establish a prognostic risk score model. Furthermore, quantitative real-time polymerase chain reaction (qRT-PCR) analysis was performed to detect the expression of several lncRNAs in cancer tissues from CRC patients and in normal tissues adjacent to the cancer tissues. A prognostic signature comprising lncRNAs AC125603.2, LINC00909, AC016876.1, MIR210HG, AC009237.14, and LINC01063 was identified in patients with CRC. A graphical nomogram based on the autophagy-related lncRNA signature was developed to predict CRC patients' 1-, 3-, and 5-year survival. Overall survival in patients with low risk scores was significantly better than in those with high risk scores (P < 0.0001); a similar result was obtained in an internal validation sample. The nomogram was shown to be suitable for clinical use and gave correct predictions. The 1- and 3-year values of the area under the receiver operating characteristic curve were 0.797 and 0.771 in the model sample, and 0.656 and 0.642 in the internal validation sample, respectively. The C-index values for the verification samples and training samples were 0.756 (95% CI = 0.668-0.762) and 0.715 (95% CI = 0.683-0.829), respectively. Gene set enrichment analysis showed that the six autophagy-related lncRNAs were greatly enriched in CRC-related signalling pathways, including p53 and VEGF signalling. The qRT-PCR results showed that the expression of lncRNAs in CRC was higher than that in adjacent tissues, consistent with the expression trends of lncRNAs in the CRC data set. In summary, we established a signature of six autophagy-related lncRNAs that could effectively guide clinical prediction of prognosis in patients with CRC. This lncRNA signature has significant clinical implications for improving the prediction of outcomes and, with further prospective validation, could be used to guide tailored therapy for CRC patients.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Integrated Traditional Chinese & Western Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R.China
| | - Tong Han
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan410011, P.R. China
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese & Western Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R.China
| | - Pengji Yi
- Department of Integrated Traditional Chinese & Western Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R.China
| | - Chunhu Zhang
- Department of Integrated Traditional Chinese & Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R.China
| | - Sifang Zhang
- Department of Integrated Traditional Chinese & Western Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R.China
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R.China
| |
Collapse
|
31
|
Remodeling Lipids in the Transition from Chronic Liver Disease to Hepatocellular Carcinoma. Cancers (Basel) 2020; 13:cancers13010088. [PMID: 33396945 PMCID: PMC7795670 DOI: 10.3390/cancers13010088] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) has poor prognosis. We studied blood lipids by comparing healthy volunteers to patients with chronic liver disease (CLD), and to patients with HCC caused by viral infections. We contrasted our findings in blood to lipid alterations in liver tumor and nontumor tissue samples from HCC patients. In blood, most lipid species were found at increased levels in CLD patients compared to healthy volunteers. This trend was mostly reversed in HCC versus CLD patients. In liver tumor tissues, levels of many lipids were decreased compared to paired nontumor liver tissues. Differences in lipid levels were further defined by alterations in the degree of saturation in the fatty acyl chains. Some lipids, including free fatty acids, saturated lysophosphatidylcholines and saturated triacylglycerides, showed a continuous trend in the transition from the blood of healthy controls to CLD and HCC patients. For HCC patients, phosphatidylglycerides showed similar alterations in both blood and tissues. Abstract Hepatocellular carcinoma (HCC) is a worldwide health problem. HCC patients show a 50% mortality within two years of diagnosis. To better understand the molecular pathogenesis at the level of lipid metabolism, untargeted UPLC MS—QTOF lipidomics data were acquired from resected human HCC tissues and their paired nontumor hepatic tissues (n = 46). Blood samples of the same HCC subjects (n = 23) were compared to chronic liver disease (CLD) (n = 15) and healthy control (n = 15) blood samples. The participants were recruited from the National Liver Institute in Egypt. The lipidomics data yielded 604 identified lipids that were divided into six super classes. Five-hundred and twenty-four blood lipids were found as significantly differentiated (p < 0.05 and qFDR p < 0.1) between the three study groups. In the blood of CLD patients compared to healthy control subjects, almost all lipid classes were significantly upregulated. In CLD patients, triacylglycerides were found as the most significantly upregulated lipid class at qFDR p = 1.3 × 10−56, followed by phosphatidylcholines at qFDR p = 3.3 × 10−51 and plasmalogens at qFDR p = 1.8 × 10-46. In contrast, almost all blood lipids were significantly downregulated in HCC patients compared to CLD patients, and in HCC tissues compared to nontumor hepatic tissues. Ceramides were found as the most significant lipid class (qFDR p = 1 × 10−14) followed by phosphatidylglycerols (qFDR p = 3 × 10−9), phosphatidylcholines and plasmalogens. Despite these major differences, there were also common trends in the transitions between healthy controls, CLD and HCC patients. In blood, several mostly saturated triacylglycerides showed a continued increase in the trajectory towards HCC, accompanied by reduced levels of saturated free fatty acids and saturated lysophospatidylcholines. In contrast, the largest overlaps of lipid alterations that were found in both HCC tissue and blood comparisons were decreased levels of phosphatidylglycerols and sphingolipids. This study highlights the specific impact of HCC tumors on the circulating lipids. Such data may be used to target lipid metabolism for prevention, early detection and treatment of HCC in the background of viral-related CLD etiology.
Collapse
|
32
|
Bollag WB, Olala LO, Xie D, Lu X, Qin H, Choudhary V, Patel R, Bogorad D, Estes A, Watsky M. Dioleoylphosphatidylglycerol Accelerates Corneal Epithelial Wound Healing. Invest Ophthalmol Vis Sci 2020; 61:29. [PMID: 32186673 PMCID: PMC7401755 DOI: 10.1167/iovs.61.3.29] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose In contact with the external environment, the cornea can easily be injured. Although corneal wounds generally heal rapidly, the pain and increased risk of infection associated with a damaged cornea, as well as the impaired healing observed in some individuals, emphasize the need for novel treatments to accelerate corneal healing. We previously demonstrated in epidermal keratinocytes that the glycerol channel aquaporin-3 (AQP3) interacts with phospholipase D2 (PLD2) to produce the signaling phospholipid phosphatidylglycerol (PG), which has been shown to accelerate skin wound healing in vivo. We hypothesized that the same signaling pathway might be operational in corneal epithelial cells. Methods We used co-immunoprecipitation, immunohistochemistry, scratch wound healing assays in vitro, and corneal epithelial wound healing assays in vivo to determine the role of the AQP3/PLD2/PG signaling pathway in corneal epithelium. Results AQP3 was present in human corneas in situ, and AQP3 and PLD2 were co-immunoprecipitated from corneal epithelial cell lysates. The two proteins could also be co-immunoprecipitated from insect cells simultaneously infected with AQP3- and PLD2-expressing baculoviruses, suggesting a likely direct interaction. A particular PG, dioleoylphosphatidylglycerol (DOPG), enhanced scratch wound healing of a corneal epithelial monolayer in vitro. DOPG also accelerated corneal epithelial wound healing in vivo, both in wild-type mice and in a mouse model exhibiting impaired corneal wound healing (AQP3 knockout mice). Conclusions These results indicate the importance of the AQP3/PLD2/PG signaling pathway in corneal epithelial cells and suggest the possibility of developing DOPG as a pharmacologic therapy to enhance corneal wound healing in patients.
Collapse
|
33
|
Jung J, Jung SY, Kim MG, Kim YI, Kim SH, Yeo SG. Comparison of Autophagy mRNA Expression between Chronic Otitis Media With and Without Cholesteatoma. J Audiol Otol 2020; 24:191-197. [PMID: 32521994 PMCID: PMC7575920 DOI: 10.7874/jao.2020.00108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/30/2020] [Indexed: 12/19/2022] Open
Abstract
Background and Objectives Autophagy is known to be associated with pathogen infection. However, the expression of autophagy-related proteins has not been studied in chronic otitis media without cholesteatoma (COM) or with cholesteatoma (CholeOM). This study aimed to determine whether there is a difference between COM and CholeOM in autophagy-related gene mRNA expression. Subjects and Methods For 47 patients with chronic otitis media, the inflammatory tissues were classified into granulation tissue (COM) or cholesteatoma (CholeOM) according to biopsy results. Results PI3K mRNA expression (COM vs. CholeOM, mean±SD, 0.009±0.010 vs. 0.003±0.004; p=0.004) was lower, whereas Beclin-1 mRNA expression (0.089±0.107 vs. 0.176±0.163; p=0.034) was higher in the CholeOM group. Expression of PI3K mRNA in the CholeOM group was lower than that in the COM subgroups with presence of bacteria (0.022±0.019 vs. 0.001±0.001; p=0.001), otorrhea (0.049±0.068 vs. 0.003±0.004; p=0.004), and hearing loss over 40 dB (0.083±0.130 vs. 0.003±0.004; p=0.005). Conclusions The data suggested that different autophagy proteins play important roles in chronic otitis media according to the presence or absence of cholesteatoma.
Collapse
Affiliation(s)
- Junyang Jung
- Department of Anatomy and Neurobiology, School of Medicine, KyungHee University, Seoul, Korea
| | - Su Young Jung
- Department of Otorhinolaryngology-Head and Neck Surgery, Myongji Hospital, Hanyang University College of Medicine, Goyang, Korea
| | - Myung Gu Kim
- Department of Otorhinolaryngology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Young Il Kim
- Medical Science Research Institute, KyungHee University Medical Center, Seoul, Korea
| | - Sang Hoon Kim
- Department of Otorhinolaryngology, School of Medicine, KyungHee University, Seoul, Korea
| | - Seung Geun Yeo
- Medical Science Research Institute, KyungHee University Medical Center, Seoul, Korea.,Department of Otorhinolaryngology, School of Medicine, KyungHee University, Seoul, Korea
| |
Collapse
|
34
|
Plotegher N, Perocheau D, Ferrazza R, Massaro G, Bhosale G, Zambon F, Rahim AA, Guella G, Waddington SN, Szabadkai G, Duchen MR. Impaired cellular bioenergetics caused by GBA1 depletion sensitizes neurons to calcium overload. Cell Death Differ 2020; 27:1588-1603. [PMID: 31685979 PMCID: PMC7206133 DOI: 10.1038/s41418-019-0442-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022] Open
Abstract
Heterozygous mutations of the lysosomal enzyme glucocerebrosidase (GBA1) represent the major genetic risk for Parkinson's disease (PD), while homozygous GBA1 mutations cause Gaucher disease, a lysosomal storage disorder, which may involve severe neurodegeneration. We have previously demonstrated impaired autophagy and proteasomal degradation pathways and mitochondrial dysfunction in neurons from GBA1 knockout (gba1-/-) mice. We now show that stimulation with physiological glutamate concentrations causes pathological [Ca2+]c responses and delayed calcium deregulation, collapse of mitochondrial membrane potential and an irreversible fall in the ATP/ADP ratio. Mitochondrial Ca2+ uptake was reduced in gba1-/- cells as was expression of the mitochondrial calcium uniporter. The rate of free radical generation was increased in gba1-/- neurons. Behavior of gba1+/- neurons was similar to gba1-/- in terms of all variables, consistent with a contribution of these mechanisms to the pathogenesis of PD. These data signpost reduced bioenergetic capacity and [Ca2+]c dysregulation as mechanisms driving neurodegeneration.
Collapse
Affiliation(s)
- Nicoletta Plotegher
- Cell and Developmental Biology Department, University College London, London, WC1E6XA, UK
- Department of Biology, University of Padua, 35131, Padua, Italy
| | - Dany Perocheau
- Institute for Women's Health, University College London, London, WC1E6HU, UK
| | - Ruggero Ferrazza
- Department of Physics, University of Trento, 38123, Povo (TN), Italy
| | - Giulia Massaro
- School of Pharmacy, University College London, London, WC1N1AX, UK
| | - Gauri Bhosale
- Cell and Developmental Biology Department, University College London, London, WC1E6XA, UK
| | - Federico Zambon
- Cell and Developmental Biology Department, University College London, London, WC1E6XA, UK
| | - Ahad A Rahim
- School of Pharmacy, University College London, London, WC1N1AX, UK
| | - Graziano Guella
- Department of Physics, University of Trento, 38123, Povo (TN), Italy
| | - Simon N Waddington
- Institute for Women's Health, University College London, London, WC1E6HU, UK
- MRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Gyorgy Szabadkai
- Cell and Developmental Biology Department, University College London, London, WC1E6XA, UK
- Department of Biomedical Sciences, University of Padua, 35131, Padua, Italy
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Michael R Duchen
- Cell and Developmental Biology Department, University College London, London, WC1E6XA, UK.
| |
Collapse
|
35
|
Thekkinghat AA, Yadav KK, Rangarajan PN. Apolipoprotein L9 interacts with LC3/GABARAP and is a microtubule-associated protein with a widespread subcellular distribution. Biol Open 2019; 8:bio045930. [PMID: 31515254 PMCID: PMC6777357 DOI: 10.1242/bio.045930] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/04/2019] [Indexed: 01/05/2023] Open
Abstract
Mouse Apolipoprotein L9 is a 34-kDa phosphatidylethanolamine (PE)-binding protein. The gene is present only in mouse and rat genomes; hence it is restricted to two species. To understand why, it is essential to uncover details about its functions in cellular processes. Here we show that ApoL9 interacts with the proteins of the LC3 and GABARAP subfamilies, which are key players in macroautophagy. In vitro binding studies show a strong association with GABARAP, and in amino acid-starved cells it preferentially interacts with lipidated LC3B, likely by binding to its PE moiety through its lipid-binding domain. On treatment with autophagy inhibitors bafilomycin A1 and chloroquine, ApoL9 is found near swollen mitochondria and on lysosomes/LAMP1-positive compartments. However, ApoL9 itself does not seem to be degraded as a result of autophagy, suggesting that it is not an autophagy cargo receptor. Deletions in a putative transmembrane region between amino acids 110 and 145 abolish binding to PE. In addition, ApoL9 can redistribute to stress granules, can homo-oligomerize, and is a microtubule-associated protein. In short, its distribution in the cell is quite widespread, suggesting that it could have functions at the intersection of membrane binding and reorganization, autophagy, cellular stress and intracellular lipid transport.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Arvind A Thekkinghat
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Kamlesh K Yadav
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Pundi N Rangarajan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
36
|
Barja G. Towards a unified mechanistic theory of aging. Exp Gerontol 2019; 124:110627. [DOI: 10.1016/j.exger.2019.05.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/08/2019] [Accepted: 05/30/2019] [Indexed: 12/18/2022]
|
37
|
Moltedo O, Remondelli P, Amodio G. The Mitochondria-Endoplasmic Reticulum Contacts and Their Critical Role in Aging and Age-Associated Diseases. Front Cell Dev Biol 2019; 7:172. [PMID: 31497601 PMCID: PMC6712070 DOI: 10.3389/fcell.2019.00172] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/07/2019] [Indexed: 02/03/2023] Open
Abstract
The recent discovery of interconnections between the endoplasmic reticulum (ER) membrane and those of almost all the cell compartments is providing novel perspectives for the understanding of the molecular events underlying cellular mechanisms in both physiological and pathological conditions. In particular, growing evidence strongly supports the idea that the molecular interactions occurring between ER and mitochondrial membranes, referred as the mitochondria (MT)-ER contacts (MERCs), may play a crucial role in aging and in the development of age-associated diseases. As emerged in the last decade, MERCs behave as signaling hubs composed by structural components that act as critical players in different age-associated disorders, such as neurodegenerative diseases and motor disorders, cancer, metabolic syndrome, as well as cardiovascular diseases. Age-associated disorders often derive from mitochondrial or ER dysfunction as consequences of oxidative stress, mitochondrial DNA mutations, accumulation of misfolded proteins, and defective organelle turnover. In this review, we discuss the recent advances associating MERCs to aging in the context of ER-MT crosstalk regulating redox signaling, ER-to MT lipid transfer, mitochondrial dynamics, and autophagy.
Collapse
Affiliation(s)
- Ornella Moltedo
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Paolo Remondelli
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy
| | - Giuseppina Amodio
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy
| |
Collapse
|
38
|
Khandia R, Dadar M, Munjal A, Dhama K, Karthik K, Tiwari R, Yatoo MI, Iqbal HMN, Singh KP, Joshi SK, Chaicumpa W. A Comprehensive Review of Autophagy and Its Various Roles in Infectious, Non-Infectious, and Lifestyle Diseases: Current Knowledge and Prospects for Disease Prevention, Novel Drug Design, and Therapy. Cells 2019; 8:cells8070674. [PMID: 31277291 PMCID: PMC6678135 DOI: 10.3390/cells8070674] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 02/05/2023] Open
Abstract
Autophagy (self-eating) is a conserved cellular degradation process that plays important roles in maintaining homeostasis and preventing nutritional, metabolic, and infection-mediated stresses. Autophagy dysfunction can have various pathological consequences, including tumor progression, pathogen hyper-virulence, and neurodegeneration. This review describes the mechanisms of autophagy and its associations with other cell death mechanisms, including apoptosis, necrosis, necroptosis, and autosis. Autophagy has both positive and negative roles in infection, cancer, neural development, metabolism, cardiovascular health, immunity, and iron homeostasis. Genetic defects in autophagy can have pathological consequences, such as static childhood encephalopathy with neurodegeneration in adulthood, Crohn's disease, hereditary spastic paraparesis, Danon disease, X-linked myopathy with excessive autophagy, and sporadic inclusion body myositis. Further studies on the process of autophagy in different microbial infections could help to design and develop novel therapeutic strategies against important pathogenic microbes. This review on the progress and prospects of autophagy research describes various activators and suppressors, which could be used to design novel intervention strategies against numerous diseases and develop therapeutic drugs to protect human and animal health.
Collapse
Affiliation(s)
- Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal 462 026, Madhya Pradesh, India
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj 31975/148, Iran
| | - Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal 462 026, Madhya Pradesh, India.
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India.
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Madhavaram Milk Colony, Chennai, Tamil Nadu 600051, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh 281 001, India
| | - Mohd Iqbal Yatoo
- Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar 190025, Jammu and Kashmir, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N. L., CP 64849, Mexico
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Sunil K Joshi
- Department of Pediatrics, Division of Hematology, Oncology and Bone Marrow Transplantation, University of Miami School of Medicine, Miami, FL 33136, USA.
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
39
|
Song C, Zhang J, Qi S, Liu Z, Zhang X, Zheng Y, Andersen J, Zhang W, Strong R, Martinez PA, Musi N, Nie J, Shi Y. Cardiolipin remodeling by ALCAT1 links mitochondrial dysfunction to Parkinson's diseases. Aging Cell 2019; 18:e12941. [PMID: 30838774 PMCID: PMC6516155 DOI: 10.1111/acel.12941] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/21/2019] [Accepted: 02/09/2019] [Indexed: 12/18/2022] Open
Abstract
Cardiolipin (CL) is a mitochondrial signature phospholipid that is required for membrane structure, respiration, dynamics, and mitophagy. Oxidative damage of CL by reactive oxygen species is implicated in the pathogenesis of Parkinson's disease (PD), but the underlying cause remains elusive. This work investigated the role of ALCAT1, an acyltransferase that catalyzes pathological remodeling of CL in various aging-related diseases, in a mouse model of PD induced by 1-methyl-4-phenyl-1,2,4,6-tetrahydropyridine (MPTP). We show that MPTP treatment caused oxidative stress, mtDNA mutations, and mitochondrial dysfunction in the midbrain. In contrast, ablation of the ALCAT1 gene or pharmacological inhibition of ALCAT1 prevented MPTP-induced neurotoxicity, apoptosis, and motor deficits. ALCAT1 deficiency also mitigated mitochondrial dysfunction by modulating DRP1 translocation to the mitochondria. Moreover, pharmacological inhibition of ALCAT1 significantly improved mitophagy by promoting the recruitment of Parkin to dysfunctional mitochondria. Finally, ALCAT1 expression was upregulated by MPTP and by α-synucleinopathy, a key hallmark of PD, whereas ALCAT1 deficiency prevented α-synuclein oligomerization and S-129 phosphorylation, implicating a key role of ALCAT1 in the etiology of mouse models of PD. Together, these findings identify ALCAT1 as a novel drug target for the treatment of PD.
Collapse
Affiliation(s)
- Chengjie Song
- Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesNanjing Medical UniversityNanjingChina
- Barshop Institute for Longevity and Aging Studies, Department of PharmacologyUniversity of Texas Health Science CenterSan AntonioTexas
| | - Jun Zhang
- Perenna Pharmceuticals IncSan AntonioTexas
| | - Shasha Qi
- Department of Pathophysiologythe Second Military Medical UniversityShanghaiChina
| | - Zhen Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesNanjing Medical UniversityNanjingChina
| | - Xiaoyang Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesNanjing Medical UniversityNanjingChina
| | - Yue Zheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesNanjing Medical UniversityNanjingChina
| | - John‐Paul Andersen
- Barshop Institute for Longevity and Aging Studies, Department of PharmacologyUniversity of Texas Health Science CenterSan AntonioTexas
| | - Weiping Zhang
- Department of Pathophysiologythe Second Military Medical UniversityShanghaiChina
| | - Randy Strong
- Barshop Institute for Longevity and Aging Studies, Department of PharmacologyUniversity of Texas Health Science CenterSan AntonioTexas
| | - Paul Anthony Martinez
- Barshop Institute for Longevity and Aging Studies, Department of PharmacologyUniversity of Texas Health Science CenterSan AntonioTexas
| | - Nicolas Musi
- Barshop Institute for Longevity and Aging Studies, Department of PharmacologyUniversity of Texas Health Science CenterSan AntonioTexas
| | - Jia Nie
- Barshop Institute for Longevity and Aging Studies, Department of PharmacologyUniversity of Texas Health Science CenterSan AntonioTexas
| | - Yuguang Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesNanjing Medical UniversityNanjingChina
- Barshop Institute for Longevity and Aging Studies, Department of PharmacologyUniversity of Texas Health Science CenterSan AntonioTexas
| |
Collapse
|
40
|
Gaudioso A, Garcia-Rozas P, Casarejos MJ, Pastor O, Rodriguez-Navarro JA. Lipidomic Alterations in the Mitochondria of Aged Parkin Null Mice Relevant to Autophagy. Front Neurosci 2019; 13:329. [PMID: 31068772 PMCID: PMC6491511 DOI: 10.3389/fnins.2019.00329] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/21/2019] [Indexed: 11/23/2022] Open
Abstract
Mitochondrial quality control is important in neurological diseases, but in genetic Parkinson’s disease caused by mutations in PINK and parkin mitochondrial degradation through autophagy is crucial. Reductions in autophagy and mitophagy are implicated in aging, age related diseases and Parkinson. The parkin null mice (PK-KO) show only a subtle phenotype, apparent with age or with stressors. We have studied the changes in the lipidomic composition of the mitochondrial membranes isolated from the brains of young and old PK-KO mice and compared them to wild type in order to determine possible implications for Parkinson’s disease pathology. We observed an increase in the levels of phosphatidylethanolamine in the young PK-KO mice that is lost in the old and correlate to changes in the phosphatidylserine decarboxylase. PK-KO old mice mitochondria showed lower phosphatidylglicerol and phosphatidylinositol levels and higher levels of some forms of hydroxylated ceramides. Regarding cardiolipins there were changes in the degree of saturation mainly with age. The lipidomic composition discriminates between the study groups using partial least square discriminant analysis. We discuss the relevance of the lipid changes for the autophagic activity, the mitophagy, the mitochondrial activity and the Parkinson’s disease pathology in absence of parkin.
Collapse
Affiliation(s)
- Angel Gaudioso
- Cellular Neurobiology Laboratory, Neurobiology Department, UCS-UCM, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Patricia Garcia-Rozas
- Cellular Neurobiology Laboratory, Neurobiology Department, UCS-UCM, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Maria Jose Casarejos
- Neuropharmacology Laboratory, Neurobiology Department, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
| | - Oscar Pastor
- Clinical Biochemistry Department, UCA-CCM, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Jose Antonio Rodriguez-Navarro
- Cellular Neurobiology Laboratory, Neurobiology Department, UCS-UCM, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| |
Collapse
|
41
|
Zhang X, Zhang J, Sun H, Liu X, Zheng Y, Xu D, Wang J, Jia D, Han X, Liu F, Nie J, Shi Y. Defective Phosphatidylglycerol Remodeling Causes Hepatopathy, Linking Mitochondrial Dysfunction to Hepatosteatosis. Cell Mol Gastroenterol Hepatol 2019; 7:763-781. [PMID: 30831319 PMCID: PMC6463126 DOI: 10.1016/j.jcmgh.2019.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Obesity promotes the development of nonalcoholic fatty liver diseases (NAFLDs), yet not all obese patients develop NAFLD. The underlying causes for this discrepancy remain elusive. LPGAT1 is an acyltransferase that catalyzes the remodeling of phosphatidylglycerol (PG), a mitochondrial phospholipid implicated in various metabolic diseases. Here, we investigated the role of LPGAT1 in regulating the onset of diet-induced obesity and its related hepatosteatosis because polymorphisms of the LPGAT1 gene promoter were strongly associated with susceptibility to obesity in Pima Indians. METHODS Mice with whole-body knockout of LPGAT1 were generated to investigate the role of PG remodeling in NAFLD. RESULTS LPGAT1 deficiency protected mice from diet-induced obesity, but led to hepatopathy, insulin resistance, and NAFLD as a consequence of oxidative stress, mitochondrial DNA depletion, and mitochondrial dysfunction. CONCLUSIONS This study identified an unexpected role of PG remodeling in obesity, linking mitochondrial dysfunction to NAFLD.
Collapse
Affiliation(s)
- Xiaoyang Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Jun Zhang
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Haoran Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Xueling Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yue Zheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Dan Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jianing Wang
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Dandan Jia
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Xianlin Han
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Feng Liu
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Jia Nie
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Yuguang Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China; Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas.
| |
Collapse
|
42
|
Guan ZF, Zhang XM, Tao YH, Zhang Y, Huang YY, Chen G, Tang WJ, Ji G, Guo QL, Liu M, Zhang Q, Wang NN, Yu ZY, Wu GF, Tang ZP, Du ZG, Shang XL, Liu YC, Mei GH, Guo JC, Zhou HG. EGb761 improves the cognitive function of elderly db/db -/- diabetic mice by regulating the beclin-1 and NF-κB signaling pathways. Metab Brain Dis 2018; 33:1887-1897. [PMID: 30187180 PMCID: PMC6244769 DOI: 10.1007/s11011-018-0295-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/23/2018] [Indexed: 12/23/2022]
Abstract
To assess whether EGb761 could protect elderly diabetic mice with cognitive disorders and explore the role of beclin-1-mediated autophagy in these protective effects. Two-month-old male db/db-/- mice and wild-type C57/BL6 mice were randomly divided into six groups: db/db-/- control, db/db-/- 50 mg, db/db-/- 100 mg, wild-type (WT) control, WT 50 mg, and WT 100 mg. EGb761 (50 mg/kg or 100 mg/kg of bodyweight) was given by gavage once a day for 1 month from the age of 6 months. Y-maze and social choice tests were performed at 8th months. The blood pressure was measured. The imaging changes in the brain were measured using magnetic resonance imaging (MRI). The expression and distribution of beclin-1, LC3, and NF-κB were detected using immunohistochemistry staining and western blotting. Ultrastructure alterations in the hippocampus were observed using transmission electron microscopy. Compared with WT mice, the learning ability, memory and overall cognitive function of db/db-/- mice decreased (P < 0.05), and EGb761 could significantly improve the learning and memory function of db/db-/- mice (P < 0.05). EGb761 significantly improved systolic blood pressure in db/db-/- mice (P < 0.01). In addition, fMRI-bold showed a decline in the hippocampus of mice in the db/db-/- group compared with WT. EGb761 could improve these above changes. Immunohistochemistry staining and western blotting confirmed that EGb761 significantly increased beclin-1 and reduced LC3-II/I levels in the brains of db/db-/- mice (P < 0.05). NF-κB levels were obviously higher in the db/db-/- group than that in the WT group, and EGb761 significantly reduced NF-κB levels in db/db-/- mice (P < 0.05). There was a trend of increased autophagosomes in db/db-/- mice, but EGb761 did not change obviously the number of autophagosomes. Compared with normal aged WT mice, aging db/db-/- mice had more common complications of cerebral small vessel disease and cognitive dysfunction. EGb761 could significantly improve the cognitive function of aging db/db-/- mice via a mechanism that may involve the regulation of beclin-1, LC3, and NF-κB.
Collapse
Affiliation(s)
- Zhu-Fei Guan
- Department of Geriatrics, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
- State Key Laboratory of Medical Neurobiology, Department of Neurobiology, School of Basic Medical Neurobiology, Department of Neurobiology School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiao-Ming Zhang
- Department of Geriatrics, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Ying-Hong Tao
- Department of Medical Examination Center, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yu Zhang
- Department of Geriatrics, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yan-Yan Huang
- Department of Geriatrics, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Gang Chen
- Department of Geriatrics, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Wei-Jun Tang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Gang Ji
- State Key Laboratory of Medical Neurobiology, Department of Neurobiology, School of Basic Medical Neurobiology, Department of Neurobiology School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qi-Lin Guo
- State Key Laboratory of Medical Neurobiology, Department of Neurobiology, School of Basic Medical Neurobiology, Department of Neurobiology School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ming Liu
- State Key Laboratory of Medical Neurobiology, Department of Neurobiology, School of Basic Medical Neurobiology, Department of Neurobiology School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qian Zhang
- State Key Laboratory of Medical Neurobiology, Department of Neurobiology, School of Basic Medical Neurobiology, Department of Neurobiology School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Na-Na Wang
- Department of Geriatrics, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Zhong-Yu Yu
- Department of Geriatrics, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Guo-Feng Wu
- Department of Emergency Neurology, Guiyang Medical University, Guiyang, 550004, China
| | - Zhou-Ping Tang
- Department of Neurology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Zun-Guo Du
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xi-Liang Shang
- Department of Sport Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Ying-Chao Liu
- Department of Neurosurgery, Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Guang-Hai Mei
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Jing-Chun Guo
- State Key Laboratory of Medical Neurobiology, Department of Neurobiology, School of Basic Medical Neurobiology, Department of Neurobiology School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Hou-Guang Zhou
- Department of Geriatrics, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
43
|
Nabavi SF, Sureda A, Dehpour AR, Shirooie S, Silva AS, Devi KP, Ahmed T, Ishaq N, Hashim R, Sobarzo-Sánchez E, Daglia M, Braidy N, Volpicella M, Vacca RA, Nabavi SM. Regulation of autophagy by polyphenols: Paving the road for treatment of neurodegeneration. Biotechnol Adv 2018; 36:1768-1778. [DOI: 10.1016/j.biotechadv.2017.12.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/01/2017] [Accepted: 12/03/2017] [Indexed: 12/11/2022]
|
44
|
Fournet M, Bonté F, Desmoulière A. Glycation Damage: A Possible Hub for Major Pathophysiological Disorders and Aging. Aging Dis 2018; 9:880-900. [PMID: 30271665 PMCID: PMC6147582 DOI: 10.14336/ad.2017.1121] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/21/2017] [Indexed: 12/25/2022] Open
Abstract
Glycation is both a physiological and pathological process which mainly affects proteins, nucleic acids and lipids. Exogenous and endogenous glycation produces deleterious reactions that take place principally in the extracellular matrix environment or within the cell cytosol and organelles. Advanced glycation end product (AGE) formation begins by the non-enzymatic glycation of free amino groups by sugars and aldehydes which leads to a succession of rearrangements of intermediate compounds and ultimately to irreversibly bound products known as AGEs. Epigenetic factors, oxidative stress, UV and nutrition are important causes of the accumulation of chemically and structurally different AGEs with various biological reactivities. Cross-linked proteins, deriving from the glycation process, present both an altered structure and function. Nucleotides and lipids are particularly vulnerable targets which can in turn favor DNA mutation or a decrease in cell membrane integrity and associated biological pathways respectively. In mitochondria, the consequences of glycation can alter bioenergy production. Under physiological conditions, anti-glycation defenses are sufficient, with proteasomes preventing accumulation of glycated proteins, while lipid turnover clears glycated products and nucleotide excision repair removes glycated nucleotides. If this does not occur, glycation damage accumulates, and pathologies may develop. Glycation-induced biological products are known to be mainly associated with aging, neurodegenerative disorders, diabetes and its complications, atherosclerosis, renal failure, immunological changes, retinopathy, skin photoaging, osteoporosis, and progression of some tumors.
Collapse
Affiliation(s)
- Maxime Fournet
- 1University of Limoges, Faculty of Pharmacy, Department of Physiology, EA 6309, F-87025 Limoges, France
| | | | - Alexis Desmoulière
- 3University of Limoges, Faculty of Pharmacy, Department of Physiology, EA 6309, F-87025 Limoges, France
| |
Collapse
|
45
|
Candeias E, Sebastião I, Cardoso S, Carvalho C, Santos MS, Oliveira CR, Moreira PI, Duarte AI. Brain GLP-1/IGF-1 Signaling and Autophagy Mediate Exendin-4 Protection Against Apoptosis in Type 2 Diabetic Rats. Mol Neurobiol 2018; 55:4030-4050. [PMID: 28573460 DOI: 10.1007/s12035-017-0622-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/16/2017] [Indexed: 02/08/2023]
Abstract
Type 2 diabetes (T2D) is a modern socioeconomic burden, mostly due to its long-term complications affecting nearly all tissues. One of them is the brain, whose dysfunctional intracellular quality control mechanisms (namely autophagy) may upregulate apoptosis, leading to cognitive dysfunction and Alzheimer disease (AD). Since impaired brain insulin signaling may constitute the crosslink between T2D and AD, its restoration may be potentially therapeutic herein. Accordingly, the insulinotropic anti-T2D drugs from glucagon-like peptide-1 (GLP-1) mimetics, namely, exendin-4 (Ex-4), could be a promising therapy. In line with this, we hypothesized that peripherally administered Ex-4 rescues brain intracellular signaling pathways, promoting autophagy and ultimately protecting against chronic T2D-induced apoptosis. Thus, we aimed to explore the effects of chronic, continuous, subcutaneous (s.c.) exposure to Ex-4 in brain cortical GLP-1/insulin/insulin-like growth factor-1 (IGF-1) signaling, and in autophagic and cell death mechanisms in middle-aged (8 months old), male T2D Goto-Kakizaki (GK) rats. We used brain cortical homogenates obtained from middle-aged (8 months old) male Wistar (control) and T2D GK rats. Ex-4 was continuously administered for 28 days, via s.c. implanted micro-osmotic pumps (5 μg/kg/day; infusion rate 2.5 μL/h). Peripheral characterization of the animal models was given by the standard biochemical analyses of blood or plasma, the intraperitoneal glucose tolerance test, and the heart rate. GLP-1, insulin, and IGF-1, their downstream signaling and autophagic markers were evaluated by specific ELISA kits and Western blotting. Caspase-like activities and other apoptotic markers were given by colorimetric methods and Western blotting. Chronic Ex-4 treatment attenuated peripheral features of T2D in GK rats, including hyperglycemia and insulin resistance. Furthermore, s.c. Ex-4 enhanced their brain cortical GLP-1 and IGF-1 levels, and subsequent signaling pathways. Specifically, Ex-4 stimulated protein kinase A (PKA) and phosphoinositide 3-kinase (PI3K)/Akt signaling, increasing cGMP and AMPK levels, and decreasing GSK3β and JNK activation in T2D rat brains. Moreover, Ex-4 regulated several markers for autophagy in GK rat brains (as mTOR, PI3K class III, LC3 II, Atg7, p62, LAMP-1, and Parkin), ultimately protecting against apoptosis (by decreasing several caspase-like activities and mitochondrial cytochrome c, and increasing Bcl2 levels upon T2D). Altogether, this study demonstrates that peripheral Ex-4 administration may constitute a promising therapy against the chronic complications of T2D affecting the brain.
Collapse
Affiliation(s)
- Emanuel Candeias
- CNC-Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão - Pólo II, Rua D. Francisco de Lemos, 3030-789, Coimbra, Portugal
| | - Inês Sebastião
- CNC-Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal
| | - Susana Cardoso
- CNC-Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão - Pólo II, Rua D. Francisco de Lemos, 3030-789, Coimbra, Portugal
| | - Cristina Carvalho
- CNC-Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão - Pólo II, Rua D. Francisco de Lemos, 3030-789, Coimbra, Portugal
| | - Maria Sancha Santos
- CNC-Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal
- Life Sciences Department, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal
| | - Catarina Resende Oliveira
- CNC-Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal
- Institute of Biochemistry, Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Paula I Moreira
- CNC-Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal.
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal.
| | - Ana I Duarte
- CNC-Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal.
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão - Pólo II, Rua D. Francisco de Lemos, 3030-789, Coimbra, Portugal.
| |
Collapse
|
46
|
Hong T, Ge Z, Meng R, Wang H, Zhang P, Tang S, Lu J, Gu T, Zhu D, Bi Y. Erythropoietin alleviates hepatic steatosis by activating SIRT1-mediated autophagy. Biochim Biophys Acta Mol Cell Biol Lipids 2018. [PMID: 29522896 DOI: 10.1016/j.bbalip.2018.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Erythropoietin (EPO), besides its stimulatory effect on erythropoiesis, is beneficial to insulin resistance and obesity. However, its role in hepatic steatosis remains unexplored. Activating autophagy seems a promising mechanism for improving fatty liver disease. The present study investigated the role of EPO in alleviating hepatic steatosis and sought to determine whether its function is mediated by the activation of autophagy. Here, we show that EPO decreased hepatic lipid content significantly in vivo and in vitro. Furthermore, EPO/EPO receptor (EPOR) signalling induced autophagy activation in hepatocytes as indicated by western blot assay, transmission electron microscopy, and confocal microscopy. In addition, EPO increased the co-localization of autophagosomes and cellular lipids as shown by double labelling of the autophagy marker light chain microtubule-associated protein 3 (LC3) and lipids. Importantly, suppression of autophagy by an inhibitor or small interfering RNA (siRNA) abolished the EPO-mediated alleviation hepatic steatosis in vitro. Furthermore, EPO up-regulated sirtuin 1 (SIRT1) expression, and siRNA-mediated SIRT1 silencing abrogated the EPO-induced increases in LC3 protein and deacetylation levels, thereby preventing the alleviation of hepatic steatosis. Taken together, this study revealed a new mechanism wherein EPO alleviates hepatic steatosis by activating autophagy via SIRT1-dependent deacetylation of LC3. This finding might have therapeutic value in the treatment of hepatic steatosis.
Collapse
Affiliation(s)
- Ting Hong
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321 Zhongshan Road, Nanjing, China
| | - Zhijuan Ge
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321 Zhongshan Road, Nanjing, China
| | - Ran Meng
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321 Zhongshan Road, Nanjing, China
| | - Hongdong Wang
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321 Zhongshan Road, Nanjing, China
| | - Pengzi Zhang
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321 Zhongshan Road, Nanjing, China
| | - Sunyinyan Tang
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321 Zhongshan Road, Nanjing, China
| | - Jing Lu
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321 Zhongshan Road, Nanjing, China
| | - Tianwei Gu
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321 Zhongshan Road, Nanjing, China
| | - Dalong Zhu
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321 Zhongshan Road, Nanjing, China.
| | - Yan Bi
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321 Zhongshan Road, Nanjing, China.
| |
Collapse
|
47
|
Janikiewicz J, Szymański J, Malinska D, Patalas-Krawczyk P, Michalska B, Duszyński J, Giorgi C, Bonora M, Dobrzyn A, Wieckowski MR. Mitochondria-associated membranes in aging and senescence: structure, function, and dynamics. Cell Death Dis 2018; 9:332. [PMID: 29491385 PMCID: PMC5832430 DOI: 10.1038/s41419-017-0105-5] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 12/16/2022]
Abstract
Sites of close contact between mitochondria and the endoplasmic reticulum (ER) are known as mitochondria-associated membranes (MAM) or mitochondria-ER contacts (MERCs), and play an important role in both cell physiology and pathology. A growing body of evidence indicates that changes observed in the molecular composition of MAM and in the number of MERCs predisposes MAM to be considered a dynamic structure. Its involvement in processes such as lipid biosynthesis and trafficking, calcium homeostasis, reactive oxygen species production, and autophagy has been experimentally confirmed. Recently, MAM have also been studied in the context of different pathologies, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, type 2 diabetes mellitus and GM1-gangliosidosis. An underappreciated amount of data links MAM with aging or senescence processes. In the present review, we summarize the current knowledge of basic MAM biology, composition and action, and discuss the potential connections supporting the idea that MAM are significant players in longevity.
Collapse
Affiliation(s)
- Justyna Janikiewicz
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Jędrzej Szymański
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Dominika Malinska
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | - Bernadeta Michalska
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Jerzy Duszyński
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Carlotta Giorgi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Massimo Bonora
- Departments of Cell Biology and Gottesman Institute for Stem Cell & Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Agnieszka Dobrzyn
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Mariusz R Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland.
| |
Collapse
|
48
|
Schlattner U, Tokarska-Schlattner M, Epand RM, Boissan M, Lacombe ML, Kagan VE. NME4/nucleoside diphosphate kinase D in cardiolipin signaling and mitophagy. J Transl Med 2018. [PMID: 29035377 DOI: 10.38/labinvest.2017.113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
Mitophagy is an emerging paradigm for mitochondrial quality control and cell homeostasis. Dysregulation of mitophagy can lead to human pathologies such as neurodegenerative disorders and contributes to the aging process. Complex protein signaling cascades have been described that regulate mitophagy. We have identified a novel lipid signaling pathway that involves the phospholipid cardiolipin (CL). CL is synthesized and normally confined at the inner mitochondrial membrane. However, upon a mitophagic trigger, ie, collapse of the inner membrane potential, CL is rapidly externalized to the mitochondrial surface with the assistance of the hexameric nucleoside diphosphate kinase D (NME4, NDPK-D, or NM23-H4). In addition to its NDP kinase activity, NME4/NDPK-D shows intermembrane phospholipid transfer activity in vitro and in cellular systems, which relies on NME4/NDPK-D interaction with CL, CL-dependent crosslinking of inner and outer mitochondrial membranes by symmetrical, hexameric NME4/NDPK-D, and a putative NME4/NDPK-D-based CL-transfer pathway. CL exposed at the mitochondrial surface then serves as an 'eat me' signal for the mitophagic machinery; it is recognized by the LC3 receptor of autophagosomes, targeting the dysfunctional mitochondrion to lysosomal degradation. Similar NME4-supported CL externalization is likely also involved in apoptosis and inflammatory reactions.
Collapse
Affiliation(s)
- Uwe Schlattner
- University Grenoble Alpes, Inserm, Laboratory of Fundamental and Applied Bioenergetics (LBFA) and SFR Environmental and Systems Biology (BEeSy), Grenoble, France
| | - Malgorzata Tokarska-Schlattner
- University Grenoble Alpes, Inserm, Laboratory of Fundamental and Applied Bioenergetics (LBFA) and SFR Environmental and Systems Biology (BEeSy), Grenoble, France
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Mathieu Boissan
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, UMRS938, Saint-Antoine Research Center, Paris, France
- Hôpitaux Universitaires Est Parisien-Tenon, Assistance Publique Hôpitaux de Paris, Laboratoire de Biochimie et Hormonologie, Paris, France
| | - Marie-Lise Lacombe
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, UMRS938, Saint-Antoine Research Center, Paris, France
| | - Valerian E Kagan
- Center for Free Radical and Antioxidant Health, Department of Environmental Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
49
|
NME4/nucleoside diphosphate kinase D in cardiolipin signaling and mitophagy. J Transl Med 2018; 98:228-232. [PMID: 29035377 DOI: 10.1038/labinvest.2017.113] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 01/12/2023] Open
Abstract
Mitophagy is an emerging paradigm for mitochondrial quality control and cell homeostasis. Dysregulation of mitophagy can lead to human pathologies such as neurodegenerative disorders and contributes to the aging process. Complex protein signaling cascades have been described that regulate mitophagy. We have identified a novel lipid signaling pathway that involves the phospholipid cardiolipin (CL). CL is synthesized and normally confined at the inner mitochondrial membrane. However, upon a mitophagic trigger, ie, collapse of the inner membrane potential, CL is rapidly externalized to the mitochondrial surface with the assistance of the hexameric nucleoside diphosphate kinase D (NME4, NDPK-D, or NM23-H4). In addition to its NDP kinase activity, NME4/NDPK-D shows intermembrane phospholipid transfer activity in vitro and in cellular systems, which relies on NME4/NDPK-D interaction with CL, CL-dependent crosslinking of inner and outer mitochondrial membranes by symmetrical, hexameric NME4/NDPK-D, and a putative NME4/NDPK-D-based CL-transfer pathway. CL exposed at the mitochondrial surface then serves as an 'eat me' signal for the mitophagic machinery; it is recognized by the LC3 receptor of autophagosomes, targeting the dysfunctional mitochondrion to lysosomal degradation. Similar NME4-supported CL externalization is likely also involved in apoptosis and inflammatory reactions.
Collapse
|
50
|
Moos WH, Faller DV, Glavas IP, Harpp DN, Irwin MH, Kanara I, Pinkert CA, Powers WR, Steliou K, Vavvas DG, Kodukula K. Epigenetic Treatment of Neurodegenerative Ophthalmic Disorders: An Eye Toward the Future. Biores Open Access 2017; 6:169-181. [PMID: 29291141 PMCID: PMC5747116 DOI: 10.1089/biores.2017.0036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Eye disease is one of the primary medical conditions that requires attention and therapeutic intervention in ageing populations worldwide. Further, the global burden of diabetes and obesity, along with heart disease, all lead to secondary manifestations of ophthalmic distress. Therefore, there is increased interest in developing innovative new approaches that target various mechanisms and sequelae driving conditions that result in adverse vision. The research challenge is even greater given that the terrain of eye diseases is difficult to landscape into a single therapeutic theme. This report addresses the burden of eye disease due to mitochondrial dysfunction, including antioxidant, autophagic, epigenetic, mitophagic, and other cellular processes that modulate the biomedical end result. In this light, we single out lipoic acid as a potent known natural activator of these pathways, along with alternative and potentially more effective conjugates, which together harness the necessary potency, specificity, and biodistribution parameters required for improved therapeutic outcomes.
Collapse
Affiliation(s)
- Walter H. Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, California
- ShangPharma Innovation, Inc., South San Francisco, California
| | - Douglas V. Faller
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts
| | - Ioannis P. Glavas
- Department of Ophthalmology, New York University School of Medicine, New York, New York
| | - David N. Harpp
- Department of Chemistry, McGill University, Montreal, QC, Canada
| | - Michael H. Irwin
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | | | - Carl A. Pinkert
- Department of Biological Sciences, College of Arts and Sciences, The University of Alabama, Tuscaloosa, Alabama
| | - Whitney R. Powers
- Department of Health Sciences, Boston University, Boston, Massachusetts
- Department of Anatomy, Boston University School of Medicine, Boston, Massachusetts
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts
- PhenoMatriX, Inc., Natick, Massachusetts
| | - Demetrios G. Vavvas
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Krishna Kodukula
- ShangPharma Innovation, Inc., South San Francisco, California
- PhenoMatriX, Inc., Natick, Massachusetts
- Bridgewater College, Bridgewater, Virginia
| |
Collapse
|