1
|
Liang Y, Liu X, Chang H, Yap J, Sun W, Gao H. Inhibitory effects of nitrite and sulfite/peroxymonosulfate on bacteria are mediated respectively through respiration and intracellular GSH homeostasis. Microbiol Res 2025; 290:127962. [PMID: 39489134 DOI: 10.1016/j.micres.2024.127962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
As nitrite, sulfite has been used in food preservation for centuries but how it inhibits bacterial growth remains underexplored. To address this issue, in this study, we set out to test if cytochrome (cyt) c proteins protect bacteria from the damage of certain reactive sulfur species (RSS) because they do so in the case of reactive nitrogen species (RNS). We show that some reactive sulfur species, such as sulfite and peroxymonosulfate (PMS), inhibit growth of bacterial strains devoid of cytochrome (cyt) c proteins. Subsequent investigations link the inhibition of sulfite/PMS to activity of cbb3-type heme-copper oxidase (cbb3-HCO). However, in vitro comparative analysis rules out that either cbb3-HCO or cyt bd oxidase is the primary target of sulfite/PMS. Instead, we found that sulfite/PMS and the cbb3-HCO loss regulate intracellular redox status in a similar manner, by affecting GSH/GSSG homeostasis. The link between the GSH/GSSG homeostasis and sulfite/PMS is further substantiated by using the mutants with enhanced GSSG generation. Furthermore, we present the data to show that inhibitory effects of nitrite and sulfite/PMS are additive although the overall effects may vary depending on species. Our results open an avenue to control bacteria by developing more robust agents that modulating intracellular redox status, which may be used in combination with nitrite as a promising antimicrobial strategy.
Collapse
Affiliation(s)
- Yuxuan Liang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xinyue Liu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | | | - Jim Yap
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Weining Sun
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China.
| | - Haichun Gao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Xu Y, Lin Z, Hou J, Ye K, Han S, Liang Y, Liang H, Wu S, Tao Y, Gao H. A bacterial transcription activator dedicated to the expression of the enzyme catalyzing the first committed step in fatty acid biosynthesis. Nucleic Acids Res 2024; 52:12930-12944. [PMID: 39475184 PMCID: PMC11602165 DOI: 10.1093/nar/gkae960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/28/2024] [Accepted: 10/10/2024] [Indexed: 11/29/2024] Open
Abstract
Acetyl-CoA carboxylase (ACCase) catalyzes the first committed and rate-limiting step of de novo fatty acid synthesis (FAS). Although this step is tightly regulated, regulators that specifically control transcription of the ACCase genes remain elusive. In this study, we identified LysR-type transcriptional regulator AccR as a dedicated activator for the transcription of accS, a gene encoding a multiple-domain ACCase in Shewanella oneidensis. We showed that AccR interacts with the accS promoter in vivo in response to changes in acetyl-CoA levels and in vitro. Analysis of the crystal structure of the effector-binding domain (EBD) of AccR identified two potential ligand-binding pockets, one of which is likely to bind acetyl-CoA as a ligand based on results from molecular docking, direct binding assay and mutational analysis of the residues predicted to interact with acetyl-CoA. Despite this, the interaction between AccR and acetyl-CoA alone appears unstable, implying that an additional yet unknown ligand is required for activation of AccR. Furthermore, we showed that AccR is acetylated, but the modification may not be critical for sensing acetyl-CoA. Overall, our data substantiate the existence of a dedicated transcriptional regulator for ACCases, expanding our current understanding of the regulation of FAS.
Collapse
Affiliation(s)
- Yuanyou Xu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Zihan Lin
- Department of BioSciences, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Jiyuan Hou
- Institute of Microbiology, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Kai Ye
- Department of BioSciences, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Sirui Han
- Institute of Microbiology, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yuxuan Liang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Huihui Liang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Shihua Wu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yizhi J Tao
- Department of BioSciences, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Haichun Gao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
- Department of BioSciences, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| |
Collapse
|
3
|
Meng Q, Xu Y, Dai L, Ge X, Qiao P. Regulation of fadR on the ROS defense mechanism in Shewanalla oneidensis. Biotechnol Lett 2024; 46:691-698. [PMID: 38705963 DOI: 10.1007/s10529-024-03487-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/11/2024] [Accepted: 03/25/2024] [Indexed: 05/07/2024]
Abstract
Protein FadR is known as a fatty acid metabolism global regulator that sustains cell envelope integrity by changing the profile of fatty acid. Here, we present its unique participation in the defense against reactive oxygen species (ROS) in the bacterium. FadR contributes to defending extracellular ROS by maintaining the permeability of the cell membrane. It also facilitates the ROS detoxification process by increasing the expression of ROS neutralizers (KatB, KatG, and AhpCF). FadR also represses the leakage of ROS by alleviating the respiratory action conducted by terminal cytochrome cbb3-type heme-copper oxidases (ccoNOQP). These findings suggest that FadR plays a comprehensive role in modulating the bacterial oxidative stress response, instead of merely strengthening the cellular barrier against the environment. This study sheds light on the complex mechanisms of bacterial ROS defense and offers FadR as a novel target for ROS control research.
Collapse
Affiliation(s)
- Qiu Meng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yinming Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Liming Dai
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xuzhe Ge
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Pei Qiao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
4
|
Guo Q, Su J, Liao Y, Yu Y, Luo L, Weng X, Zhang W, Hu Z, Wang H, Beattie GA, Ma J. An atypical 3-ketoacyl ACP synthase III required for acyl homoserine lactone synthesis in Pseudomonas syringae pv. syringae B728a. Appl Environ Microbiol 2024; 90:e0225623. [PMID: 38415624 PMCID: PMC10952384 DOI: 10.1128/aem.02256-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/04/2024] [Indexed: 02/29/2024] Open
Abstract
The last step of the initiation phase of fatty acid biosynthesis in most bacteria is catalyzed by the 3-ketoacyl-acyl carrier protein (ACP) synthase III (FabH). Pseudomonas syringae pv. syringae strain B728a encodes two FabH homologs, Psyr_3467 and Psyr_3830, which we designated PssFabH1 and PssFabH2, respectively. Here, we explored the roles of these two 3-ketoacyl-ACP synthase (KAS) III proteins. We found that PssFabH1 is similar to the Escherichia coli FabH in using acetyl-acetyl-coenzyme A (CoA ) as a substrate in vitro, whereas PssFabH2 uses acyl-CoAs (C4-C10) or acyl-ACPs (C6-C10). Mutant analysis showed that neither KAS III protein is essential for the de novo fatty acid synthesis and cell growth. Loss of PssFabH1 reduced the production of an acyl homoserine lactone (AHL) quorum-sensing signal, and this production was partially restored by overexpressing FabH homologs from other bacteria. AHL production was also restored by inhibiting fatty acid elongation and providing exogenous butyric acid. Deletion of PssFabH1 supports the redirection of acyl-ACP toward biosurfactant synthesis, which in turn enhances swarming motility. Our study revealed that PssFabH1 is an atypical KAS III protein that represents a new KAS III clade that functions in providing a critical fatty acid precursor, butyryl-ACP, for AHL synthesis.IMPORTANCEAcyl homoserine lactones (AHLs) are important quorum-sensing compounds in Gram-negative bacteria. Although their formation requires acylated acyl carrier proteins (ACPs), how the acylated intermediate is shunted from cellular fatty acid synthesis to AHL synthesis is not known. Here, we provide in vivo evidence that Pseudomonas syringae strain B728a uses the enzyme PssFabH1 to provide the critical fatty acid precursor butyryl-ACP for AHL synthesis. Loss of PssFabH1 reduces the diversion of butyryl-ACP to AHL, enabling the accumulation of acyl-ACP for synthesis of biosurfactants that contribute to bacterial swarming motility. We report that PssFabH1 and PssFabH2 each encode a 3-ketoacyl-acyl carrier protein synthase (KAS) III in P. syringae B728a. Whereas PssFabH2 is able to function in redirecting intermediates from β-oxidation to fatty acid synthesis, PssFabH1 is an atypical KAS III protein that represents a new KAS III clade based on its sequence, non-involvement in cell growth, and novel role in AHL synthesis.
Collapse
Affiliation(s)
- Qiaoqiao Guo
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jingtong Su
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yuling Liao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yin Yu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lizhen Luo
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiaoshan Weng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Wenbin Zhang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhe Hu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Haihong Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Gwyn A. Beattie
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa, USA
| | - Jincheng Ma
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
5
|
Malas J, Russo DC, Bollengier O, Malaska MJ, Lopes RMC, Kenig F, Meyer-Dombard DR. Biological functions at high pressure: transcriptome response of Shewanella oneidensis MR-1 to hydrostatic pressure relevant to Titan and other icy ocean worlds. Front Microbiol 2024; 15:1293928. [PMID: 38414766 PMCID: PMC10896736 DOI: 10.3389/fmicb.2024.1293928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/25/2024] [Indexed: 02/29/2024] Open
Abstract
High hydrostatic pressure (HHP) is a key driver of life's evolution and diversification on Earth. Icy moons such as Titan, Europa, and Enceladus harbor potentially habitable high-pressure environments within their subsurface oceans. Titan, in particular, is modeled to have subsurface ocean pressures ≥ 150 MPa, which are above the highest pressures known to support life on Earth in natural ecosystems. Piezophiles are organisms that grow optimally at pressures higher than atmospheric (0.1 MPa) pressure and have specialized adaptations to the physical constraints of high-pressure environments - up to ~110 MPa at Challenger Deep, the highest pressure deep-sea habitat explored. While non-piezophilic microorganisms have been shown to survive short exposures at Titan relevant pressures, the mechanisms of their survival under such conditions remain largely unelucidated. To better understand these mechanisms, we have conducted a study of gene expression for Shewanella oneidensis MR-1 using a high-pressure experimental culturing system. MR-1 was subjected to short-term (15 min) and long-term (2 h) HHP of 158 MPa, a value consistent with pressures expected near the top of Titan's subsurface ocean. We show that MR-1 is metabolically active in situ at HHP and is capable of viable growth following 2 h exposure to 158 MPa, with minimal pressure training beforehand. We further find that MR-1 regulates 264 genes in response to short-term HHP, the majority of which are upregulated. Adaptations include upregulation of the genes argA, argB, argC, and argF involved in arginine biosynthesis and regulation of genes involved in membrane reconfiguration. MR-1 also utilizes stress response adaptations common to other environmental extremes such as genes encoding for the cold-shock protein CspG and antioxidant defense related genes. This study suggests Titan's ocean pressures may not limit life, as microorganisms could employ adaptations akin to those demonstrated by terrestrial organisms.
Collapse
Affiliation(s)
- Judy Malas
- Department of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, IL, United States
| | - Daniel C. Russo
- Department of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, IL, United States
| | - Olivier Bollengier
- Nantes Université, Univ Angers, Le Mans Université, CNRS, Laboratoire de Planétologie et Géosciences, LPG UMR 6112, Nantes, France
| | - Michael J. Malaska
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Rosaly M. C. Lopes
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Fabien Kenig
- Department of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, IL, United States
| | - D'Arcy R. Meyer-Dombard
- Department of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
6
|
Sun W, Xu Y, Liang Y, Yu Q, Gao H. A novel bacterial sulfite dehydrogenase that requires three c-type cytochromes for electron transfer. Appl Environ Microbiol 2023; 89:e0110823. [PMID: 37732808 PMCID: PMC10617556 DOI: 10.1128/aem.01108-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 07/27/2023] [Indexed: 09/22/2023] Open
Abstract
c-type Cytochromes (c-Cyts), primarily as electron carriers and oxidoreductases, play a key role in energy transduction processes in virtually all living organisms. Many bacteria, such as Shewanella oneidensis, are particularly rich in c-Cyts, supporting respiratory versatility not seen in eukaryotes. Unfortunately, a large number of c-Cyts are underexplored, and their biological functions remain unknown. In this study, we identify SorCABD of S. oneidensis as a novel sulfite dehydrogenase (SDH), which catalyzes the oxidation of sulfite to sulfate. In addition to catalytic subunit SorA, this enzymatic complex includes three c-Cyt subunits, which all together carry out electron transfer. The electrons extracted from sulfite oxidation are ultimately delivered to oxygen, leading to oxygen reduction, a process relying on terminal oxidase cyt cbb3. Genomic analysis suggests that the homologs of this SDH are present in a small number of bacterial genera, Shewanella and Vibrio in particular. Because these bacteria are generally capable of reducing sulfite under anaerobic conditions, the co-existence of a sulfite oxidation system implies that they may play especially important roles in the transformation of sulfur species in natural environments.Importancec-type Cytochromes (c-Cyts) endow bacteria with high flexibility in their oxidative/respiratory systems, allowing them to extracellularly transform diverse inorganic and organic compounds for survival and growth. However, a large portion of the bacterial c-Cyts remain functionally unknown. Here, we identify three c-Cyts that work together as essential electron transfer partners for the catalytic subunit of a novel SDH in sulfite oxidation in Shewanella oneidensis. This characteristic makes S. oneidensis the first organism known to be capable of oxidizing and reducing sulfite. The findings suggest that Shewanella, along with a small number of other aquatic bacteria, would serve as a particular driving force in the biogeochemical sulfur cycle in nature.
Collapse
Affiliation(s)
- Weining Sun
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuanyou Xu
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yawen Liang
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qingzi Yu
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haichun Gao
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Han S, Guo K, Wang W, Tao YJ, Gao H. Bacterial TANGO2 homologs are heme-trafficking proteins that facilitate biosynthesis of cytochromes c. mBio 2023; 14:e0132023. [PMID: 37462360 PMCID: PMC10470608 DOI: 10.1128/mbio.01320-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 09/02/2023] Open
Abstract
Heme, an essential molecule for virtually all living organisms, acts primarily as a cofactor in a large number of proteins. However, how heme is mobilized from the site of synthesis to the locations where hemoproteins are assembled remains largely unknown in cells, especially bacterial ones. In this study, with Shewanella oneidensis as the model, we identified HtpA (SO0126) as a heme-trafficking protein and homolog of TANGO2 proteins found in eukaryotes. We showed that HtpA homologs are widely distributed in all domains of living organisms and have undergone parallel evolution. In its absence, the cytochrome (cyt) c content and catalase activity decreased significantly. We further showed that both HtpA and representative TANGO2 proteins bind heme with 1:1 stoichiometry and a relatively low dissociation constant. Protein interaction analyses substantiated that HtpA directly interacts with the cytochrome c maturation system. Our findings shed light on cross-membrane transport of heme in bacteria and extend the understanding of TANGO2 proteins. IMPORTANCE The intracellular trafficking of heme, an essential cofactor for hemoproteins, remains underexplored even in eukaryotes, let alone bacteria. Here we developed a high-throughput method by which HtpA, a homolog of eukaryotic TANGO2 proteins, was identified to be a heme-binding protein that enhances cytochrome c biosynthesis and catalase activity in Shewanella oneidensis. HtpA interacts with the cytochrome c biosynthesis system directly, supporting that this protein, like TANGO2, functions in intracellular heme trafficking. HtpA homologs are widely distributed, but a large majority of them were found to be non-exchangeable, likely a result of parallel evolution. By substantiating the heme-trafficking nature of HtpA and its eukaryotic homologs, our findings provide general insight into the heme-trafficking process and highlight the functional conservation along evolution in all living organisms.
Collapse
Affiliation(s)
- Sirui Han
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kailun Guo
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yizhi J. Tao
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Haichun Gao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Yan B, Haiyang Zhang, Li H, Gao Y, Wei Y, Chang C, Zhang L, Li Z, Zhu L, Xu J. Molecular regulation of lipid metabolism in Suaeda salsa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107894. [PMID: 37482030 DOI: 10.1016/j.plaphy.2023.107894] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Suaeda salsa is remarkable for its high oil content and abundant unsaturated fatty acids. In this study, the regulatory networks on fatty acid and lipid metabolism were constructed by combining the de novo transcriptome and lipidome data. Differentially expressed genes (DEGs) associated with lipids biosynthesis pathways were identified in the S. salsa transcriptome. DEGs involved in fatty acid and glycerolipids were generally up-regulated in leaf tissues. DEGs for TAG assembly were enriched in developing seeds, while DEGs in phospholipid metabolic pathways were enriched in root tissues. Polar lipids were extracted from S. salsa tissues and analyzed by lipidomics. The proportion of galactolipid MGDG was the highest in S. salsa leaves. The molar percentage of PG was high in the developing seeds, and the other main phospholipids had higher molar percentage in roots of S. salsa. The predominant C36:6 molecular species indicates that S. salsa is a typical 18:3 plant. The combined transcriptomic and lipidomic data revealed that different tissues of S. salsa were featured with DEGs associated with specific lipid metabolic pathways, therefore, represented unique lipid profiles. This study will be helpful on understanding lipid metabolism pathway and exploring the key genes involved in lipid synthesis in S. salsa.
Collapse
Affiliation(s)
- Bowei Yan
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China; Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Haiyang Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Huixin Li
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yuqiao Gao
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yulei Wei
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Chuanyi Chang
- Harbin Academy of Agricultural Science, Harbin, 150028, China
| | - Liguo Zhang
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Zuotong Li
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Lei Zhu
- College of Food Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Jingyu Xu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| |
Collapse
|
9
|
Meng Q, Xu Q, Xu Y, Ren H, Ge X, Yu J, Cao X, Yin J, Yu Z. A FadR-Type Regulator Activates the Biodegradation of Polycyclic Aromatic Hydrocarbons by Mediating Quorum Sensing in Croceicoccus naphthovorans Strain PQ-2. Appl Environ Microbiol 2023; 89:e0043323. [PMID: 37098893 PMCID: PMC10231186 DOI: 10.1128/aem.00433-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/04/2023] [Indexed: 04/27/2023] Open
Abstract
Bacteria employ multiple transcriptional regulators to orchestrate cellular responses to adapt to constantly varying environments. The bacterial biodegradation of polycyclic aromatic hydrocarbons (PAHs) has been extensively described, and yet, the PAH-related transcriptional regulators remain elusive. In this report, we identified an FadR-type transcriptional regulator that controls phenanthrene biodegradation in Croceicoccus naphthovorans strain PQ-2. The expression of fadR in C. naphthovorans PQ-2 was induced by phenanthrene, and its deletion significantly impaired both the biodegradation of phenanthrene and the synthesis of acyl-homoserine lactones (AHLs). In the fadR deletion strain, the biodegradation of phenanthrene could be recovered by supplying either AHLs or fatty acids. Notably, FadR simultaneously activated the fatty acid biosynthesis pathway and repressed the fatty acid degradation pathway. As intracellular AHLs are synthesized with fatty acids as substrates, boosting the fatty acid supply could enhance AHL synthesis. Collectively, these findings demonstrate that FadR in C. naphthovorans PQ-2 positively regulates PAH biodegradation by controlling the formation of AHLs, which is mediated by the metabolism of fatty acids. IMPORTANCE Master transcriptional regulation of carbon catabolites is extremely important for the survival of bacteria that face changes in carbon sources. Polycyclic aromatic hydrocarbons (PAHs) can be utilized as carbon sources by some bacteria. FadR is a well-known transcriptional regulator involved in fatty acid metabolism; however, the connection between FadR regulation and PAH utilization in bacteria remains unknown. This study revealed that a FadR-type regulator in Croceicoccus naphthovorans PQ-2 stimulated PAH biodegradation by controlling the biosynthesis of the acyl-homoserine lactone quorum-sensing signals that belong to fatty acid-derived compounds. These results provide a unique perspective for understanding bacterial adaptation to PAH-containing environments.
Collapse
Affiliation(s)
- Qiu Meng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province, China
| | - Qimiao Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province, China
| | - Yinming Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province, China
| | - Huiping Ren
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province, China
| | - Xuzhe Ge
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province, China
| | - Jianming Yu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang Province, China
| | - Xueqiang Cao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province, China
| | - Jianhua Yin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province, China
| | - Zhiliang Yu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province, China
| |
Collapse
|
10
|
A Common Target of Nitrite and Nitric Oxide for Respiration Inhibition in Bacteria. Int J Mol Sci 2022; 23:ijms232213841. [PMID: 36430319 PMCID: PMC9697910 DOI: 10.3390/ijms232213841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Nitrite and nitric oxide (NO) are well-known bacteriostatic agents with similar biochemical properties. However, many studies have demonstrated that inhibition of bacterial growth by nitrite is independent of NO. Here, with Shewanella oneidensis as the research model because of its unusually high cytochrome (cyt) c content, we identify a common mechanism by which nitrite and NO compromise cyt c biosynthesis in bacteria, and thereby inhibit respiration. This is achieved by eliminating the inference of the cyclic adenosine monophosphate-catabolite repression protein (cAMP-Crp), a primary regulatory system that controls the cyt c content and whose activity is subjected to the repression of nitrite. Both nitrite and NO impair the CcmE of multiple bacteria, an essential heme chaperone of the System I cyt c biosynthesis apparatus. Given that bacterial targets of nitrite and NO differ enormously and vary even in the same genus, these observations underscore the importance of cyt c biosynthesis for the antimicrobial actions of nitrite and NO.
Collapse
|
11
|
Pleiotropic Effects of Hfq on the Cytochrome c Content and Pyomelanin Production in Shewanella oneidensis. Appl Environ Microbiol 2022; 88:e0128922. [PMID: 36073941 PMCID: PMC9499022 DOI: 10.1128/aem.01289-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shewanella oneidensis is the best understood model microorganism for the study of diverse cytochromes (cytos) c that support its unparallel respiratory versatility. Although RNA chaperone Hfq has been implicated in regulation of cyto c production, little is known about the biological pathways that it affects in this bacterium. In this study, from a spontaneous mutant that secretes pyomelanin and has a lowered cyto c content, we identified Hfq to be the regulator that critically associates with both phenotypes in S. oneidensis. We found that expression of the key genes in biosynthesis and degradation of heme is differentially affected by Hfq at under- and overproduced levels, and through modulating heme levels, Hfq influences the cyto c content. Although Hfq in excess results in overproduction of the enzymes responsible for both generation and removal of homogentisic acid (HGA), the precursor of pyomelanin, it is compromised activity of HmgA that leads to excretion and polymerization of HGA to form pyomelanin. We further show that Hfq mediates HmgA activity by lowering intracellular iron content because HmgA is an iron-dependent enzyme. Overall, our work highlights the significance of Hfq-mediated posttranscriptional regulation in the physiology of S. oneidensis, unraveling unexpected mechanisms by which Hfq affects cyto c biosynthesis and pyomelanin production. IMPORTANCE In bacteria, Hfq has been implicated in regulation of diverse biological processes posttranslationally. In S. oneidensis, Hfq affects the content of cytos c that serve as the basis of its respiratory versatility and potential application in bioenergy and bioremediation. In this study, we found that Hfq differentially regulates heme biosynthesis and degradation, leading to altered cyto c contents. Hfq in excess causes a synthetic effect on HmgA, an enzyme responsible for pyomelanin formation. Overall, the data presented manifest that the biological processes in a given bacterium regulated by Hfq are highly complex, amounting to required coordination among multiple physiological aspects to allow cells to respond to environmental changes promptly.
Collapse
|
12
|
Wan Razali WA, Evans CA, Pandhal J. Comparative Proteomics Reveals Evidence of Enhanced EPA Trafficking in a Mutant Strain of Nannochloropsis oculata. Front Bioeng Biotechnol 2022; 10:838445. [PMID: 35646838 PMCID: PMC9134194 DOI: 10.3389/fbioe.2022.838445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/29/2022] [Indexed: 01/23/2023] Open
Abstract
The marine microalga Nannochloropsis oculata is a bioproducer of eicosapentaenoic acid (EPA), a fatty acid. EPA is incorporated into monogalactosyldiacylglycerol within N. oculata thylakoid membranes, and there is a biotechnological need to remodel EPA synthesis to maximize production and simplify downstream processing. In this study, random mutagenesis and chemical inhibitor-based selection method were devised to increase EPA production and accessibility for improved extraction. Ethyl methanesulfonate was used as the mutagen with selective pressure achieved by using two enzyme inhibitors of lipid metabolism: cerulenin and galvestine-1. Fatty acid methyl ester analysis of a selected fast-growing mutant strain had a higher percentage of EPA (37.5% of total fatty acids) than the wild-type strain (22.2% total fatty acids), with the highest EPA quantity recorded at 68.5 mg/g dry cell weight, while wild-type cells had 48.6 mg/g dry cell weight. Label-free quantitative proteomics for differential protein expression analysis revealed that the wild-type and mutant strains might have alternative channeling pathways for EPA synthesis. The mutant strain showed potentially improved photosynthetic efficiency, thus synthesizing a higher quantity of membrane lipids and EPA. The EPA synthesis pathways could also have deviated in the mutant, where fatty acid desaturase type 2 (13.7-fold upregulated) and lipid droplet surface protein (LDSP) (34.8-fold upregulated) were expressed significantly higher than in the wild-type strain. This study increases the understanding of EPA trafficking in N. oculata, leading to further strategies that can be implemented to enhance EPA synthesis in marine microalgae.
Collapse
Affiliation(s)
- Wan Aizuddin Wan Razali
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingdom.,Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Terengganu, Malaysia
| | - Caroline A Evans
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Jagroop Pandhal
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
13
|
Guo K, Feng X, Sun W, Han S, Wu S, Gao H. NapB Restores cytochrome c biosynthesis in bacterial dsbD-deficient mutants. Commun Biol 2022; 5:87. [PMID: 35064202 PMCID: PMC8782879 DOI: 10.1038/s42003-022-03034-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 01/05/2022] [Indexed: 11/10/2022] Open
Abstract
Cytochromes c (cyts c), essential for respiration and photosynthesis in eukaryotes, confer bacteria respiratory versatility for survival and growth in natural environments. In bacteria having a cyt c maturation (CCM) system, DsbD is required to mediate electron transport from the cytoplasm to CcmG of the Ccm apparatus. Here with cyt c-rich Shewanella oneidensis as the research model, we identify NapB, a cyt c per se, that suppresses the CCM defect of a dsbD mutant during anaerobiosis, when NapB is produced at elevated levels, a result of activation by cAMP-Crp. Data are then presented to suggest that NapB reduces CcmG, leading to the suppression. We further show that NapB proteins capable of rescuing CCM in the dsbD mutant form a small distinct clade. The study sheds light on multifunctionality of cyts c, and more importantly, unravels a self-salvation strategy through which bacteria have evolved to better adjust to the natural world. The DsbD protein is normally required for cytochrome c maturation (Ccm) in bacteria. With cytochrome c-rich Shewanella oneidensis as the research model, NapB, the small subunit of the nitrate reductase which is a cytochrome c per se, was found to suppress the Ccm defect resulting from DsbD loss under anaerobic conditions.
Collapse
|
14
|
Whaley SG, Radka CD, Subramanian C, Frank MW, Rock CO. Malonyl-acyl carrier protein decarboxylase activity promotes fatty acid and cell envelope biosynthesis in Proteobacteria. J Biol Chem 2021; 297:101434. [PMID: 34801557 PMCID: PMC8666670 DOI: 10.1016/j.jbc.2021.101434] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/02/2021] [Accepted: 11/09/2021] [Indexed: 11/20/2022] Open
Abstract
Bacterial fatty acid synthesis in Escherichia coli is initiated by the condensation of an acetyl-CoA with a malonyl-acyl carrier protein (ACP) by the β-ketoacyl-ACP synthase III enzyme, FabH. E. coli ΔfabH knockout strains are viable because of the yiiD gene that allows FabH-independent fatty acid synthesis initiation. However, the molecular function of the yiiD gene product is not known. Here, we show the yiiD gene product is a malonyl-ACP decarboxylase (MadA). MadA has two independently folded domains: an amino-terminal N-acetyl transferase (GNAT) domain (MadAN) and a carboxy-terminal hot dog dimerization domain (MadAC) that encodes the malonyl-ACP decarboxylase function. Members of the proteobacterial Mad protein family are either two domain MadA (GNAT-hot dog) or standalone MadB (hot dog) decarboxylases. Using structure-guided, site-directed mutagenesis of MadB from Shewanella oneidensis, we identified Asn45 on a conserved catalytic loop as critical for decarboxylase activity. We also found that MadA, MadAC, or MadB expression all restored normal cell size and growth rates to an E. coli ΔfabH strain, whereas the expression of MadAN did not. Finally, we verified that GlmU, a bifunctional glucosamine-1-phosphate N-acetyl transferase/N-acetyl-glucosamine-1-phosphate uridylyltransferase that synthesizes the key intermediate UDP-GlcNAc, is an ACP binding protein. Acetyl-ACP is the preferred glucosamine-1-phosphate N-acetyl transferase/N-acetyl-glucosamine-1-phosphate uridylyltransferase substrate, in addition to being the substrate for the elongation-condensing enzymes FabB and FabF. Thus, we conclude that the Mad family of malonyl-ACP decarboxylases supplies acetyl-ACP to support the initiation of fatty acid, lipopolysaccharide, peptidoglycan, and enterobacterial common antigen biosynthesis in Proteobacteria.
Collapse
Affiliation(s)
- Sarah G Whaley
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Christopher D Radka
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Chitra Subramanian
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Matthew W Frank
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Charles O Rock
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
15
|
Xie P, Wang J, Liang H, Gao H. Shewanella oneidensis arcA Mutation Impairs Aerobic Growth Mainly by Compromising Translation. Life (Basel) 2021; 11:life11090926. [PMID: 34575075 PMCID: PMC8470723 DOI: 10.3390/life11090926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 12/27/2022] Open
Abstract
Arc (anoxic redox control), one of the most intensely investigated two-component regulatory systems in γ-proteobacteria, plays a major role in mediating the metabolic transition from aerobiosis to anaerobiosis. In Shewanella oneidensis, a research model for respiratory versatility, Arc is crucial for aerobic growth. However, how this occurs remains largely unknown. In this study, we demonstrated that the loss of the response regulator ArcA distorts the correlation between transcription and translation by inhibiting the ribosome biosynthesis. This effect largely underlies the growth defect because it concurs with the effect of chloramphenicol, which impairs translation. Reduced transcription of ArcA-dependent ribosomal protein S1 appears to have a significant impact on ribosome assembly. We further show that the lowered translation efficiency is not accountable for the envelope defect, another major defect resulting from the ArcA loss. Overall, our results suggest that although the arcA mutation impairs growth through multi-fold complex impacts in physiology, the reduced translation efficacy appears to be a major cause for the phenotype, demonstrating that Arc is a primary system that coordinates proteomic resources with metabolism in S. oneidensis.
Collapse
|
16
|
Lipopolysaccharide Transport System Links Physiological Roles of σ E and ArcA in the Cell Envelope Biogenesis in Shewanella oneidensis. Microbiol Spectr 2021; 9:e0069021. [PMID: 34406804 PMCID: PMC8552667 DOI: 10.1128/spectrum.00690-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The bacterial cell envelope is not only a protective structure that surrounds the cytoplasm but also the place where a myriad of biological processes take place. This multilayered complex is particularly important for electroactive bacteria such as Shewanella oneidensis, as it generally hosts branched electron transport chains and numerous reductases for extracellular respiration. However, little is known about how the integrity of the cell envelope is established and maintained in these bacteria. By tracing the synthetic lethal effect of Arc two-component system and σE in S. oneidensis, in this study, we identified the lipopolysaccharide transport (Lpt) system as the determining factor. Both Arc and σE, by regulating transcription of lptFG and lptD, respectively, are required for the Lpt system to function properly. The ArcA loss results in an LptFG shortage that triggers activation of σE and leads to LptD overproduction. LptFG and LptD at abnormal levels cause a defect in the lipopolysaccharide (LPS) transport, leading to cell death unless σE-dependent envelope stress response is in place. Overall, our report reveals for the first time that Arc works together with σE to maintain the integrity of the S. oneidensis cell envelope by participating in the regulation of the LPS transport system. IMPORTANCE Arc is a well-characterized global regulatory system that modulates cellular respiration by responding to changes in the redox status in bacterial cells. In addition to regulating expression of respiratory enzymes, Shewanella oneidensis Arc also plays a critical role in cell envelope integrity. The absence of Arc and master envelope stress response (ESR) regulator σE causes a synthetic lethal phenotype. Our research shows that the Arc loss downregulates lptFG expression, leading to cell envelope defects that require σE-mediated ESR for viability. The complex mechanisms revealed here underscore the importance of the interplay between global regulators in bacterial adaption to their natural inhabits.
Collapse
|
17
|
Liu L, Feng X, Wang W, Chen Y, Chen Z, Gao H. Free Rather Than Total Iron Content Is Critically Linked to the Fur Physiology in Shewanella oneidensis. Front Microbiol 2020; 11:593246. [PMID: 33329474 PMCID: PMC7732582 DOI: 10.3389/fmicb.2020.593246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/29/2020] [Indexed: 11/30/2022] Open
Abstract
Ferric uptake regulator (Fur) is a transcriptional regulator playing a central role in iron homeostasis of many bacteria, and Fur inactivation commonly results in pleiotropic phenotypes. In Shewanella oneidensis, a representative of dissimilatory metal-reducing γ-proteobacteria capable of respiring a variety of chemicals as electron acceptors (EAs), Fur loss substantially impairs respiration. However, to date the mechanism underlying the physiological phenomenon remains obscure. This investigation reveals that Fur loss compromises activity of iron proteins requiring biosynthetic processes for their iron cofactors, heme in particular. We then show that S. oneidensis Fur is critical for maintaining heme homeostasis by affecting both its biosynthesis and decomposition of the molecule. Intriguingly, the abundance of iron-containing proteins controlled by H2O2-responding regulator OxyR increases in the fur mutant because the Fur loss activates OxyR. By comparing suppression of membrane-impermeable, membrane-permeable, and intracellular-only iron chelators on heme deficiency and elevated H2O2 resistance, our data suggest that the elevation of the free iron content by the Fur loss is likely to be the predominant factor for the Fur physiology. Overall, these results provide circumstantial evidence that Fur inactivation disturbs bacterial iron homeostasis by altering transcription of its regulon members, through which many physiological processes, such as respiration and oxidative stress response, are transformed.
Collapse
Affiliation(s)
| | | | | | | | | | - Haichun Gao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Feng X, Guo K, Gao H. Plasticity of the peroxidase AhpC links multiple substrates to diverse disulfide-reducing pathways in Shewanella oneidensis. J Biol Chem 2020; 295:11118-11130. [PMID: 32532818 DOI: 10.1074/jbc.ra120.014010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/29/2020] [Indexed: 12/25/2022] Open
Abstract
AhpC is a bacterial representative of 2-Cys peroxiredoxins (Prxs) with broad substrate specificity and functional plasticity. However, details underpinning these two important attributes of AhpC remain unclear. Here, we studied the functions and mechanisms of regulation of AhpC in the facultative Gram-negative anaerobic bacterium Shewanella oneidensis, in which AhpC's physiological roles can be conveniently assessed through its suppression of a plating defect due to the genetic loss of a major catalase. We show that successful suppression can be achieved only when AhpC is produced in a dose- and time-dependent manner through a complex mechanism involving activation of the transcriptional regulator OxyR, transcription attenuation, and translation reduction. By analyzing AhpC truncation variants, we demonstrate that reactivity with organic peroxides (OPs) rather than H2O2 is resilient to mutagenesis, implying that OP reduction is the core catalytic function of AhpC. Intact AhpC could be recycled only by its cognate reductase AhpF, and AhpC variants lacking the Prx domain or the extreme C-terminal five residues became promiscuous electron acceptors from the thioredoxin reductase TrxR and the GSH reductase Gor in addition to AhpF, implicating an additional dimension to functional plasticity of AhpC. Finally, we show that the activity of S. oneidensis AhpC is less affected by mutations than that of its Escherichia coli counterpart. These findings suggest that the physiological roles of bacterial AhpCs are adapted to different oxidative challenges, depending on the organism, and that its functional plasticity is even more extensive than previously reported.
Collapse
Affiliation(s)
- Xue Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kailun Guo
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haichun Gao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
19
|
Liang H, Zhang Y, Wang S, Gao H. Mutual interplay between ArcA and σ E orchestrates envelope stress response in Shewanella oneidensis. Environ Microbiol 2020; 23:652-668. [PMID: 32372525 DOI: 10.1111/1462-2920.15060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/03/2020] [Indexed: 01/15/2023]
Abstract
To survive and thrive in harsh and ever-changing environments, intricate mechanisms have evolved for bacterial cells to monitor perturbations impacting the integrity of their envelope and to mount an appropriate response to contain or repair the damage. In this study, we report in Shewanella oneidensis a previously undescribed mechanism for the envelope defect resulting from the loss of Arc, a two-component transcriptional regulatory system crucial for respiration. We uncovered σE , a master regulator establishing and maintaining the integrity of the cell envelope in γ-proteobacteria, as the determining factor for the cell envelope defect of the arcA mutant. When ArcA is depleted, σE activity is compromised by enhanced production of anti-σE protein RseA. Surprisingly, S. oneidensis σE is not essential for viability, but becomes so in the absence of ArcA. Furthermore, we demonstrated that there is an interplay between these two regulators as arcA expression is affected by availability of σE . Overall, our results underscore functional interplay of regulatory systems for envelope stress response: although each of the systems may respond to perturbation of particular components of the envelope, they are functionally intertwined, working together to form an interconnected safety net.
Collapse
Affiliation(s)
- Huihui Liang
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Zhejiang, Hangzhou, 310058, China
| | - Yongting Zhang
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Zhejiang, Hangzhou, 310058, China
| | - Sijing Wang
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Zhejiang, Hangzhou, 310058, China
| | - Haichun Gao
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Zhejiang, Hangzhou, 310058, China
| |
Collapse
|
20
|
Nitrite modulates aminoglycoside tolerance by inhibiting cytochrome heme-copper oxidase in bacteria. Commun Biol 2020; 3:269. [PMID: 32461576 PMCID: PMC7253457 DOI: 10.1038/s42003-020-0991-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/05/2020] [Indexed: 01/23/2023] Open
Abstract
As a bacteriostatic agent, nitrite has been used in food preservation for centuries. When used in combination with antibiotics, nitrite is reported to work either cooperatively or antagonistically. However, the mechanism underlying these effects remains largely unknown. Here we show that nitrite mediates tolerance to aminoglycosides in both Gram-negative and Gram-positive bacteria, but has little interaction with other types of antibiotics. Nitrite directly and mainly inhibits cytochrome heme-copper oxidases (HCOs), and by doing so, the membrane potential is compromised, blocking uptake of aminoglycosides. In contrast, reduced respiration (oxygen consumption rate) resulting from nitrite inhibition is not critical for aminoglycoside tolerance. While our data indicate that nitrite is a promising antimicrobial agent targeting HCOs, cautions should be taken when used with other antibiotics, aminoglycosides in particular.
Collapse
|
21
|
Promiscuous Enzymes Cause Biosynthesis of Diverse Siderophores in Shewanella oneidensis. Appl Environ Microbiol 2020; 86:AEM.00030-20. [PMID: 32005730 DOI: 10.1128/aem.00030-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 02/05/2023] Open
Abstract
The siderophore synthetic system in Shewanella species is able to synthesize dozens of macrocyclic siderophores in vitro with synthetic precursors. In vivo, however, although three siderophores are produced naturally in Shewanella algae B516, which carries a lysine decarboxylase (AvbA) specific for siderophore synthesis, only one siderophore can be detected from many other Shewanella species. In this study, we examined a siderophore-overproducing mutant of Shewanella oneidensis which lacks an AvbA counterpart, and we found that it can also produce these three siderophores. We identified both SpeC and SpeF as promiscuous decarboxylases for both lysine and ornithine to synthesize the siderophore precursors cadaverine and putrescine, respectively. Intriguingly, putrescine is mainly synthesized from arginine through an arginine decarboxylation pathway in a constitutive manner, not liable to the concentrations of iron and siderophores. Our results provide further evidence that the substrate availability plays a determining role in siderophore production. Furthermore, we provide evidence to suggest that under iron starvation conditions, cells allocate more putrescine for siderophore biosynthesis by downregulating the expression of the enzyme that transforms putrescine into spermidine. Overall, this study provides another example of the great flexibility of bacterial metabolism that is honed by evolution to better fit living environments of these bacteria.IMPORTANCE The simultaneous production of multiple siderophores is considered a general strategy for microorganisms to rapidly adapt to their ever-changing environments. In this study, we show that some Shewanella spp. may downscale their capability for siderophore synthesis to facilitate adaptation. Although S. oneidensis lacks an enzyme specifically synthesizing cadaverine, it can produce it by using promiscuous ornithine decarboxylases. Despite this ability, this bacterium predominately produces the primary siderophore while restraining the production of secondary siderophores by regulating substrate availability. In addition to using the arginine decarboxylase (ADC) pathway for putrescine synthesis, cells optimize the putrescine pool for siderophore production. Our work provides an insight into the coordinated synthesis of multiple siderophores by harnessing promiscuous enzymes in bacteria and underscores the importance of substrate pools for the biosynthesis of natural products.
Collapse
|
22
|
Sun Y, Meng Q, Zhang Y, Gao H. Derepression of bkd by the FadR loss dictates elevated production of BCFAs and isoleucine starvation. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158577. [PMID: 31759173 DOI: 10.1016/j.bbalip.2019.158577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/13/2019] [Indexed: 12/21/2022]
Abstract
In many γ-proteobacteria, FadR is recognized as a global transcriptional regulator: in addition to being the most prominent regulator for FA biosynthesis and degradation, the protein also mediates expression of many genes in diverse biological processes. In Shewanella oneidensis, a bacterium renowned for its respiratory versatility, FadR directly controls only a few genes. However, the FadR loss substantially increases BCFA contents and impairs growth. In this study, we showed that FadR is required to activate a number of important FA biosynthesis genes, including fabA, fabB, and fabH1. Although most of these genes are controlled by FadR in a direct manner, they are not critically responsible for the phenotypes resulting from the FadR depletion. Subsequent investigations identified BKD encoded by the bkd operon as the critical factor for enhanced BCFA production. In the absence of FadR, the bkd operon is derepressed, resulting in elevated conversion of 3MOP to 3-methylbutanoyl-CoA, one of the direct substrates for BCFA synthesis. We further showed that the growth defect of the fadR mutant is due to BCAA shortage, a scenario also attributable to excessive BKD: 3MOP, the common substrate for both BCFA and BCAA, is disproportionately used for BCFA synthesis, leading to reduced production of BCAA. Collectively, our findings reveal that the S. oneidensis FadR regulon is surely larger than previously proposed and a new mechanism by which FadR impacts bacterial physiology.
Collapse
Affiliation(s)
- Yijuan Sun
- Institute of Microbiology College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qiu Meng
- Institute of Microbiology College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Rd, Hangzhou, 310014, Zhejiang, China
| | - Yongting Zhang
- Institute of Microbiology College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Haichun Gao
- Institute of Microbiology College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
23
|
Liang H, Mao Y, Sun Y, Gao H. Transcriptional regulator ArcA mediates expression of oligopeptide transport systems both directly and indirectly in Shewanella oneidensis. Sci Rep 2019; 9:13839. [PMID: 31554843 PMCID: PMC6761289 DOI: 10.1038/s41598-019-50201-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/09/2019] [Indexed: 11/09/2022] Open
Abstract
In γ-proteobacterial species, such as Escherichia coli, the Arc (anoxic redox control) two-component system plays a major role in mediating the metabolic transition from aerobiosis to anaerobiosis, and thus is crucial for anaerobic growth but dispensable for aerobic growth. In Shewanella oneidensis, a bacterium renowned for respiratory versatility, Arc (SoArc) primarily affects aerobic growth. To date, how this occurs has remained largely unknown although the growth defect resulting from the loss of DNA-binding response regulator SoArcA is tryptone-dependent. In this study, we demonstrated that the growth defect is in part linked to utilization of oligopeptides and di-tripeptides, and peptide uptake but not peptide degradation is significantly affected by the SoArcA loss. A systematic characterization of major small peptide uptake systems manifests that ABC peptide transporter Sap and four proton-dependent oligopeptide transporters (POTs) are responsible for transport of oligopeptides and di-tripeptides respectively. Among them, Sap and DtpA (one of POTs) are responsive to the SoarcA mutation but only dtpA is under the direct control of SoArcA. We further showed that both Sap and DtpA, when overproduced, improve growth of the SoarcA mutant. While the data firmly establish a link between transport of oligopeptides and di-tripeptides and the SoarcA mutation, other yet-unidentified factors are implicated in the growth defect resulting from the SoArcA loss.
Collapse
Affiliation(s)
- Huihui Liang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yinting Mao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yijuan Sun
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.,Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Haichun Gao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China. .,Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|