1
|
Wang WH, Kao YC, Hsieh CH, Tsai SY, Cheung CHY, Huang HC, Juan HF. Multiomics Reveals Induction of Neuroblastoma SK-N-BE(2)C Cell Death by Mitochondrial Division Inhibitor 1 through Multiple Effects. J Proteome Res 2024; 23:301-315. [PMID: 38064546 DOI: 10.1021/acs.jproteome.3c00566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Mitochondrial division inhibitor 1 (Mdivi-1) is a well-known synthetic compound aimed at inhibiting dynamin-related protein 1 (Drp1) to suppress mitochondrial fission, making it a valuable tool for studying mitochondrial dynamics. However, its specific effects beyond Drp1 inhibition remain to be confirmed. In this study, we employed integrative proteomics and phosphoproteomics to delve into the molecular responses induced by Mdivi-1 in SK-N-BE(2)C cells. A total of 3070 proteins and 1945 phosphorylation sites were identified, with 880 of them represented as phosphoproteins. Among these, 266 proteins and 97 phosphorylation sites were found to be sensitive to the Mdivi-1 treatment. Functional enrichment analysis unveiled their involvement in serine biosynthesis and extrinsic apoptotic signaling pathways. Through targeted metabolomics, we observed that Mdivi-1 enhanced intracellular serine biosynthesis while reducing the production of C24:1-ceramide. Within these regulated phosphoproteins, dynamic dephosphorylation of proteasome subunit alpha type 3 serine 250 (PSMA3-S250) occurred after Mdivi-1 treatment. Further site-directed mutagenesis experiments revealed that the dephosphorylation-deficient mutant PSMA3-S250A exhibited a decreased cell survival. This research confirms that Mdivi-1's inhibition of mitochondrial division leads to various side effects, ultimately influencing cell survival, rather than solely targeting Drp1 inhibition.
Collapse
Affiliation(s)
- Wei-Hsuan Wang
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 106, Taiwan
| | - Yi-Chun Kao
- Department of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Chiao-Hui Hsieh
- Center for Computational and Systems Biology, National Taiwan University, Taipei 106, Taiwan
| | - Shin-Yu Tsai
- Department of Life Science, National Taiwan University, Taipei 106, Taiwan
| | | | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Hsueh-Fen Juan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 106, Taiwan
- Department of Life Science, National Taiwan University, Taipei 106, Taiwan
- Center for Computational and Systems Biology, National Taiwan University, Taipei 106, Taiwan
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan
- Center for Advanced Computing and Imaging in Biomedicine, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
2
|
Li H, Huang Z, Yang C, Han D, Wang X, Qiu X, Zhang Z, Chen X. Association between plasma lysophosphatidic acid levels and bronchopulmonary dysplasia in extremely preterm infants: A prospective study. Pediatr Pulmonol 2023; 58:3516-3522. [PMID: 37712600 DOI: 10.1002/ppul.26685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/19/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Lysophosphatidic acid (LPA) is implicated in bronchopulmonary dysplasia (BPD) pathogenesis, but clinical evidence is lacking. This study aimed to investigate LPA levels in preterm infants with and without BPD and explore LPA as a biomarker for predicting BPD occurrence. METHODS Premature infants with a gestational age of <28 weeks or a birth weight of <1000 g were enrolled. Blood samples were collected at postnatal day (PD) 7, 28, and postmenstrual age (PMA) 36 weeks, and plasma LPA levels were measured using a commercial ELISA kit. Receiver operating characteristic curve (ROC) curve analysis determined the PD 28 cutoff for LPA, and multivariable regression analyzed LPA's independent contribution to BPD and exploratory outcomes. RESULT Among the 91 infants enrolled in this study, 35 were classified into the non-BPD group and 56 into the BPD group. Infants with BPD had higher plasma LPA levels at PD 28 (6.467 vs. 4.226 μg/mL, p = 0.034) and PMA 36 weeks (2.330 vs. 1.636 μg/mL, p = 0.001). PD 28 LPA level of 6.132 μg/mL was the cutoff for predicting BPD development. Higher PD 28 LPA levels (≥6.132 μg/mL) independently associated with BPD occurrence (OR 3.307, 95% CI 1.032-10.597, p = 0.044). Higher LPA levels correlated with longer oxygen therapy durations [regression coefficients (β) 0.147, 95% CI 0.643-16.133, p = .034]. CONCLUSIONS Infants with BPD had higher plasma LPA levels at PD 28 and PMA 36 weeks. Higher PD 28 LPA levels independently associated with an increased BPD risk.
Collapse
Affiliation(s)
- Huitao Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Neonatology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
- Department of Cardiac Pediatrics, Guangdong Provincial Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zilu Huang
- Department of Neonatology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Chuanzhong Yang
- Department of Neonatology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Dongshan Han
- Department of Neonatology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Xuan Wang
- Department of Neonatology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Xiaomei Qiu
- Department of Neonatology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Zhiwei Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Cardiac Pediatrics, Guangdong Provincial Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xueyu Chen
- Department of Neonatology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
3
|
Li N, Xu X, Qi Z, Gao C, Zhao P, Yang J, Damirin A. Lpar1-mediated Effects in Endothelial Progenitor Cells Are Crucial for Lung Repair in Acute Respiratory Distress Syndrome/Acute Lung Injury. Am J Respir Cell Mol Biol 2023; 68:161-175. [PMID: 36287629 DOI: 10.1165/rcmb.2021-0331oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Acute respiratory distress syndrome/acute lung injury (ARDS/ALI) involves acute respiratory failure characterized by vascular endothelial and lung alveolar epithelial injury. Endothelial progenitor cells (EPCs) can mediate vasculogenesis. However, the limitations of EPCs, such as low survival and differentiation, are believed to inhibit the effectiveness of autologous cell therapies. This study demonstrated that lysophosphatidic acid (LPA), a bioactive small molecule without immunogenicity, is involved in the survival and antiapoptotic effects in human umbilical cord mesenchymal stem cells. This study aimed to explore whether LPA improves the survival of EPCs, enhancing the cellular therapeutic efficacy in ARDS, and these results will expand the application of LPA in stem cells and regenerative medicine. LPA promoted the colony formation, proliferation, and migration of EPCs and upregulated the expression of vascular endothelial-derived growth factor (VEGF) in EPCs. LPA pretreatment of transplanted EPCs improved the therapeutic effect by increasing EPC numbers in the rat lungs. LPA enhanced EPC proliferation and migration through Lpar1 coupled to Gi/o and Gq/11, respectively. Activation of extracellular signal-related kinase 1/2, or ERK1/2, was related to LPA-induced EPC proliferation but not migration. LPA/Lpar1-mediated Gi/o protein was also shown to be involved in promoting VEGF expression and inhibiting IL-1α expression in EPCs. Low LPA concentrations are present after lung injury; thus, the restoration of LPA may promote endothelial cell homeostasis and lung repair in ARDS. Inhalation of LPA significantly promoted the homing of endogenous EPCs to the lung and reduced lung injury in both rats with LPS-induced ALI and Streptococcus pneumoniae-infected mice. Taken together, these data indicated that LPA/Lpar1-mediated effects in EPCs are involved in maintaining endothelial cell homeostasis and lung tissue repair under physiological conditions.
Collapse
Affiliation(s)
- Narengerile Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China.,College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; and.,The Third Affiliated Hospital, Inner Mongolia Medical University, Baotou, Inner Mongolia, China
| | - Xiyuan Xu
- The Third Affiliated Hospital, Inner Mongolia Medical University, Baotou, Inner Mongolia, China
| | - Zhimin Qi
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Chanchan Gao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Pengfei Zhao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Jingping Yang
- The Third Affiliated Hospital, Inner Mongolia Medical University, Baotou, Inner Mongolia, China
| | - Alatangaole Damirin
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China
| |
Collapse
|
4
|
Thomas JM, Sudhadevi T, Basa P, Ha AW, Natarajan V, Harijith A. The Role of Sphingolipid Signaling in Oxidative Lung Injury and Pathogenesis of Bronchopulmonary Dysplasia. Int J Mol Sci 2022; 23:ijms23031254. [PMID: 35163176 PMCID: PMC8835774 DOI: 10.3390/ijms23031254] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
Premature infants are born with developing lungs burdened by surfactant deficiency and a dearth of antioxidant defense systems. Survival rate of such infants has significantly improved due to advances in care involving mechanical ventilation and oxygen supplementation. However, a significant subset of such survivors develops the chronic lung disease, Bronchopulmonary dysplasia (BPD), characterized by enlarged, simplified alveoli and deformed airways. Among a host of factors contributing to the pathogenesis is oxidative damage induced by exposure of the developing lungs to hyperoxia. Recent data indicate that hyperoxia induces aberrant sphingolipid signaling, leading to mitochondrial dysfunction and abnormal reactive oxygen species (ROS) formation (ROS). The role of sphingolipids such as ceramides and sphingosine 1-phosphate (S1P), in the development of BPD emerged in the last decade. Both ceramide and S1P are elevated in tracheal aspirates of premature infants of <32 weeks gestational age developing BPD. This was faithfully reflected in the murine models of hyperoxia and BPD, where there is an increased expression of sphingolipid metabolites both in lung tissue and bronchoalveolar lavage. Treatment of neonatal pups with a sphingosine kinase1 specific inhibitor, PF543, resulted in protection against BPD as neonates, accompanied by improved lung function and reduced airway remodeling as adults. This was accompanied by reduced mitochondrial ROS formation. S1P receptor1 induced by hyperoxia also aggravates BPD, revealing another potential druggable target in this pathway for BPD. In this review we aim to provide a detailed description on the role played by sphingolipid signaling in hyperoxia induced lung injury and BPD.
Collapse
Affiliation(s)
- Jaya M. Thomas
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA; (J.M.T.); (T.S.); (P.B.); (A.W.H.)
| | - Tara Sudhadevi
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA; (J.M.T.); (T.S.); (P.B.); (A.W.H.)
| | - Prathima Basa
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA; (J.M.T.); (T.S.); (P.B.); (A.W.H.)
| | - Alison W. Ha
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA; (J.M.T.); (T.S.); (P.B.); (A.W.H.)
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Viswanathan Natarajan
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA;
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Anantha Harijith
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA; (J.M.T.); (T.S.); (P.B.); (A.W.H.)
- Correspondence: ; Tel.: +1-(216)-286-7038
| |
Collapse
|
5
|
Sudhadevi T, Jafri A, Ha AW, Basa P, Thomas JM, Fu P, Wary K, Mehta D, Natarajan V, Harijith A. Hyperoxia-induced S1P 1 signaling reduced angiogenesis by suppression of TIE-2 leading to experimental bronchopulmonary dysplasia. Cell Biochem Biophys 2021; 79:561-573. [PMID: 34176100 PMCID: PMC8551021 DOI: 10.1007/s12013-021-01014-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2021] [Indexed: 01/16/2023]
Abstract
INTRODUCTION We have earlier shown that hyperoxia (HO)-induced sphingosine kinase 1 (SPHK1)/sphingosine-1-phosphate (S1P) signaling contribute to bronchopulmonary dysplasia (BPD). S1P acts through G protein-coupled receptors, S1P1 through S1P5. Further, we noted that heterozygous deletion of S1pr1 ameliorated the HO-induced BPD in the murine model. The mechanism by which S1P1 signaling contributes to HO-induced BPD was explored. METHODS S1pr1+/+ and S1pr1+/- mice pups were exposed to either room air (RA) or HO (75% oxygen) for 7 days from PN 1-7. Lung injury and alveolar simplification was evaluated. Lung protein expression was determined by Western blotting and immunohistochemistry (IHC). In vitro experiments were performed using human lung microvascular endothelial cells (HLMVECs) with S1P1 inhibitor, NIBR0213 to interrogate the S1P1 signaling pathway. RESULTS HO increased the expression of S1pr1 gene as well as S1P1 protein in both neonatal lungs and HLMVECs. The S1pr1+/- neonatal mice showed significant protection against HO-induced BPD which was accompanied by reduced inflammation markers in the bronchoalveolar lavage fluid. HO-induced reduction in ANG-1, TIE-2, and VEGF was rescued in S1pr1+/- mouse, accompanied by an improvement in the number of arterioles in the lung. HLMVECs exposed to HO increased the expression of KLF-2 accompanied by reduced expression of TIE-2, which was reversed with S1P1 inhibition. CONCLUSION HO induces S1P1 followed by reduced expression of angiogenic factors. Reduction of S1P1 signaling restores ANG-1/ TIE-2 signaling leading to improved angiogenesis and alveolarization thus protecting against HO-induced neonatal lung injury.
Collapse
Affiliation(s)
- Tara Sudhadevi
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Anjum Jafri
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Alison W Ha
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Prathima Basa
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Jaya M Thomas
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Panfeng Fu
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Kishore Wary
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Dolly Mehta
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Viswanathan Natarajan
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Anantha Harijith
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
6
|
Cheng H, Chen L, Wei Y, Hu T, Li D, Wu B. Knockdown of miR-203a-3p alleviates the development of bronchopulmonary dysplasia partly via the up-regulation of vascular endothelial growth factor A. J Bioenerg Biomembr 2021; 53:13-23. [PMID: 33415607 DOI: 10.1007/s10863-020-09863-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/23/2020] [Indexed: 12/01/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is characterized by impaired vascular and alveolar development, and the underlying molecular mechanisms have remained elusive. MicroRNAs are important players in various biological functions including the pathogenesis of BPD. The present study aimed to examine the expression of miR-203a-3p in the peripheral blood of BPD patients and elucidate the mechanisms underlying miR-203a-3p-mediated progression of BPD. We examined the expression of miR-203a-3p in the peripheral blood of BPD patients and found that miR-203a-3p was up-regulated in the patients. Additionally, the mRNA expression levels of vascular endothelial growth factor A (VEGFA) and hypoxia-inducible factor-1alpha were down-regulated in the BPD patients. Further in vitro studies showed that miR-203a-3p suppressed the expression of VEGFA in RLE-6TN cells by targeting the VEGFA 3' untranslated region. Overexpression of miR-203a-3p inhibited the viability of RLE-6TN cells and induced cell apoptosis, whereas the knockdown of miR-203a-3p exerted opposite effects. VEGFA treatment significantly attenuated the increase in the RLE-6TN cell apoptotic rates induced by miR-203a-3p overexpression; while VEGFA knockdown significantly increased the cell apoptotic rates of RLE-6TN cells, which was partially reversed by the treatment with miR-203a-3p inhibitor. Furthermore, miR-203a-3p was up-regulated, whereas VEGFA was down-regulated in the lung tissues of BPD rats, and sequestration of the expression of miR-203a-3p prevented hyperoxia-induced lung damage, increased VEGFA mRNA and protein expression levels, and promoted the protein expression of ERK, PI3K, and p38 in the lung tissues of BDP rats. In summary, the findings of our study indicate that miR-203a-3p knockdown alleviates hyperoxia-induced lung tissue damage in the BPD rat model, and its effect may be associated with the up-regulation of VEGF.
Collapse
Affiliation(s)
- Hanrong Cheng
- Institute of Respiratory Diseases, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, China
| | - Li Chen
- Institute of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, China
| | - Yongli Wei
- Institute of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, China
| | - Tianyong Hu
- Longgang ENT Hospital, Institute of ENT and Shenzhen Key Laboratory of ENT, Shenzhen, 518172, China
| | - Dongcai Li
- Longgang ENT Hospital, Institute of ENT and Shenzhen Key Laboratory of ENT, Shenzhen, 518172, China.
| | - Benqing Wu
- Department of Neonatology, University of Chinese Academy of Science-Shenzhen Hospital, Shenzhen, 518000, China.
| |
Collapse
|
7
|
Lipid Mediators Regulate Pulmonary Fibrosis: Potential Mechanisms and Signaling Pathways. Int J Mol Sci 2020; 21:ijms21124257. [PMID: 32549377 PMCID: PMC7352853 DOI: 10.3390/ijms21124257] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease of unknown etiology characterized by distorted distal lung architecture, inflammation, and fibrosis. The molecular mechanisms involved in the pathophysiology of IPF are incompletely defined. Several lung cell types including alveolar epithelial cells, fibroblasts, monocyte-derived macrophages, and endothelial cells have been implicated in the development and progression of fibrosis. Regardless of the cell types involved, changes in gene expression, disrupted glycolysis, and mitochondrial oxidation, dysregulated protein folding, and altered phospholipid and sphingolipid metabolism result in activation of myofibroblast, deposition of extracellular matrix proteins, remodeling of lung architecture and fibrosis. Lipid mediators derived from phospholipids, sphingolipids, and polyunsaturated fatty acids play an important role in the pathogenesis of pulmonary fibrosis and have been described to exhibit pro- and anti-fibrotic effects in IPF and in preclinical animal models of lung fibrosis. This review describes the current understanding of the role and signaling pathways of prostanoids, lysophospholipids, and sphingolipids and their metabolizing enzymes in the development of lung fibrosis. Further, several of the lipid mediators and enzymes involved in their metabolism are therapeutic targets for drug development to treat IPF.
Collapse
|