1
|
Tamarindo GH, Ribeiro CF, Silva ADT, Castro A, Caruso ÍP, Souza FP, Taboga SR, Loda M, Góes RM. The polyunsaturated fatty acid docosahexaenoic affects mitochondrial function in prostate cancer cells. Cancer Metab 2024; 12:24. [PMID: 39113152 PMCID: PMC11308158 DOI: 10.1186/s40170-024-00348-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/29/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) shows a rewired metabolism featuring increased fatty acid uptake and synthesis via de novo lipogenesis, both sharply related to mitochondrial physiology. The docosahexaenoic acid (DHA) is an omega-3 polyunsaturated fatty acid (PUFA) that exerts its antitumoral properties via different mechanisms, but its specific action on mitochondria in PCa is not clear. Therefore, we investigated whether the DHA modulates mitochondrial function in PCa cell lines. METHODS Here, we evaluated mitochondrial function of non-malignant PNT1A and the castration-resistant (CRPC) prostate 22Rv1 and PC3 cell lines in response to DHA incubation. For this purpose, we used Seahorse extracellular flux assay to assess mitochondria function, [14C]-glucose to evaluate its oxidation as well as its contribution to fatty acid synthesis, 1H-NMR for metabolite profile determination, MitoSOX for superoxide anion production, JC-1 for mitochondrial membrane polarization, mass spectrometry for determination of phosphatidylglycerol levels and composition, staining with MitoTracker dye to assess mitochondrial morphology under super-resolution in addition to Transmission Electron Microscopy, In-Cell ELISA for COX-I and SDH-A protein expression and flow cytometry (Annexin V and 7-AAD) for cell death estimation. RESULTS In all cell lines DHA decreased basal respiratory activity, ATP production, and the spare capacity in mitochondria. Also, the omega-3 induced mitochondrial hyperpolarization, ROS overproduction and changes in membrane phosphatidylglycerol composition. In PNT1A, DHA led to mitochondrial fragmentation and it increased glycolysis while in cancer cells it stimulated glucose oxidation, but decreased de novo lipogenesis specifically in 22Rv1, indicating a metabolic shift. In all cell lines, DHA modulated several metabolites related to energy metabolism and it was incorporated in phosphatidylglycerol, a precursor of cardiolipin, increasing the unsaturation index in the mitochondrial membrane. Accordingly, DHA triggered cell death mainly in PNT1A and 22Rv1. CONCLUSION In conclusion, mitochondrial metabolism is significantly affected by the PUFA supplementation to the point that cells are not able to proliferate or survive under DHA-enriched condition. Moreover, combination of DHA supplementation with inhibition of metabolism-related pathways, such as de novo lipogenesis, may be synergistic in castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Guilherme Henrique Tamarindo
- Institute of Biology, State University of Campinas, Campinas, São Paulo, Brazil
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | | | - Alana Della Torre Silva
- Department of Biological Sciences, IBILCE - UNESP. Rua Cristovão Colombo, 2265 Jardim Nazareth, São José Do Rio Preto, São Paulo, 15054-000, Brazil
| | - Alex Castro
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Ícaro Putinhon Caruso
- Department of Biophysics, Institute of Biosciences, Humanities and Exact Science, São Paulo State University, São José Do Rio Preto, São Paulo, Brazil
- Institute of Medical Biochemistry and National Center for Structure Biology and Bioimaging (CENABIO), National Center for Nuclear Magnetic Resonance of Macromolecules, Federal University of Rio de Janeiro, Ilha Do Fundão, Rio de Janeiro, Brazil
| | - Fátima Pereira Souza
- Department of Biophysics, Institute of Biosciences, Humanities and Exact Science, São Paulo State University, São José Do Rio Preto, São Paulo, Brazil
| | - Sebastião Roberto Taboga
- Department of Biological Sciences, IBILCE - UNESP. Rua Cristovão Colombo, 2265 Jardim Nazareth, São José Do Rio Preto, São Paulo, 15054-000, Brazil
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Rejane Maira Góes
- Department of Biological Sciences, IBILCE - UNESP. Rua Cristovão Colombo, 2265 Jardim Nazareth, São José Do Rio Preto, São Paulo, 15054-000, Brazil.
| |
Collapse
|
2
|
Tamarindo GH, Novais AA, Chuffa LGA, Zuccari DAPC. Metabolic Alterations in Canine Mammary Tumors. Animals (Basel) 2023; 13:2757. [PMID: 37685021 PMCID: PMC10487042 DOI: 10.3390/ani13172757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Canine mammary tumors (CMTs) are among the most common diseases in female dogs and share similarities with human breast cancer, which makes these animals a model for comparative oncology studies. In these tumors, metabolic reprogramming is known as a hallmark of carcinogenesis whereby cells undergo adjustments to meet the high bioenergetic and biosynthetic demands of rapidly proliferating cells. However, such alterations are also vulnerabilities that may serve as a therapeutic strategy, which has mostly been tested in human clinical trials but is poorly explored in CMTs. In this dedicated review, we compiled the metabolic changes described for CMTs, emphasizing the metabolism of carbohydrates, amino acids, lipids, and mitochondrial functions. We observed key factors associated with the presence and aggressiveness of CMTs, such as an increase in glucose uptake followed by enhanced anaerobic glycolysis via the upregulation of glycolytic enzymes, changes in glutamine catabolism due to the overexpression of glutaminases, increased fatty acid oxidation, and distinct effects depending on lipid saturation, in addition to mitochondrial DNA, which is a hotspot for mutations. Therefore, more attention should be paid to this topic given that targeting metabolic fragilities could improve the outcome of CMTs.
Collapse
Affiliation(s)
- Guilherme Henrique Tamarindo
- Department of Molecular Biology, São José do Rio Preto Faculty of Medicine, São José do Rio Preto 15090-000, SP, Brazil
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil
| | - Adriana Alonso Novais
- Health Sciences Institute (ICS), Mato Grosso Federal University (UFMT), Sinop 78550-728, MT, Brazil
| | - Luiz Gustavo Almeida Chuffa
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
| | | |
Collapse
|
3
|
Mohamad Ali D, Hogeveen K, Orhant RM, Le Gal de Kerangal T, Ergan F, Ulmann L, Pencreac'h G. Lysophosphatidylcholine-DHA Specifically Induces Cytotoxic Effects of the MDA-MB-231 Human Breast Cancer Cell Line In Vitro-Comparative Effects with Other Lipids Containing DHA. Nutrients 2023; 15:2137. [PMID: 37432249 DOI: 10.3390/nu15092137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 07/12/2023] Open
Abstract
Docosahexaenoic acid (DHA, C22:6 ω-3) is a dietary polyunsaturated fatty acid that has an important role in human health. Epidemiological studies linked a high intake of DHA to a reduced risk of certain cancers. Recently, attention focused on how the lipid carrier in which DHA is delivered, i.e., esterified on acylglycerols, phospholipids, or free, affects its biological effects. However, studies comparing the effects of these different forms for DHA supply to cancer cells in vitro are limited. In this study, the effect of free DHA and five lipids carrying one to three DHA chains (LPC-DHA, PC-DHA, MAG-DHA, DAG-DHA and TAG-DHA) on the viability of the MDA-MB-231 breast cancer cell line was compared. Our results revealed a strong structure-function relationship of DHA-carrying lipids on the viability of MDA-MB-231 cells. Glycerophosphocholine-based lipids are the most effective DHA carriers in reducing the viability of MDA-MB-231 cells, with LPC-DHA being more effective (IC50 = 23.7 µM) than PC-DHA (IC50 = 67 µM). The other tested lipids are less toxic (MAG-DHA, free DHA) or even not toxic (DAG-DHA, TAG-DHA) under our conditions. Investigating the mechanism of cell death induced by LPC-DHA revealed increased oxidative stress and membrane cell damage.
Collapse
Affiliation(s)
- Dalal Mohamad Ali
- BiOSSE: Biology of Organisms, Stress, Health, Environment, IUT de Laval, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
- Toulouse Biotechnology Institute, Equipe CIMEs, Université de Toulouse, CNRS, INRAE, INSA, F-31077 Toulouse, France
| | - Kevin Hogeveen
- Unité de Toxicologie des Contaminants, ANSES, F-35306 Fougères, France
| | - Rose-Marie Orhant
- BiOSSE: Biology of Organisms, Stress, Health, Environment, IUT de Laval, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Tiphaine Le Gal de Kerangal
- BiOSSE: Biology of Organisms, Stress, Health, Environment, IUT de Laval, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Françoise Ergan
- BiOSSE: Biology of Organisms, Stress, Health, Environment, IUT de Laval, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Lionel Ulmann
- BiOSSE: Biology of Organisms, Stress, Health, Environment, IUT de Laval, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Gaëlle Pencreac'h
- BiOSSE: Biology of Organisms, Stress, Health, Environment, IUT de Laval, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| |
Collapse
|
4
|
Amaro GM, da Silva ADT, Tamarindo GH, Lamas CDA, Taboga SR, Cagnon VHA, Góes RM. Differential effects of omega-3 PUFAS on tumor progression at early and advanced stages in TRAMP mice. Prostate 2022; 82:1491-1504. [PMID: 36039485 DOI: 10.1002/pros.24421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 06/09/2022] [Accepted: 07/13/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND In vitro studies evidenced antitumor effects of omega-3 polyunsaturated fatty acids ([n-3] PUFAs), but their effects on prostate cancer (PCa) remain controversial in epidemiological studies. Here we investigated whether an (n-3) PUFA-enriched diet affects tumor progression in transgenic adenocarcinoma of the mouse prostate (TRAMP), at early (12 weeks age) and advanced stages (20 weeks age). METHODS TRAMP mice were fed with standard rodent diet (C12, C20) or (n-3) PUFA-enriched diet containing 10% fish oil (T12, T20). A group of 8 weeks age animals fed standard diet was also used for comparison (C8). The ventral prostate was processed for histopathological and immunohistochemical analyses and serum samples submitted to biochemical assays. RESULTS At early stages, (n-3) PUFA increased the frequency of normal epithelium (3.8-fold) and decreased the frequency of high-grade intraepithelial neoplasia (3.3-fold) and in situ carcinoma (1.9-fold) in the gland, maintaining prostate pathological status similar to C8 group. At advanced stages, 50% of the animals developed a large primary tumor in both C20 and T20, and tumor weight did not differ (C20: 2.2 ± 2.4; T20: 2.8 ± 2.9 g). The ventral prostate of T12 and of T20 animals that did not develop primary tumors showed lower cell proliferation, tissue expressions of androgen (AR) and glucocorticoid (GR) receptors, than their respective controls. For these animals, (n-3) PUFA also avoided an increase in the number of T-lymphocytes, collagen fibers, and αSMA immunoreactivity, and preserved stromal gland microenvironment. (n-3) PUFA also lowered serum triglycerides and cholesterol, regulating the lipid metabolism of TRAMP mice. CONCLUSIONS (n-3) PUFAs had a protective effect at early stages of PCa, delaying tumor progression in TRAMP mice, in parallel with reductions in cell proliferation, AR, and GR and maintenance of the stromal compartment of the gland. However, (n-3) PUFAs did not prevent the development of primary tumors for the T20 group, reinforcing the need for further investigation at advanced stages of disease.
Collapse
Affiliation(s)
- Gustavo M Amaro
- Departament of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Alana D T da Silva
- Departament of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Guilherme H Tamarindo
- Department of Structural and Functional Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Celina de A Lamas
- Department of Structural and Functional Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Sebastião R Taboga
- Departament of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Valéria Helena Alves Cagnon
- Department of Structural and Functional Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Rejane M Góes
- Departament of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
5
|
Xu Y, Sun L, Hu J, Xu S. Knockdown of hsa_circ_0001275 reverses dexamethasone-induced osteoblast growth inhibition via mediation of miR-377/CDKN1B axis. PLoS One 2021; 16:e0252126. [PMID: 34043680 PMCID: PMC8158950 DOI: 10.1371/journal.pone.0252126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 05/10/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Osteoporosis affects the quality of life among middle-aged and elderly individuals. In addition, dysfunction of osteoblasts can lead to the progression of osteoporosis. Circular (circ)RNAs are involved in various types of diseases, including osteoporosis. Moreover, it has been reported that hsa_circ_0001275 expression is upregulated in osteoporosis. However, the effects of hsa_circ_0001275 on the growth of osteoblasts remain unclear. METHODS In the present study, the gene and protein expression levels in hFOB1.19 cells were detected via reverse transcription-quantitative (RT-qPCR) and western blot analyses, respectively. In addition, alkaline phosphatase (ALP) activity and calcium nodules were examined by ALP and alizarin red staining, respectively. Cell proliferation was measured using the Cell Counting Kit-8 assay. Cell apoptosis and cell cycle were analyzed by flow cytometry. Furthermore, dual luciferase reporter and RNA pull-down assay were used to confirm the association among hsa_circ_0001275, microRNA (miR)-377 and CDKN1B. RESULTS DEX-induced hFOB1.19 cell growth inhibition was significantly reversed by silencing hsa_circ_0001275. Moreover, DEX significantly increased ALP activity and calcium nodules in hFOB1.19 cells, while this effect was significantly reversed in the presence of hsa_circ_0001275 small interfering RNA. In addition, miR-377 was sponged by hsa_circ_0001275 and CDKN1B was directly targeted by miR-377 in hFOB1.19 cells. Furthermore, the therapeutic effect of hsa_circ_0001275 knockdown on osteoporosis was notably reversed by miR-377 antagomir. CONCLUSION The data demonstrated that knockdown of hsa_circ_0001275 reversed DEX-induced osteoblast growth inhibition via activation of the miR-377/CDKN1B axis. Therefore, this study might shed new lights on the treatment of osteoporosis.
Collapse
Affiliation(s)
- Yan Xu
- Department of Endocrinology, The First People’s Hospital of Fuyang District, Hangzhou, Zhejiang, China
- * E-mail:
| | - Liqin Sun
- Department of Endocrinology, The First People’s Hospital of Fuyang District, Hangzhou, Zhejiang, China
| | - Juncheng Hu
- Department of Endocrinology, The First People’s Hospital of Fuyang District, Hangzhou, Zhejiang, China
| | - Sai Xu
- Department of Endocrinology, The First People’s Hospital of Fuyang District, Hangzhou, Zhejiang, China
| |
Collapse
|